首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthetic peptides are widely used in indirect ELISA to detect and characterize specific antibodies in biological samples. Small peptides are not efficiently immobilized on plastic surfaces by simple adsorption, and the conjugation to carrier proteins with different binding techniques is the method of choice. Common techniques to conjugate peptide antigens to carrier proteins and to subsequently purify such complexes are time consuming, expensive, and occasionally abrogate immunogenicity of peptides. In this report we describe a simple, fast and inexpensive alternative protocol to immobilize synthetic peptides to plastic surfaces for standard ELISA. The technique is based on use of maleimide-activated bovine serum albumin or keyhole limpet hemocyanin as a protein anchor adsorbed on the polystyrene surface of the microtiter plate. Following adsorption of the carrier protein, sulfhydryl-containing peptides are cross-linked with an in-well reaction, allowing their correct orientation and availability to antibody binding, avoiding the time consuming steps needed to purify the hapten-carrier complexes. The immunoreactivity of peptides was tested by using both monoclonal and polyclonal antibodies in standard ELISA assays, and compared with established coating methods.  相似文献   

2.
Several discrete peptides that bind specifically to the coat protein of cucumber mosaic virus (CMV) were isolated from a diverse phage library displaying random nonapeptides on the major coat protein VIII. Enrichment was shown by polyclonal phage enzyme linked immunosorbent assay (ELISA) after three rounds of selection. Sequencing of the genes encoding 10 of these peptides revealed an absence of any conserved motifs, although nine of them contained a high proportion of proline residues. Some of the selected peptides were displayed at the N-terminus of thioredoxin and expressed in the cytoplasm of Escherichia coli. Both the phage-displayed and thioredoxin-fusion versions of the peptides could detect purified CMV and CMV present in crude leaf extracts from infected plants. By dot blot analysis, a thioredoxin-peptide fusion could readily detect as little as 5 ng of CMV. The peptides did not bind to other plant viruses. These peptides have been shown to be specific and highly sensitive tools in the detection of CMV and, as well as their diagnostic potential, they could form the basis for a novel disease resistance strategy.  相似文献   

3.
目的 筛选能结合酪氨酸蛋白激酶受体EphB2的功能短肽。方法 PCR扩增EphB2的配体结合区,定向克隆到融合表达质粒载体pRSET A中,阳性克隆经IPTG诱导表达融合蛋白,并利用Ni-NTA金属螯合亲和层析在变性条件下对表达的蛋白进行纯化,以此纯化蛋白为靶,将其包被于ELISA板上,进行3轮亲和筛选。结果 电泳分析表明:表达的融合蛋白主要以包涵体的形式存在,纯化蛋白质的纯度大于95%。从噬菌体  相似文献   

4.
Titanium alloy implants were precoated biomimetically with a thin and dense layer of calcium phosphate and then incubated either in a supersaturated solution of calcium phosphate or in phosphate-buffered saline, each containing bovine serum albumin (BSA) at various concentrations, under physiological conditions for 48 h. Coated implants then underwent scanning electron microscopy, immunohistochemical evaluation, Fourier transform infrared spectroscopy, and X-ray diffraction. The quantity of BSA taken up by coatings and the kinetics of protein release were monitored colorimetrically. In coatings prepared by the coprecipitation of calcium phosphate and BSA, protein had become incorporated into the mineral crystal latticework. With increasing BSA concentration, matrices decreased in thickness, became more dense, showed lower crystallinity, and underwent a change in crystal geometry. The octacalcium phosphate structure manifested in the absence of protein was gradually transformed into a carbonated apatite form. Preformed mineral coatings became only superficially mantled with a layer of BSA, and the morphology of the mineral matrices themselves remained unchanged. At equivalent protein concentrations, coatings prepared by the coprecipitation of calcium phosphate released only a minute fraction of its protein component under physiological conditions, whereas preformed mineral matrices showed a "burst" release of their associated protein within a single 2-h period. The biomimetic coating can be a carrier for osteoinductive agents.  相似文献   

5.
Yang S  Tian YS  Lee YJ  Yu FH  Kim HM 《Biomaterials》2011,32(11):2851-2861
Osteoblasts proliferate slowly on the surface of calcium phosphate apatite which is widely used as a substrate biomaterial in bone regeneration. Owing to poor adhesion signaling in the cells grown on the calcium phosphate surface, inadequate growth factor signaling is generated to trigger cell cycle progression. The present study investigated an intracellular signal transduction pathway involved in the slow cell proliferation in osteoblasts grown on the calcium phosphate surface. Small GTPase RhoA and phosphatase and tensin homolog (PTEN) were more activated in cells grown on the surface of calcium phosphate apatite than on tissue culture plate. Specific inhibition of RhoA and PTEN induced the cells on calcium phosphate apatite surface to proliferate at a similar rate as cells on tissue culture plate surface. Specific inhibition of ROCK, which is a downstream effector of RhoA and an upstream activator of PTEN also increased proliferation of these osteoblasts. Present results indicate that physical property of calcium phosphate crystals that impede cell proliferation may be surmounted by the inhibition of the RhoA/ROCK/PTEN pathway to rescue delayed proliferation of osteoblasts on the calcium phosphate apatite surface. In addition, specific inhibition of ROCK promoted cell migration and osteoblast differentiation. Inhibition of the RhoA/ROCK/PTEN intracellular signaling pathway is expected to enhance cell activity to promote and accelerate bone regeneration on the calcium phosphate apatite surface.  相似文献   

6.
The identification of naturally processed viral peptides reveals that major histocompatibility complex (MHC) class I epitopes are composed of nine or eight amino acid residues. Peptides eluted from H-2 Kb MHC class I molecules have been suggested, as a class, to be eight amino acid residues long. To assay for peptide-class I interactions, a stabilization assay described for surface labeled "empty" class I molecules was employed, but on biosynthetically labeled class I molecules. The Sendai virus nucleoprotein-derived octapeptide APGNYPAL does not bind and stabilize Kb molecules, whereas other octameric Kb-restricted peptides and the nonameric peptide FAPGNYPAL interact stably. We attribute the failure of Sendai octamer binding to the presence of proline in position two: replacement of proline renders the resulting octamers as efficient as FAPGNYPAL for binding and stabilization of H-2 Kb. Substitution of glycine in position three of APGNYPAL slightly improves its Kb stabilizing capacity. Iodination of the tyrosine residue significantly alters the binding properties of the nonamer peptide. We conclude that the length of epitopes as selected by the class I Kb molecule is influenced by their sequence and suggest that proper positioning of the NH2 terminus of peptides is essential for class I stabilizing properties. The ability to stabilize newly synthesized "empty" class I molecules with peptide argues against an involvement of beta 2 microglobulin exchange in the experiments described here.  相似文献   

7.
Degradable metals have been suggested as biomaterials with revolutionary potential for bone-related therapies. Of these candidate metals, magnesium alloys appear to be particularly attractive candidates because of their non-toxicity and outstanding mechanical properties. Despite their having been widely studied as orthopedic implants for bone replacement/regeneration, their undesirably rapid corrosion rate under physiological conditions has limited their actual clinical application. This study reports the use of a novel biomimetic peptide coating for Mg alloys to improve the alloy corrosion resistance. A 3DSS biomimetic peptide is designed based on the highly acidic, bioactive bone and dentin extracellular matrix protein, phosphophoryn. Surface characterization techniques (scanning electron microscopy, energy dispersive X-ray spectroscopy and diffuse-reflectance infrared spectroscopy) confirmed the feasibility of coating the biomimetic 3DSS peptide onto Mg alloy AZ31B. The 3DSS peptide was also used as a template for calcium phosphate deposition on the surface of the alloy. The 3DSS biomimetic peptide coating presented a protective role of AZ31B in both hydrogen evolution and electrochemical corrosion tests.  相似文献   

8.
Mendes VC  Moineddin R  Davies JE 《Biomaterials》2007,28(32):4748-4755
We sought to address the question: Can metallic surfaces be rendered bone-bonding? We employed dual acid-etched (DAE) commercially pure titanium (cpTi) and titanium alloy (Ti6Al4V) custom-made rectangular coupons (1.3 mm x 2.5 mm x 4 mm) with, or without, further modification by the discrete crystalline deposition (DCD) of calcium phosphate (CAP) nanocrystals. A total of 48 implants comprising four groups were placed bilaterally in the distal femur of male Wistar rats for 9 days. After harvesting, the bone immediately proximal and distal to the implant was removed, resulting in a test sample comprising the implant with two attached cortical arches. The latter were distracted at 30 mm/min, in an Instron machine, and the disruption force was recorded. Results showed that alloy samples exhibited greater disruption forces than cpTi, and that DCD samples had statistically significantly greater average disruption forces than non-DCD samples. The bone-bonding phenomenon was visually evident by fracture of the cortical arches and an intact bone/implant interface. Field emission scanning electron microscopy showed the bone/implant interface was occupied by a bony cement line matrix that was interlocked with the surface topographical features of the implant. We conclude that titanium implant surfaces can be rendered bone-bonding by an increase in the complexity of the surface topography.  相似文献   

9.
A monoclonal antibody, MHM.5, specific for HLA class I antigens, bound to lymphocytes of all donors tested and was thought to bind to a monomorphic determinant. When the antibody was used to precipitate 35S methionine labeled HLA class I molecules from lymphoid cells, which were then isoelectric focused, it was found that the HLA-A1,A2 and A3 antigens were not precipitated. Similarly, MHM.5, which is IgG1, failed to block complement mediated lysis by alloantisera specific for HLA-A1, 2 and 3, and most other HLA-A antigens. HLA-Aw24, A25, and A32, and all other HLA-B and C typing reactions tested were blocked. Thus the antibody binds to an epitope that is lacking on most A antigens, but present on Aw24, A25, A32 and all B and C locus antigens. Comparison of the published amino acid sequences of HLA-A2, A3, Aw24, A28, Cw3, B7, and B40 suggests some possible sites for this epitope.  相似文献   

10.
11.
Feng B  Weng J  Yang BC  Qu SX  Zhang XD 《Biomaterials》2004,25(17):3421-3428
The titanium surfaces containing calcium, phosphate ions and the carbonate apatite were characterized. The effect of surface chemistry on the initial rabbit osteoblast response on these surfaces was investigated. The cell count and alkaline phosphatase (ALP) specific activity assay were used for biochemical analyses. Scanning electron microscopy was used for morphology observation and in particular X-ray photoelectron spectroscopy (XPS) for surface chemistry characterization. The number of cells adhering to the apatite coating surface was the maximum, the number of cells on the surface containing calcium without phosphate ions was higher than that containing phosphate without calcium, and the number on the unmodified titanium surface was the least. The osteoblasts cultured on the apatite surface exhibited the highest ALP specific activity, next were the ones on the surface containing solely calcium, the lowest were on the unmodified titanium surface. On the substrate surfaces removed of adhered cells, the order of nitrogen amounts detected by XPS was consistent with ones of ALP specific activity and cell number, except for the unmodified titanium surface. For the substrate surfaces removed of adhered osteoblasts, XPS analysis showed that calcium and phosphorous amounts decreased during cell adhesion. After cell culture the Ca2p binding energy (BE) values for apatite coating and the surface containing solely calcium were similar to those of the two surfaces adsorbed bovine serum albumin (BSA). The P2p BE values for the surfaces containing phosphate ions, including the apatite coating and the surface containing solely phosphate ions, showed the same change. But after cell culture the decrease of the P2p BE value for the coating surface was larger than the one for the surface containing solely phosphate ions. Considering the bovine serum albumin adsorption on the same samples, these results indicated that calcium ions on titanium surfaces play a more important role than phosphate ions in initial interactions among culture medium, osteoblasts and titanium surfaces. On the apatite coating surface, calcium ions are active sites for osteoblast adhesion, while calcium and phosphate ions co-exist on titanium surfaces, the former promotes the osteoblast adhesion onto the phosphate sites on titanium surfaces. The cell adhesion was a complicated biological and chemical process relating to surface several elements similar to protein adsorption.  相似文献   

12.
There is still no general vaccine for prevention of disease caused by group-B meningococcal strains. Meningococcal lipopolysaccharides (LPSs) have received attention as potential vaccine candidates, but concerns regarding their safety have been raised. Peptide mimics of LPS epitopes may represent safe alternatives to immunization with LPS. The monoclonal antibody (MoAb) 9-2-L3,7,9 specific for Neisseria meningitidis LPS immunotype L3,7,9 is bactericidal and does not cross-react with human tissue. To explore the possibility of isolating peptide mimics of the epitope recognized by MoAb 9-2-L3,7,9, we have constructed two phage display libraries of six and nine random amino acids flanked by cysteines. Furthermore, we developed a system for the easy exchange of peptide-encoding sequences from the phage-display system to a hepatitis B core (HBc) expression system. Cyclic peptides that specifically bound MoAb 9-2-L3,7,9 at a site overlapping with the LPS-binding site were selected from both libraries. Three out of four tested peptides which reacted with MoAb 9-2-L3,7,9 were successfully presented as fusions to the immunodominant loop of HBc particles expressed in Escherichia coli. However, both peptide conjugates to keyhole limpet haemocyanin and HBc particle fusions failed to give an anti-LPS response in mice.  相似文献   

13.
Biomimetically deposited octacalcium phosphate (OCP) and carbonate apatite (BCA) as well as electrolytically deposited carbonate apatite (ECA) were considered as promising alternatives to conventional plasma spraying hydroxyapatite. This study compared their physicochemical characteristics and cell attachment behavior. The physicochemical characteristics included scanning electron microscopy observation, X-ray diffraction analysis, Fourier transform infrared spectroscopy analysis, surface roughness, coating thickness, dissolution test and scratch test. Cell attachment tests included morphology observation with stereomicroscopy and scanning electron microscopy as well as cell number count with DNA content assay. The OCP coating had 100% crystallinity and was about 40 microm thick, composed of large plate-like crystals of 30 microm, with the lowest surface roughness (R(a)=2.33 microm). The BCA coating had 60% crystallinity and was approximately 30 microm in thickness, composed of small crystals of 1-2 microm in size, with the highest surface roughness (R(a)=4.83 microm). The ECA coating had intermediate characteristics, with 78% crystallinity, 45 microm thickness, crystals of 5-6 microm and an average roughness of 3.87 microm. All coatings could be seen by eyes dissolving quickly and completely into acidic simulated body fluid (simulated physiological solutions-SPS, pH 3.0) but slowly and incompletely into neutral SPS (pH 7.3). It was suggested that the main factor determining coating dissolution in acidic SPS was the solubility isotherm, while some other factors including crystallinity and crystal size joined to determine coating dissolution in neutral SPS. In regard to adhesive strength, results of scratch test showed the critical load at the first crack of coating (L(c1)) was tightly related to crystal size as well as their arrangement, while the critical load at the total delamination of coating (L(c2)) was also related to the coating thickness. The ECA coating had the highest values. Owing to higher dissolution rate and globular appearance, BCA coating demonstrated the best goat bone marrow stromal cells attachment at 1 day or 3 days, followed by OCP and ECA coating.  相似文献   

14.
Hypochlorous acid is an important oxidizing agent produced by neutrophils to aid in defense against pathogens. Although hypochlorous acid is known to cause tissue damage due to its cytotoxicity, the effect of this oxidizing agent on signal transduction by cells of the immune system and its effects on their responses are not well understood. In this study, hypochlorous acid was found to induce cellular tyrosine phosphorylation in both T and B lymphocytes, activate the ZAP-70 tyrosine kinase, and induce cellular calcium signaling in a tyrosine kinase-dependent manner. These signaling events also occurred in T cell lines that did not express the T-cell receptor, indicating the ability of hypochlorous acid to bypass normal receptor control. Hypochlorous acid induced tumor necrosis factor-alpha production in peripheral blood mononuclear cells in a tyrosine kinase-dependent manner. These results suggest that hypochlorous acid may contribute to inflammatory responses by activating signal pathways in cells of the immune system.  相似文献   

15.
The protein adsorption behavior of thin films of calcium phosphate (CaP) bioceramic and titanium (Ti) was studied in this research. The thin films were produced with an ion beam sputter deposition technique using targets of hydroxyapatite (HA), fluorapatite (FA) and titanium (Ti). Fourier transform infrared spectroscopy (FTIR) with attenuated total internal reflectance (ATR) was used to evaluate protein adsorption on these surfaces. This study showed that surface composition and structure influenced the kinetics of protein adsorption and the structure of adsorbed protein. CaP surfaces adsorbed greater amount of protein than the Ti surface, and caused more alteration of the structure of adsorbed BSA than did the Ti surface. The differences in protein adsorption behavior could result in very different initial cellular behavior on CaP and Ti implant surfaces.  相似文献   

16.
We isolated peptides that home to mouse dorsal root ganglion (DRG) from a phage library expressing random 7-mer peptides fused to a minor coat protein (pIII) of the M13 phage. An in vitro biopanning procedure yielded 113 phage plaques after five cycles of enrichment by incubation with isolated DRG neurons and two cycles of subtraction by exposure to irrelevant cell lines. Analyses of the sequences of this collection identified three peptide clones that occurred repeatedly during the biopanning procedure. Phage-antibody staining revealed that the three peptides bound to DRG neurons of different sizes. To determine if the peptides would recognize neuronal cells in vivo, we injected individual GST-peptide-fusion proteins into the subarachnoid space of mice and observed the appearance of immunoreactive GST in the cytosol of DRG neurons with a similar size distribution as that observed in vitro, indicating that the GST-peptide-fusion proteins were recognized and taken up by different DRG neurons in vivo. The identification of homing peptide sequences provides a powerful tool for future studies on DRG neuronal function in vitro and in vivo, and opens up the possibility of neuron-specific drug and gene delivery in the treatment of diseases affecting DRG neurons.  相似文献   

17.
The V protein of measles virus (MV-V) is a potent inhibitor of IFN-α/β signaling pathway. We previously reported that when physically dissociated, the N-terminal and C-terminal regions of MV-V (PNT and VCT, respectively) could independently impair signal transduction. The PNT region inhibited IFN-α/β signaling by interacting with at least two components of this pathway: Jak1 and STAT1. Here we report a direct interaction between the VCT of MV-V and STAT2, a third component of IFN-α/β transduction machinery. This interaction with STAT2 is carried by the cysteine-constrained peptide of 49 amino acids localized in the VCT region, and is essential to the inhibition of IFN-α/β signaling. In parallel, we also mapped STAT1 binding site in the PNT region and identified a minimal peptide of only 11 amino acids. IFN-α/β signaling was impaired in human cells treated with this MV-V peptide fused to a cell-penetrating sequence. Finally, we show that signaling downstream of IFN-λ, a recently identified cytokine that also relies on STAT1, STAT2 and Jak1 to transduce, is blocked by MV-V. Altogether, our results illustrate how a single viral protein has evolved to achieve a robust inhibition of the antiviral response by interacting with several signaling molecules.  相似文献   

18.
Genetic and pharmacological intervention studies have identified evolutionarily conserved and functionally interconnected networks of cellular energy homeostasis, nutrient-sensing, and genome damage response signaling pathways, as prominent regulators of longevity and health span in various species. Mitochondria are the primary sites of ATP production and are key players in several other important cellular processes. Mitochondrial dysfunction diminishes tissue and organ functional performance and is a commonly considered feature of the aging process. Here we review the evidence that through reciprocal and multilevel functional interactions, mitochondria are implicated in the lifespan modulation function of these pathways, which altogether constitute a highly dynamic and complex system that controls the aging process. An important characteristic of these pathways is their extensive crosstalk and apparent malleability to modification by non-invasive pharmacological, dietary, and lifestyle interventions, with promising effects on lifespan and health span in animal models and potentially also in humans.  相似文献   

19.
Bai FW  Zhang HW  Yan J  Qu ZC  Xu J  Wen JG  Ye MM  Shen DL 《Acta virologica》2002,46(2):85-90
Several peptides that could bind specifically to the outer coat protein encoded by the S10 gene of Rice black streaked virus (RBSDV) were isolated from a phage-display random 12-mer peptide library. The sequence analysis showed that the amino acid motif (K)K**(*)P, the asterisk denoting any amino acid, might be the core sequence by which the peptides bind to the target protein. The peptide 1 that had a high affinity to RBSDV outer coat protein was synthesized by a chemical method and its fusion protein with glutathione-S-transferase (GST) was produced in an Escherichia coli expression system. The dot and Western blot analyses indicated that RBSDV could be detected with a high sensitivity in crude extracts of diseased plant leaves using a purified GST fusion protein. The circular dichroism (CD) spectroscopy revealed that the synthesized binding peptide but not a nonbinding peptide could bring about a marked change in the conformation of outer coat RBSDV protein. Since the protein functions only when it has correct conformation, the peptides binding specifically to it could possibly disturb the function of the virus outer coat protein and might be used to block the transmission pathway of the virus. Summing up, as these peptides showed a high specificity and sensitivity and diagnostic potential for RBSDV, they may represent the basis of a novel strategy for development of resistance to RBSDV.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号