首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The peripheral dose outside the applicators in electron beams was studied using a Varian 21 EX linear accelerator. To measure the peripheral dose profiles and point doses for the applicator, a solid water phantom was used with calibrated Kodak TL films. Peak dose spot was observed in the 4 MeV beam outside the applicator. The peripheral dose peak was very small in the 6 MeV beam and was ignorable at higher energies. Using the 10 x 10 cm(2) cutout and applicator, the dose peak for the 4 MeV beam was about 12 cm away from the field central beam axis (CAX) and the peripheral dose profiles did not change with depths measured at 0.2, 0.5 and 1 cm. The peripheral doses and profiles were further measured by varying the angle of obliquity, cutout and applicator size for the 4 MeV beam. The local peak dose was increased with about 3% per degree angle of obliquity, and was about 1% of the prescribed dose (angle of obliquity equals zero) at 1 cm depth in the phantom using the 10 x 10 cm(2) cutout and applicator. The peak dose position was also shifted 7 mm towards the CAX when the angle of obliquity was increased from 0 to 15 degrees.  相似文献   

2.
The leakage characteristics of electron applicators on our Clinac 2500 linear accelerator have been measured. The leakage radiation in the patient plane and at the surface of the electron applicators has been measured for applicator sizes from 6 cm X 6 cm to 25 cm X 25 cm and beam energies from 6 to 22 MeV. For certain applicator/energy combinations the leakage radiation was significant. The leakage radiation, relative to the central axis dose, was found to be up to 7% in the patient plane and up to 39% at the applicator surface. Reducing the collimator setting or adding lead at select locations on the applicator surface was effective in reducing the magnitude of the radiation leakage.  相似文献   

3.
High-energy electron beams in the range 150-250 MeV are studied to evaluate the feasibility for radiotherapy. Monte Carlo simulation results from the PENELOPE code are presented and used to determine lateral spread and penetration of these beams. It is shown that the penumbra is comparable to photon beams at depths less than 10 cm and the practical range (Rp) of these beams is greater than 40 cm. The depth dose distribution of electron beams compares favourably with photon beams. Effects caused by nuclear reactions are evaluated, including increased dose due to neutron production and induced radioactivity resulting in an increased relative biological effectiveness (RBE) factor of < 1.03.  相似文献   

4.
The concept of field equivalence for electron beams is examined using a pencil beam theory applied to circular fields. It is shown that a circular field can be found for a field of any size, shape and energy for which the depth dose distribution is approximately equivalent. The usefulness of the concept in clinical dosimetry is discussed.  相似文献   

5.
The contribution made by contaminating electrons present in a clinical photon beam to the buildup dose in a polystyrene phantom has been calculated and compared to measurements. A Monte Carlo technique was employed. The calculation was divided into two parts. First, the accelerator treatment head was simulated in detail using the EGS-PEGS electromagnetic shower code. Then, information obtained from these calculations was used to compute dose curves in a polystyrene phantom. Two cases were considered, one in which both electrons and photons were incident upon the phantom, and another in which electrons were eliminated from the incident beam. Results of these calculations agree with recent experimental findings. A decrease in buildup dose as well as a shift in dmax was observed when electrons were eliminated from the beam.  相似文献   

6.
Restricted mass collision stopping-power ratios for electron beams from a scatter-foil medical linear accelerator (Varian Clinac 2100C) were calculated for various combinations of beams, phantoms and detector materials using the Monte Carlo method. The beams were of nominal energy 6, 12 or 20 MeV, with square dimensions 1 x 1 cm2 to 10 x 10 cm2. They were incident at nominal SSDs of 100 or 120 cm and inclined at 90 degrees or 30 degrees to the surface of homogeneous water phantoms or water phantoms interspersed with layered lung or bone-like materials. The broad beam water-to-air stopping-power ratios were within 1.3% of the AAPM TG21 protocol values and consistent with the results of Ding et al to within 0.2%. On the central axis the stopping-power ratio variations for narrow beams compared with normally incident broad beams were 0.1% or less for water-to-LiF-100, graphite, ferrous sulfate dosimeter solution, polystyrene and PMMA, 0.5% for water-to-silicon and 1% for water-to-air and water-to-photographic-film materials. The transverse variations of the stopping-power ratios were up to 4% for water-to-silicon, 7% for water-to-photographic-film materials and 10% for water-to-air in the penumbral regions (where the dose was 10% of the global dose maximum) at shallow depths compared with the values at the same depths on the central axis. In the inhomogeneous phantoms studied, the stopping-power ratio correction factors varied more significantly for air, followed by photographic materials and silicon, at various depths on the central axis in the heterogeneous regions. For the simple layered phantoms studied, the estimation of the stopping-power ratio correction factors based on the relative electron-density derived effective depth approach yielded results that were within 0.5% of the Monte Carlo derived values for all the detector materials studied.  相似文献   

7.
Ma L 《Medical physics》2004,31(11):2973-2977
A method of generating magnetically collimated electron beams is developed and the dosimetric properties of magnetically collimated electrons are investigated. An in-air magnetic collimator device was designed and constructed for the study. The magnetic collimator was placed above the exit port of a 14 x 14 cm2 electron cone. Axial magnetic field of approximately 0.6 Tesla is generated inside the collimator via an array of permanent magnets. Fixed and rotational magnetically collimated electron beams were delivered and measured in phantoms. We found that magnetically collimated electron beams significantly lower the surface dose as compared with conventional electron beams. A magnetically collimated arc beam further reduces the surface dose to less than 20% of the maximum dose inside the target. The dose per monitor unit at d(max) for the magnetically collimated electron beams was significantly (approximately 40%) higher than that of the conventional electron beams. The use of magnetic collimation may lead to improved delivery techniques for breast and head and neck cancer treatments.  相似文献   

8.
We aimed to estimate the scattered radiation from dental metallic crowns during head and neck radiotherapy by irradiating a jaw phantom with external photon beams. The phantom was composed of a dental metallic plate and hydroxyapatite embedded in polymethyl methacrylate. We used radiochromic film measurement and Monte Carlo simulation to calculate the radiation dose and dose distribution inside the phantom. To estimate dose variations in scattered radiation under different clinical situations, we altered the incident energy, field size, plate thickness, plate depth and plate material. The simulation results indicated that the dose at the incident side of the metallic dental plate was approximately 140% of that without the plate. The differences between dose distributions calculated with the radiation treatment-planning system (TPS) algorithms and the data simulation, except around the dental metallic plate, were 3% for a 4 MV photon beam. Therefore, we should carefully consider the dose distribution around dental metallic crowns determined by a TPS.  相似文献   

9.
Chow JC  Grigorov GN 《Medical physics》2008,35(4):1241-1250
In electron radiotherapy of superficial lesions in the eyelid, lip, buccal mucosa, ear, and nose, backscattered electrons are produced from the lead shield used to protect the critical tissue underneath the tumor. In this study, the backscattered electrons, produced by clinical electron beams using a Varian 21 EX linear accelerator, were studied using Monte Carlo simulations. The electron backscatter factor (EBF), defined as the ratio of dose at the tissue-lead interface to the dose at the same point without the presence of backscatter, was calculated using the Monte Carlo EGSnrc-based code. The calculated EBFs were verified with measurements using metal-oxide-semiconductor field effect transistor detectors. The effect of the (1) initial electron beam energy, (2) thickness of bolus over the lead shield, (3) beam's angle of incidence, and (4) presence of an aluminum sheet used to absorb backscattered electrons, on the EBF, were studied. It is found that for lead shielding positioned at any fixed depth, the EBF decreases with an increase in initial electron beam energy (4-16 MeV). In addition, for depths within the electron practical range, Rp, and at a particular beam energy, the EBF increases with depth (or thickness of the treatment volume). When the electron beam angle increases from 0 degrees to 5 degrees, the EBF only decreases slightly (<4%) for all energies. The influence of the beam obliquity on the EBF is important when the treatment surface is not flat and perpendicular to the central beam axis. The use of an aluminum sheet to reduce backscattered electrons was also investigated. For a relatively low electron beam energy (4 MeV), a 2 mm aluminum sheet can reduce backscattering by 31%. While the electron beam energy increased, less backscattered electrons were produced and therefore removed by the same thickness of aluminum (only about 6% for 16 MeV). The Monte Carlo calculated EBFs from this study, characterized by the electron beam energy, depth of bolus above the lead shield, beam obliquity, and presence of an aluminum sheet, may provide important clinical information for radiation oncology staff when considering the effect of electron backscatter on radiotherapy using internal shielding.  相似文献   

10.
Electron beam radiotherapy treatment planning systems need to be fed with the characteristics of the high-energy electron beams (4-50 MeV) from the specifically applied accelerator. Beams can be characterized by their mean initial energy, effective initial angular variance, virtual source position and the resulting central axis depth dose distribution in water. This information is the only input to pencil beam dose calculation models. Newer calculation models like macro Monte Carlo, voxel Monte Carlo and phase space evolution require as input the full initial phase space or a parametrization of that initial phase space, generally consisting of a primary beam component and one or more scatter components. This primary beam component is often characterized by initial energy, primary beam initial angular variance and virtual source distance. The purpose of the present investigation was to investigate to what extent standard values can be used both for the effective initial angular variance as input to pencil beam models and for the primary beam initial angular variance. Comprehensive benchmark data were obtained on the initial angular variance of various types of accelerator, for various energies and field sizes. The initial angular variance sigma2theta(x) has been derived from penumbra measurements in air by means of film dosimetry at various distances from the lower collimator. For the types of accelerator used in radiotherapy nowadays the measurements show values for sigma2theta(x)/T(E) of around 13 cm where T(E) is the ICRU-35 linear angular scattering power in air. This value can be chosen as standard value for the primary beam initial angular variance, only slightly compromising the dose calculation accuracy. As input to pencil beam models, an effective sigma2theta(x)/T(E) should be used incorporating the scatter from the lower collimator. For the case that the air gaps between lower collimator and patient are small (5-10 cm) an effective sigma2theata(x)/T(E) of 20 cm has been found and is recommended as the standard input for pencil beam models. Of the accelerators investigated, a different value was found only for the Elekta SL15, i.e. 50% higher for the effective sigma2theta(x)/T(E).  相似文献   

11.
Lee MC  Jiang SB  Ma CM 《Medical physics》2000,27(12):2708-2718
Modulated electron radiation therapy (MERT) has been proposed as a means of delivering conformal dose to shallow tumors while sparing distal structures and surrounding tissues. Conventional systems for electron beam collimation are labor and time intensive in their construction and are therefore inadequate for use in the sequential delivery of multiple complex fields required by MERT. This study investigates two proposed methods of electron beam collimation: the use of existing photon multileaf collimators (MLC) in a helium atmosphere to reduce in-air electron scatter, and a MLC specifically designed for electron beam collimation. Monte Carlo simulations of a Varian Clinac 2100C were performed using the EGS4/BEAM system and dose calculations performed with the MCDOSE code. Dose penumbras from fields collimated by photon MLCs both with air and with helium at 6, 12, and 20 MeV at a range of SSDs from 70 to 90 cm were examined. Significant improvements were observed for the helium based system. Simulations were also performed on an electron specific MLC located at the level of the last scraper of a 25x25 cm2 applicator. A number of leaf materials, thicknesses, end shapes, and widths were simulated to determine optimal construction parameters. The results demonstrated that tungsten leaves 15 mm thick and 5 mm wide with unfocused ends would provide sufficient collimation for MERT fields. A prototype electron MLC was constructed and comparisons between film measurements and simulation demonstrate the validity of the Monte Carlo model. Further simulations of dose penumbras demonstrate that such an electron MLC would provide improvements over the helium filled photon MLC at all energies, and improvements in the 90-10 penumbra of 12% to 45% at 20 MeV and 6 MeV, respectively. These improvements were also seen in isodose curves when a complex field shape was simulated. It is thus concluded that an MLC specific for electron beam collimation is required for MERT.  相似文献   

12.
Monte Carlo simulations were employed to study the characteristics of the electron beams of a clinical linear accelerator in the presence of 1.5 and 3.0 T transverse magnetic fields and to assess the possibility of using magnetic fields in conjunction with modulated electron radiation therapy (MERT). The starting depth of the magnetic field was varied over several centimetres. It was found that peak doses of as much as 2.7 times the surface dose could be achieved with a 1.5 T magnetic field. The magnetic field was shown to reduce the 80% and 20% dose drop-off distance by 50% to 80%. The distance between the 80% dose levels of the pseudo-Bragg peak induced by the magnetic field was found to be extremely narrow, generally less than 1 cm. However, by modulating the energy and intensity of the electron fields while simultaneously moving the magnetic field, a homogeneous dose distribution with low surface dose and a sharp dose fall-off was generated. Heterogeneities are shown to change the effective range of the electron beams, but not eliminate the advantages of a sharp depth dose drop-off or high peak-to-surface dose ratio. This suggests the applicability of MERT with magnetic fields in heterogeneous media. The results of this study demonstrate the ability to use magnetic fields in MERT to produce highly desirable dose distributions.  相似文献   

13.
High density and atomic number (Z) materials used in various prostheses, eye shielding, and beam modifiers produce dose enhancements on the backscatter side in electron beams and is well documented. However, on the transmission side the dose perturbation is given very little clinical importance, which is investigated in this study. A simple and accurate method for dose perturbation at metallic interfaces with soft tissues and transmission through these materials is required for all clinical electron beams. Measurements were taken with thin-window parallel plate ion chambers for various high-Z materials (Al, Ti, Cu, and Pb) on a Varian and a Siemens accelerator in the energy range of 5-20 MeV. The dose enhancement on both sides of the metallic sheet is due to increased electron fluence that is dependent on the beam energy and Z. On the transmission side, the magnitude of dose enhancement depends on the thickness of the high-Z material. With increasing thickness, dose perturbation reduces to the electron transmission. The thickness of material to reduce 100% (range of dose perturbation), 50% and 10% transmission is linear with the beam energy. The slope (mm/MeV) of the transmission curve varies exponentially with Z. A nonlinear regression expression (t=E[alpha+beta exp(-0.1Z)]) is derived to calculate the thickness at a given transmission, namely 100%, 50%, and 10% for electron energy, E, which is simple, accurate and well suited for a quick estimation in clinical use. Caution should be given to clinicians for the selection of thickness of high-Z materials when used to shield critical structures as small thickness increases dose significantly at interfaces.  相似文献   

14.
Relative to solid water, electron fluence correction factors at the depth of dose maximum in bone, lung, aluminum, and copper for nominal electron beam energies of 9 MeV and 15 MeV of the Clinac 18 accelerator have been determined experimentally and by Monte Carlo calculation. Thermoluminescent dosimeters were used to measure depth doses in these materials. The measured relative dose at dmax in the various materials versus that of solid water, when irradiated with the same number of monitor units, has been used to calculate the ratio of electron fluence for the various materials to that of solid water. The beams of the Clinac 18 were fully characterized using the EGS4/BEAM system. EGSnrc with the relativistic spin option turned on was used to optimize the primary electron energy at the exit window, and to calculate depth doses in the five phantom materials using the optimized phase-space data. Normalizing all depth doses to the dose maximum in solid water stopping power ratio corrected, measured depth doses and calculated depth doses differ by less than +/- 1% at the depth of dose maximum and by less than 4% elsewhere. Monte Carlo calculated ratios of doses in each material to dose in LiF were used to convert the TLD measurements at the dose maximum into dose at the center of the TLD in the phantom material. Fluence perturbation correction factors for a LiF TLD at the depth of dose maximum deduced from these calculations amount to less than 1% for 0.15 mm thick TLDs in low Z materials and are between 1% and 3% for TLDs in Al and Cu phantoms. Electron fluence ratios of the studied materials relative to solid water vary between 0.83+/-0.01 and 1.55+/-0.02 for materials varying in density from 0.27 g/cm3 (lung) to 8.96 g/cm3 (Cu). The difference in electron fluence ratios derived from measurements and calculations ranges from -1.6% to +0.2% at 9 MeV and from -1.9% to +0.2% at 15 MeV and is not significant at the 1sigma level. Excluding the data for Cu, electron fluence correction factors for open electron beams are approximately proportional to the electron density of the phantom material and only weakly dependent on electron beam energy.  相似文献   

15.
An extendable x-ray multi-leaf collimator (eMLC) is investigated for collimation of electron beams on a linear accelerator. The conventional method of collimation using an electron applicator is impractical for conformal, modulated and mixed beam therapy techniques. An eMLC would allow faster, more complex treatments with potential for reduction in dose to organs-at-risk and critical structures. The add-on eMLC was modelled using the EGSnrc Monte Carlo code and validated against dose measurements at 6-21 MeV with the eMLC mounted on a Siemens Oncor linear accelerator at 71.6 and 81.6 cm source-to-collimator distances. Measurements and simulations at 8.4-18.4 cm airgaps showed agreement of 2%/2 mm. The eMLC dose profiles and percentage depth dose curves were compared with standard electron applicator parameters. The primary differences were a wider penumbra and up to 4.2% reduction in the build-up dose at 0.5 cm depth, with dose normalized on the central axis. At 90 cm source-to-surface distance (SSD)--relevant to isocentric delivery--the applicator and eMLC penumbrae agreed to 0.3 cm. The eMLC leaves, which were 7 cm thick, contributed up to 6.3% scattered electron dose at the depth of maximum dose for a 10 × 10 cm2 field, with the thick leaves effectively eliminating bremsstrahlung leakage. A Monte Carlo calculated wedge shaped dose distribution generated with all six beam energies matched across the maximum available eMLC field width demonstrated a therapeutic (80% of maximum dose) depth range of 2.1-6.8 cm. Field matching was particularly challenging at lower beam energies (6-12 MeV) due to the wider penumbrae and angular distribution of electron scattering. An eMLC isocentric electron breast boost was planned and compared with the conventional applicator fixed SSD plan, showing similar target coverage and dose to critical structures. The mean dose to the target differed by less than 2%. The low bremsstrahlung dose from the 7 cm thick MLC leaves had the added advantage of reducing the mean dose to the whole heart. Isocentric delivery using an extendable eMLC means that treatment room re-entry and repositioning the patient for SSD set-up is unnecessary. Monte Carlo simulation can accurately calculate the fluence below the eMLC and subsequent patient dose distributions. The eMLC generates similar dose distributions to the standard electron applicator but provides a practical method for more complex electron beam delivery.  相似文献   

16.
The Instrument AB Scanditronix MM22 medical microtron provides ten electron beam energies from approximately 3 to 22 MeV. Isodose curves, depth dose curves, field uniformity, and other characteristics were measured in water and in polystyrene. The method of acceleration, dual scattering foil system, and collimation technique produce beams having features superior to many other medical electron accelerators. Maximum dose rates at isocenter varied from about 500 to over 900 cGy min-1, photon contamination from 0.6% to 4.1%, and surface doses from 70% to 95% of the maximum. Depth dose curves were indistinguishable from those with identical practical ranges of a scanned beam linac at energies less than 18 MeV, and field flatness was clearly superior to the scanned beam linac at standard treatment distances.  相似文献   

17.
Björk P  Knöös T  Nilsson P 《Medical physics》2000,27(11):2580-2588
The aim of the present study is to examine the validity of using silicon semiconductor detectors in degraded electron beams with a broad energy spectrum and a wide angular distribution. A comparison is made with diamond detector measurements, which is the dosimeter considered to give the best results provided that dose rate effects are corrected for. Two-dimensional relative absorbed dose distributions in electron beams (6-20 MeV) for intraoperative radiation therapy (IORT) are measured in a water phantom. To quantify deviations between the detectors, a dose comparison tool that simultaneously examines the dose difference and distance to agreement (DTA) is used to evaluate the results in low- and high-dose gradient regions, respectively. Uncertainties of the experimental measurement setup (+/- 1% and +/- 0.5 mm) are taken into account by calculating a composite distribution that fails this dose-difference and DTA acceptance limit. Thus, the resulting area of disagreement should be related to differences in detector performance. The dose distributions obtained with the diode are generally in very good agreement with diamond detector measurements. The buildup region and the dose falloff region show good agreement with increasing electron energy, while the region outside the radiation field close to the water surface shows an increased difference with energy. The small discrepancies in the composite distributions are due to several factors: (a) variation of the silicon-to-water collision stopping-power ratio with electron energy, (b) a more pronounced directional dependence for diodes than for diamonds, and (c) variation of the electron fluence perturbation correction factor with depth. For all investigated treatment cones and energies, the deviation is within dose-difference and DTA acceptance criteria of +/- 3% and +/- 1 mm, respectively. Therefore, p-type silicon diodes are well suited, in the sense that they give results in close agreement with diamond detectors, for practical measurements of relative absorbed dose distributions in degraded electron beams used for IORT.  相似文献   

18.
The mean energy of the energy spectrum is an essential parameter for the dosimetry of therapeutic electron beams. Frequently it is assumed that the mean energy of such beams remains constant across the beam and only its degradation with depth is considered. The present work analyzes the variation of the mean energy of primary electrons with depth and lateral position in an electron beam using the Monte Carlo method. Results are compared with relations commonly employed for determination of mean energy at a depth. For the variation of the mean electron energy with depth in broad beams, good agreement was found between Monte Carlo results and an analytic continuous slowing down expression, which takes the variation of radiation stopping power with depth into account. Due to the calculated lateral variation of the mean energy, the relative absorbed dose profile determined with an air ionization chamber in a clinical beam should differ by less than 1% from the measured ionization profile.  相似文献   

19.
A Perec  H Kubo 《Medical physics》1990,17(4):715-719
Radiation leakage through electron applicators by 6-, 9-, 12-, 16-, and 20-MeV electron beams from Varian Clinac-1800 has been measured with films. High levels of leakage were found under the corners of applicators and the touch-plate mounting port holes. The radiation leakage, relative to the central-axis dose at dmax, was found to be up to 13% on the patient plane [100-cm source-to-film distance (SFD)] and up to 35% beneath the corners of applicators (96-cm SFD). Up to 18% radiation leakage was measured beneath the touch plate near the mounting port holes (96-cm SFD). The extent of radiation leakage in all electron beams was investigated and some simple shielding solutions to reduce the leakage are suggested.  相似文献   

20.
In intraoperative radiation therapy, it is critical to reduce the radiation contamination outside the useful field by as much as physically feasible. Additionally, a uniform dose is clinically desirable across the tumor volume. A study of the Medical College of Ohio applicators indicates that the radiation contamination outside the field can be as high as 18% of the central axis dose. The effects of the photon collimator setting on the magnitude and energy of the radiation contamination are discussed and means are presented for reducing this unwanted radiation. The dose nonuniformity across the field is found to be virtually independent of the photon collimator setting and is shown to be mostly due to the transparent applicator wall. The clinical significance of the findings is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号