首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A prototype electron applicator system providing circular and rectangular fields for use in intraoperative electron beam therapy with a Varian Clinac 18 linear accelerator has been fabricated. The dosimetric properties of this system for a variety of electron-beam energies, applicator sizes, and x-ray collimator settings was documented. Significant findings include: (a) surface dose values are in excess of 90% for electron energies of 12 MeV and above; (b) for the 18-MeV beam, the deepest depth where the central axis dose in 90% of its maximum value is in excess of 50 mm for circular applicators whose diameters are in excess of 5 cm; and (c) the treatment time to deliver 1000 rads "given dose" (at given dose rate of 300 MU/min) is on the order of 3-4 min. Cross-field behavior is acceptable for the intended application and x-ray contamination is less than 4% for any applicator/electron energy combination. A system for irregular field blocking and TLD verification dosimetry has been developed.  相似文献   

2.
A major task in commissioning an electron accelerator is to measure relative output factors versus cutout size (i.e., cutout factors) for various electron beam energies and applicator sizes. We use the BEAM Monte Carlo code [Med Phys. 22, 503-524 (1995)] to stimulate clinical electron beams and to calculate the relative output factors for square cutouts. Calculations are performed for a Siemens MD2 linear accelerator with beam energies, 6, 9, 11, and 13 MeV. The calculated cutout factors for square cutouts in 10 X 10 cm2, 15 X 15 cm2, and 20 X 20 cm2 applicators at SSDs of 100 and 115 cm agree with the measurements made using a silicon diode within about 1% except for the smallest cutouts at SSD= 115 cm where they agree within 0.015. The details of each component of the dose, such as the dose from particles scattered off the jaws and the applicator, the dose from contaminant photons, the dose from direct electrons, etc., are also analyzed. The calculations show that inphantom side-scatter equilibrium is a major factor for the contribution from the direct component which usually dominates the output of a beam. It takes about 6 h of CPU time on a Pentium Pro 200 MHz computer to simulate an accelerator and additional 2 h to calculate the relative output factor for each cutout with a statistical uncertainty of 1%.  相似文献   

3.
Clinically used IORT electron beam characteristics may vary with respect to typical external beams due to the decrease of lateral scatter equilibrium and the addition of the IORT apparatus itself. Additionally, chamber size effects may lead to inaccurate measurements of the changes in electron beam characteristics. The causal components of these beam characteristics are often difficult or impossible to measure using experimental techniques. For this reason, and for potential design improvement, the electron beams were modeled using the OMEGA/BEAM Monte Carlo software for radiation transport. The IORT electron beam characteristics of the Varian Clinac 1800 were studied for 6, 12, and 20 MeV electrons and 1-4 in. diameter flat-end applicators. The characteristics studied include electron energy spectra, percentage depth dose, and cross-plane profiles. It was found that by increasing the thickness of the aluminum base plate of the main attachment, the dose at d(max) outside the primary field could be reduced from approximately 9% to 1% of maximum.  相似文献   

4.
The dosimetric characteristics of three multileaf collimator (MLC) systems (Elekta, Siemens and Varian) having 10 mm leaf width are compared. A 6 MV photon beam was used from each unit for measurements. Film dosimetry was performed for the measurements and the analysis techniques were exactly duplicated in each system. Two of the collimators have rounded leaf ends (Elekta and Varian) and the third (Siemens) has a flat end that follows beam divergence. A scanning densitometer (Wellh?fer with 0.45 mm spot and 0.5 mm step size) was used for film analysis. The dosimetric characteristics studied include: penumbra width (80-20%) as a function of position of the leaf end in the field, inter- and intra-leaf radiation leakage, dose distribution of the tongue and groove, and isodose curves for stepped leaves forming 45 degrees angle beam edge. Results show that MLC designs with divergent and non-divergent leaves produce penumbra (80-20%) widths that are within 2.0 mm of each other. However, the distance of the collimator from the x-ray target plays an important role, and the smallest penumbra width was noted for the Varian MLC despite its rounded leaf-end design. Compared to the other systems, this collimator is positioned about 15 cm closer to the patient which affects the skin dose. The MLC with flat leaf end, although closer to the target, showed slightly poorer penumbra width. Inter-leaf leakage through the leaves is 1.3% for two of the collimators (Elekta and Varian) with the backup jaws and is nearly 1% for the third system (Siemens). The Siemens MLC produces reduced tongue-and-groove effect compared to the other two collimators (Elekta and Varian). The isodose undulation for a stepped edge is found to be significant for the collimator closest to the patient (Varian) and does not depend on the leaf-end shape. There is no perfect MLC system that can be recommended, rather each one has unique advantages and disadvantages that should be weighed with comfort, ease and cost effectiveness for clinical use.  相似文献   

5.
The peripheral dose outside the applicators in electron beams was studied using a Varian 21 EX linear accelerator. To measure the peripheral dose profiles and point doses for the applicator, a solid water phantom was used with calibrated Kodak TL films. Peak dose spot was observed in the 4 MeV beam outside the applicator. The peripheral dose peak was very small in the 6 MeV beam and was ignorable at higher energies. Using the 10 x 10 cm(2) cutout and applicator, the dose peak for the 4 MeV beam was about 12 cm away from the field central beam axis (CAX) and the peripheral dose profiles did not change with depths measured at 0.2, 0.5 and 1 cm. The peripheral doses and profiles were further measured by varying the angle of obliquity, cutout and applicator size for the 4 MeV beam. The local peak dose was increased with about 3% per degree angle of obliquity, and was about 1% of the prescribed dose (angle of obliquity equals zero) at 1 cm depth in the phantom using the 10 x 10 cm(2) cutout and applicator. The peak dose position was also shifted 7 mm towards the CAX when the angle of obliquity was increased from 0 to 15 degrees.  相似文献   

6.
Skin toxicity has been reported for IMRT of head and neck cancer. The purpose of this study was to investigate the dose in the build-up region delivered by a 6 MV treatment plan for which important skin toxicity was observed. We also investigated if the different designs of the treatment head of an Elekta and a Varian linear accelerator, especially the lower position of the Varian multi-leaf collimator, give rise to different build-up doses. For regular square open beams, the build-up dose along the central beam axis is higher for the Varian machine than for the Elekta machine, both for 6 MV and 18 MV. At the Elekta machine at 18 MV, the superficial dose of a diamond shaped 10 x 10 cm2 field is 3.6% lower than the superficial dose of a regular 10 x 10 cm2 field. This effect is not seen at 6 MV. At the Varian machine, the superficial dose of the diamond shaped field is respectively 3.5 and 14.2% higher than the superficial dose of the regular 10 x 10 cm2 field for 6 MV and 18 MV. Despite the differences measured in build-up dose for single beams between the Elekta and the Varian linear accelerator, there were no measurable differences in superficial dose when a typical IMRT dose plan of 6 MV for a head and neck tumour is executed at the two machines.  相似文献   

7.
The BEAM code is used to simulate nine photon beams from three major manufacturers of medical linear accelerators (Varian, Elekta, and Siemens), to derive and evaluate estimates for the parameters of the electron beam incident on the target, and to study the effects of some mechanical parameters like target width, primary collimator opening, flattening filter material and density. The mean energy and the FWHM of the incident electron beam intensity distributions (assumed Gaussian and cylindrically symmetric) are derived by matching calculated percentage depth-dose curves past the depth of maximum dose (within 1% of maximum dose) and off-axis factors (within 2sigma at 1% statistics or less) with measured data from the AAPM RTC TG-46 compilation. The off-axis factors are found to be very sensitive to the mean energy of the electron beam, the FWHM of its intensity distribution, its angle of incidence, the dimensions of the upper opening of the primary collimator, the material of the flattening filter and its density. The off-axis factors are relatively insensitive to the FWHM of the electron beam energy distribution, its divergence and the lateral dimensions of the target. The depth-dose curves are sensitive to the electron beam energy, and to its energy distribution, but they show no sensitivity to the FWHM of the electron beam intensity distribution. The electron beam incident energy can be estimated within 0.2 MeV when matching either the measured off-axis factors or the central-axis depth-dose curves when the calculated uncertainties are about 0.7% at the 1 sigma level. The derived FWHM (+/-0.1 mm) of the electron beam intensity distributions all fall within 1 mm of the manufacturer specifications except in one case where the difference is 1.2 mm.  相似文献   

8.
目的:对高能电子线总输出因子、百分深度剂量、深度剂量分布的剂量学参数进行测量并分析讨论。方法:在Varian23EX直线加速器上,利用9606剂量测量仪和0.6cc指型电离室测量不同能量、不同限光筒及不同射野下的输出剂量并作归一,得到我们所要的剂量学参数,然后分析数据。结果:总输出因子在不同能量下与正方形射野边长的关系可满足等式:y=a·e^bx+c·e^dx。水模体百分剂量分布中,6MeV电子线各限光筒的90%、85%等剂量深度基本不变,9MeV-15MeV下90%、85%等剂量深度随着限光筒尺寸增大而变深。对于水模体的深度剂量分布情况,6MeV和12MeV能量的10cmx10cm、15cmxl5cm限光筒均整区内对称点的最大相对剂量差分别都为0.04%、O.03%。结论:通过测量掌握实际照射中的剂量学特点.对于电子线剂量的准确计算以及临床计划制定具有很大的参考价值。  相似文献   

9.
目的:探讨Varian 2300 C/D直线加速器高能电子束射野输出因子变化规律。方法:用电离室法实测在各种能量下对四种限光筒的不同铅挡野的射野输出因子。结果:铅挡野输出因子随射野边长及限光筒大小变化没有明显的规律;铅挡野输出因子与能量有关。结论:射线能量、限光铜和铅挡野大小时输出因子的影响较大,临床应用时需要针对性地精确测量。  相似文献   

10.
The leakage characteristics of electron applicators on our Clinac 2500 linear accelerator have been measured. The leakage radiation in the patient plane and at the surface of the electron applicators has been measured for applicator sizes from 6 cm X 6 cm to 25 cm X 25 cm and beam energies from 6 to 22 MeV. For certain applicator/energy combinations the leakage radiation was significant. The leakage radiation, relative to the central axis dose, was found to be up to 7% in the patient plane and up to 39% at the applicator surface. Reducing the collimator setting or adding lead at select locations on the applicator surface was effective in reducing the magnitude of the radiation leakage.  相似文献   

11.
Chibani O  Ma CM 《Medical physics》2003,30(8):1990-2000
The dose from photon-induced nuclear particles (neutrons, protons, and alpha particles) generated by high-energy photon beams from medical linacs is investigated. Monte Carlo calculations using the MCNPX code are performed for three different photon beams from two different machines: Siemens 18 MV, Varian 15 MV, and Varian 18 MV. The linac head components are simulated in detail. The dose distributions from photons, neutrons, protons, and alpha particles are calculated in a tissue-equivalent phantom. Neutrons are generated in both the linac head and the phantom. This study includes (a) field size effects, (b) off-axis dose profiles, (c) neutron contribution from the linac head, (d) dose contribution from capture gamma rays, (e) phantom heterogeneity effects, and (f) effects of primary electron energy shift. Results are presented in terms of absolute dose distributions and also in terms of DER (dose equivalent ratio). The DER is the maximum dose from the particle (neutron, proton, or alpha) divided by the maximum photon dose, multiplied by the particle quality factor and the modulation scaling factor. The total DER including neutrons, protons, and alphas is about 0.66 cSv/Gy for the Siemens 18 MV beam (10 cm x 10 cm). The neutron DER decreases with decreasing field size while the proton (or alpha) DER does not vary significantly except for the 1 cm x 1 cm field. Both Varian beams (15 and 18 MV) produce more neutrons, protons, and alphas particles than the Siemens 18 MV beam. This is mainly due to their higher primary electron energies: 15 and 18.3 MeV, respectively, vs 14 MeV for the Siemens 18 MV beam. For all beams, neutrons contribute more than 75% of the total DER, except for the 1 cm x 1 cm field (approximately 50%). The total DER is 1.52 and 2.86 cSv/Gy for the 15 and 18 MV Varian beams (10 cm x 10 cm), respectively. Media with relatively high-Z elements like bone may increase the dose from heavy charged particles by a factor 4. The total DER is sensitive to primary electron energy shift. A Siemens 18 MV beam with 15 MeV (instead of 14 MeV) primary electrons would increase by 40% the neutron DER and by 210% the proton + alpha DER. Comparisons with measurements (neutron yields from different materials and neutron dose equivalent) are also presented. Using the NCRP risk assessment method, we found that the dose equivalent from leakage neutrons (at 50-cm off-axis distance) represent 1.1, 1.1, and 2.0% likelihood of fatal secondary cancer for a 70 Gy treatment delivered by the Siemens 18 MV, Varian 15 MV, and Varian 18 MV beams, respectively.  相似文献   

12.
An extendable x-ray multi-leaf collimator (eMLC) is investigated for collimation of electron beams on a linear accelerator. The conventional method of collimation using an electron applicator is impractical for conformal, modulated and mixed beam therapy techniques. An eMLC would allow faster, more complex treatments with potential for reduction in dose to organs-at-risk and critical structures. The add-on eMLC was modelled using the EGSnrc Monte Carlo code and validated against dose measurements at 6-21 MeV with the eMLC mounted on a Siemens Oncor linear accelerator at 71.6 and 81.6 cm source-to-collimator distances. Measurements and simulations at 8.4-18.4 cm airgaps showed agreement of 2%/2 mm. The eMLC dose profiles and percentage depth dose curves were compared with standard electron applicator parameters. The primary differences were a wider penumbra and up to 4.2% reduction in the build-up dose at 0.5 cm depth, with dose normalized on the central axis. At 90 cm source-to-surface distance (SSD)--relevant to isocentric delivery--the applicator and eMLC penumbrae agreed to 0.3 cm. The eMLC leaves, which were 7 cm thick, contributed up to 6.3% scattered electron dose at the depth of maximum dose for a 10 × 10 cm2 field, with the thick leaves effectively eliminating bremsstrahlung leakage. A Monte Carlo calculated wedge shaped dose distribution generated with all six beam energies matched across the maximum available eMLC field width demonstrated a therapeutic (80% of maximum dose) depth range of 2.1-6.8 cm. Field matching was particularly challenging at lower beam energies (6-12 MeV) due to the wider penumbrae and angular distribution of electron scattering. An eMLC isocentric electron breast boost was planned and compared with the conventional applicator fixed SSD plan, showing similar target coverage and dose to critical structures. The mean dose to the target differed by less than 2%. The low bremsstrahlung dose from the 7 cm thick MLC leaves had the added advantage of reducing the mean dose to the whole heart. Isocentric delivery using an extendable eMLC means that treatment room re-entry and repositioning the patient for SSD set-up is unnecessary. Monte Carlo simulation can accurately calculate the fluence below the eMLC and subsequent patient dose distributions. The eMLC generates similar dose distributions to the standard electron applicator but provides a practical method for more complex electron beam delivery.  相似文献   

13.
This study describes the modeling and the experimental verification and clinical implementation of the alpha release of Pinnacle3 Monte Carlo (MC) electron beam dose calculation algorithm for patient-specific treatment planning. The MC electron beam modeling was performed for beam energies ranging from 6 to 18 MeV from a Siemens (Primus) linear accelerator using standard-shaped electron applicators and 100 cm source-to-surface distance (SSD). The agreement between MC calculations and measurements was, on average, within 2% and 2 mm for all applicator sizes. However, differences of the order of 3%-4% were noted in the off-axis dose profiles for the largest applicator modeled and for all energies. Output factors were calculated for standard electron cones and square cutouts inserted in the 10 x 10 cm2 applicator for different SSDs and were found to be within 4% of measured data. Experimental verification of the MC electron beam model was carried out using an ionization chamber and film in solid-water slab and anthropomorphic phantoms containing bone and lung materials. Agreement between calculated and measured dose distributions was within +/-3%. Clinical comparison was performed in four patient treatment plans with lesions in highly irregular anatomies, such as the ear, face, and breast, where custom-designed bolus and field shaping blocks were used in the patient treatments. For comparison purposes, treatment planning was also performed using the conventional pencil beam (PB) algorithm with the Pinnacle3 treatment planning system. Differences between MC and PB dose calculations for the patient treatment plans were significant, particularly in anatomies where the target was in close proximity to low density tissues, such as lung and air cavities. Concerning monitor unit calculations, the largest differences obtained between MC and PB algorithms were between 4.0% and 5.0% for two patients treated with oblique beams and involving highly irregular surfaces, i.e., breast and cheek. Clinical results are reported for overall uncertainty values (averaged over voxels with doses >50% dosemax) ranging from 2% to 0.3% and calculations were performed using cubic voxels with side 0.3 cm. Timing values ranged from 2 min to 24.5 h, depending on the field size, beam energy, number, and thickness of computed tomography slices used to define the patient's anatomy for the overall uncertainty values mentioned above.  相似文献   

14.
Adjustments made to Monte Carlo models during the commissioning of the simulation should be physically realistic and correspond to actual machine characteristics. Large electron fields, with the jaws fully open and the applicator removed, are sensitive to important source and geometry parameters and may provide the most accurate beam models, including those collimated by an applicator. We report on the results of a comprehensive Monte Carlo sensitivity study documenting the response of these large fields to changes in the configuration of a Siemens Primus linear accelerator. The study was performed for 6, 9 12, 15, 18 and 21 MeV configurations, and included variations of thickness, position and lateral alignment of all treatment head components. Variations of electron beam characteristics were also included in the study. Results were classified by their impact on central-axis depth dose distributions, including the bremsstrahlung tail, and on beam profiles near D(max) and in the bremsstrahlung region. Low-energy results show an increased sensitivity to electron beam properties. High-energy bremsstrahlung profiles are shown to be useful in determining misalignments between the beam axis and mechanical isocentre. For all energies, the alignment of the secondary scattering foil and monitor chamber are shown to be critical for correctly modelling beam asymmetries. The results suggest a methodology for commissioning of electron beams using Monte Carlo treatment head simulation.  相似文献   

15.
The purpose of the present study is to demonstrate that the use of an electron applicator with energy-dependent source-to-collimator distances (SCDs) will significantly improve the dose homogeneity for abutted electron fields in segmented-field electron conformal therapy (ECT). Multiple Coulomb scattering theory was used to calculate and study the P(80-20) penumbra width of off-axis dose profiles as a function of air gap and depth. Collimating insert locations with air gaps (collimator-to-isocenter distance) of 5.0, 7.5, 11.5, 17.5 and 19.5 cm were selected to provide equal P(80-20) at a depth of 1.5 cm in water for energies of 6, 9, 12, 16 and 20 MeV, respectively, for a Varian 2100EX radiation therapy accelerator. A 15 x 15 cm(2) applicator was modified accordingly, and collimating inserts used in the variable-SCD applicator for segmented-field ECT were constructed with diverging edges using a computer-controlled hot-wire cutter, which resulted in 0.27 mm accuracy in the abutted edges. The resulting electron beams were commissioned for the pencil-beam algorithm (PBA) on the Pinnacle(3) treatment planning system. Four hypothetical planning target volumes (PTVs) and one patient were planned for segmented-field ECT using the new variable-SCD applicator, and the resulting dose distributions were compared with those calculated for the identical plans using the conventional 95 cm SCD applicator. Also, a method for quality assurance of segmented-field ECT dose plans using the variable-SCD applicator was evaluated by irradiating a polystyrene phantom using the treatment plans for the hypothetical PTVs. Treatment plans for all four of the hypothetical PTVs using the variable-SCD applicator showed significantly improved dose homogeneity in the abutment regions of the segmented-field ECT plans. This resulted in the dose spread (maximum dose-minimum dose), sigma, and D(90-10) in the PTV being reduced by an average of 32%, 29% and 32%, respectively. Reductions were most significant for abutted fields of nonadjacent energies. Planning segmented-field ECT using the variable-SCD applicator for a patient with recurrent squamous cell carcinoma of the left ear showed the dose spread, sigma, and D(90-10) of the dose distribution in the PTV being reduced by an average of 38%, 22% and 22%, respectively. The measured and calculated dose in a polystyrene phantom resulting from the variable-SCD, segmented-field ECT plans for the hypothetical PTVs showed good agreement; however, isolated differences between dose calculation and measurement indicated the need for a more accurate dose algorithm than the PBA for segmented-field ECT. These results confirmed our hypothesis that using the variable-SCD applicator for segmented-field ECT results in the PTV dose distribution becoming more homogenous and being within the range of 85-105% of the 'given dose'. Clinical implementation of this method requires variable-SCD applicators, and the design used in the present work should be acceptable, as should our methods for construction of the inserts. Dose verification measurements in a polystyrene phantom and the recommended improvements in dose calculation should be appropriate for quality assurance of segmented-field ECT.  相似文献   

16.
目的:探讨基于GAMOS的蒙特卡罗(MC)方法模拟电子线放疗的剂量精确性。方法:运用GAMOS MC程序,建立Varian Rapidarc加速器3档能量(6、9和12 MeV)及3种限光筒[(6×6)、(10×10)和(15×15) cm2]的束流模型,模拟束流在水模体中的剂量分布,并与测量得到的百分深度剂量和等平面剂量分布比较,评估GAMOS软件模拟电子线照射的精确性和运算效率。结果:模拟的粒子数越多,模拟与测量结果的误差越小;当模拟粒子的数量达到5×108时,各个能量的电子线射程(Rp)和50%剂量深度(R50)的模拟结果与测量结果一致;除建成区外,百分深度剂量模拟和测量的结果误差在2%以内;等平面剂量分布模拟和测量的结果误差也在2%以内,模拟的照射野大小与测量结果一致。运算效率中,能量越大,限光筒尺寸越大,并行同步模拟所用的时间越多,模拟时间的变化越大。结论:基于GAMOS的MC方法可准确地模拟放疗电子线照射剂量的分布,粒子数的增加可提高模拟的精确性,并行同步计算可提高模拟的效率。  相似文献   

17.
The leakage radiation from electron applicators used with our linear accelerator has been measured. For the applicators 6 X 6 to 25 X 25 cm size, the leakage was measured in the plane of the patient and on the sides of the applicators with the available electron energies of 6, 9, 12, 15 and 18 MeV. The levels were significant. The highest leakage on the side was for the combination of 6 X 6-cm applicator and 9-MeV electrons (32%) and in the plane of the patient for 25 X 25-cm applicator with 18 MeV (10%) relative to the peak dose. Adding lead 1-2 mm, at appropriate locations inside the applicators has reduced the leakages to acceptable levels without affecting the beam parameters.  相似文献   

18.
A method for deriving the electron and photon energy spectra from electron beam central axis percentage depth dose (PDD) curves has been investigated. The PDD curves of 6, 12 and 20 MeV electron beams obtained from the Monte Carlo full phase space simulations of the Varian linear accelerator treatment head have been used to test the method. We have employed a 'random creep' algorithm to determine the energy spectra of electrons and photons in a clinical electron beam. The fitted electron and photon energy spectra have been compared with the corresponding spectra obtained from the Monte Carlo full phase space simulations. Our fitted energy spectra are in good agreement with the Monte Carlo simulated spectra in terms of peak location, peak width, amplitude and smoothness of the spectrum. In addition, the derived depth dose curves of head-generated photons agree well in both shape and amplitude with those calculated using the full phase space data. The central axis depth dose curves and dose profiles at various depths have been compared using an automated electron beam commissioning procedure. The comparison has demonstrated that our method is capable of deriving the energy spectra for the Varian accelerator electron beams investigated. We have implemented this method in the electron beam commissioning procedure for Monte Carlo electron beam dose calculations.  相似文献   

19.
Intensity-modulated arc therapy (IMAT), a technique which combines beam rotation and dynamic multileaf collimation, has been implemented in our clinic. Dosimetric errors can be created by the inability of the planning system to accurately account for the effects of tissue inhomogeneities and physical characteristics of the multileaf collimator (MLC). The objective of this study is to explore the use of Monte Carlo (MC) simulation for IMAT dose verification. The BEAM/DOSXYZ Monte Carlo system was implemented to perform dose verification for the IMAT treatment. The implementation includes the simulation of the linac head/MLC (Elekta SL20), the conversion of patient CT images and beam arrangement for 3D dose calculation, the calculation of gantry rotation and leaf motion by a series of static beams and the development of software to automate the entire MC process. The MC calculations were verified by measurements for conventional beam settings. The agreement was within 2%. The IMAT dose distributions generated by a commercial forward planning system (RenderPlan. Elekta) were compared with those calculated by the MC package. For the cases studied, discrepancies of over 10% were found between the MC and the RenderPlan dose calculations. These discrepancies were due in part to the inaccurate dose calculation of the RenderPlan system. The computation time for the IMAT MC calculation was in the range of 20-80 min on 15 Pentium-Ill computers. The MC method was also useful in verifying the beam apertures used in the IMAT treatments.  相似文献   

20.
Electron beam treatments may benefit from techniques to verify patient positioning and dose delivery. This is particularly so for complex techniques such as mixed photon and electron beam radiotherapy and electron beam modulated therapy. This study demonstrates that it is possible to use the bremsstrahlung photons in an electron beam from a dual scattering foil linear accelerator to obtain portal images of electron beam treatments. The possibility of using Monte Carlo (MC) simulations to predict the electron beam treatment portal images was explored. The MC code EGSnrc was used to model a Varian CL21EX linear accelerator (linac) and to characterize the bremsstrahlung photon production in the linac head. It was found that the main sources of photons in the electron beam are the scattering foils, the applicator and the beam-shaping cut-out. Images were acquired using the Varian CL21EX linac and the Varian aS500 electronic portal imager (EPI); four electron energies (6, 9, 12, 16 MeV), and different applicator and cut-out sizes were used. It was possible to acquire images with as little as 10.7 MU per image. The contrast, the contrast-to-noise ratio (CNR), the signal-to-noise ratio (SNR), the resolution and an estimate of the modulated transfer function (MTF) of the electron beam portal images were computed using a quality assurance (QA) phantom and were found to be comparable to those of a 6 MV photon beam. Images were also acquired using a Rando anthropomorphic phantom. MC simulations were used to model the aS500 EPID and to obtain predicted portal images of the QA and Rando phantom. The contrast in simulated and measured portal images agrees within +/-5% for both the QA and the Rando phantom. The measured and simulated images allow for a verification of the phantom positioning by making sure that the structure edges are well aligned. This study suggests that the Varian aS500 portal imager can be used to obtain patient portal images of electron beams in the scattering foil linacs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号