首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ouabain bumetanide resistant (OBR) K+ efflux was investigated in deoxygenated sickle cells in comparison to oxygenated ones, by using a specific inhibitor of the [K+, Cl-] co-transport system, [(DihydroIndenyl)Oxy] Alkanoic acid (DIOA). A DIOA sensitive and a DIOA resistant K+ efflux were measured in deoxygenated sickle cells. The DIOA sensitive K+ efflux shared the properties of the [K+, Cl-] co-transport system, being stimulated by decreased pH and hypoosmolarity. This DIOA sensitive K+ efflux represented 70% of the total K+ efflux at pH 7.0 and at low pO2 (10-15 mmHg). Thus, a small reduction in Ph effectively stimulated the [K+, Cl-] co-transport system in deoxygenated condition, and this may contribute significantly to the sickle cell dehydration. We conclude that at pH lower than 7.4, the [K+, Cl-] co-transport system is permanently activated in sickle cells and leads to sickle cell dehydration in both oxygenated and deoxygenated conditions.  相似文献   

2.
Franco  RS; Palascak  M; Thompson  H; Rucknagel  DL; Joiner  CH 《Blood》1996,88(11):4359-4365
The K+ efflux that mediates sickle-cell dehydration may occur through several pathways, including two with a high capacity for mediating rapid K+ loss, KCl cotransport and the Ca(2+)-dependent K+ channel [K(Ca2+)]. The rate and pathway of red blood cell (RBC) dehydration most likely depends on cell age and hemoglobin (Hb) composition, with the presence of HbF playing an important role. Oxygenated sickle RBCs have relatively stable cell volume during incubation in vitro, whereas deoxygenated cells become dehydrated, and therefore more dense, due to activation of one or more K+ efflux pathways. In this investigation, sickle RBCs were deoxygenated either continuously or in 15-minute cycles for 4 hours, and the density increases of very young, transferrin receptor-positive (TfR+) cells and the remaining TfR- cells were determined. The contribution of KCl cotransport was estimated by replacing Cl- with NO3-. K(Ca2+) was inhibited by removal of Ca2+ or addition of charybdotoxin (ChTX). For both continuous and cyclic deoxygenation, TfR+ cells had a greater density increase when compared with TfR- cells. The lower percentage of HbF found in the TfR+ population may contribute to this difference. With continuous deoxygenation, the density shift was decreased by inhibition of K(Ca2+), but not by inhibition of KCl cotransport. With cyclic deoxygenation, the density shift was decreased in an independent, additive manner by inhibition of both pathways. Thus, cyclic deoxygenation of sickle cells under these conditions appears to activate both K(Ca2+) and the KCl cotransporter.  相似文献   

3.
The intracellular concentration of Hb S is an important determinant of the kinetic of polymer formation and cell sickling. A variable fraction of dense, dehydrated erythrocytes with high Hb S concentration is seen in the blood of patients with sickle cell disease; these dense cells play an important role in the pathophysiology of the vasoocclusive events of sickle cell disease, due to their higher tendency to polymerize and sickle. Sickle cell dehydration is due to loss of K+, Cl-, and water: the two major determinant pathways of dehydration of sickle erythrocytes are the Ca2+-activated K+ channel (IK1 or Gardos channel) and the K-Cl cotransport (KCC). Specific inhibitors of these pathways being tested in patients with sickle cell disease are Mg2+ pidolate, which inhibits KCC by increasing the sickle cell content of Mg2+, and clotrimazole and derivatives of clotrimazole metabolites, which specifically block the Gardos channel. An inhibitor of Cl- conductance has been shown to reduce dehydration in a transgenic mouse model of sickle cell disease but has not been tested in humans. If clinical efficacy and benefit are demonstrated, an inhibitor of cell dehydration could be used in patients as a single agent or in combination with existing therapies, such as hydroxyurea.  相似文献   

4.
To determine if the activation of the (K+Cl-) cotransport system observed in hemoglobin (Hb) S- or C-containing erythrocytes is related either to a global change of isoelectric point of the Hb molecule or to the specific location of these mutations on the position 6 of the beta chain of Hb, we studied the (K+Cl-) cotransport system in erythrocytes containing beta chain variants exhibiting either the Glu----Lys substitution observed in position beta 6 in Hb C (Hb E: beta 26 Glu----Lys; Hb O-Arab: beta 121 Glu----Lys; Hb Siriraj:beta 7 Glu----Lys) or the Glu----neutral residue substitution observed in position beta 6 in Hb S (Hb G-San Jose: beta 7 Glu----Gly; Hb D Punjab or D-Los Angeles: beta 121 Glu----Gln). The K transport mediated by the (K+Cl-) cotransport was increased in AC, AS and A-Siriraj and A-San Jose red blood cells and was similar to AA control in the other variants. These results indicate that an enhanced (K+Cl-) cotransport is not a property of all positively charged Hb variants, but it is mainly associated with mutations occurring at the beta 6 or beta 7 residues. An interaction of Hb with the cell membrane mediated by the disappearance of one of the negative charged residues (Glu) at this site of the A helix of the beta chain is the most likely candidate for the persistent activation of the (K+Cl-) cotransport system in these Hb variants.  相似文献   

5.
Romero JR  Suzuka SM  Nagel RL  Fabry ME 《Blood》2004,103(6):2384-2390
Elevation of K-Cl cotransport in patients with homozygous hemoglobin (Hb) S or HbC increases red cell mean corpuscular hemoglobin concentration (MCHC) and contributes significantly to pathology. Elucidation of the origin of elevated K-Cl cotransport in red cells with mutant hemoglobins has been confounded by the concomitant presence of reticulocytes with high K-Cl cotransport. In red cells of control mice (C57BL), transgenic mice that express only human HbA, and transgenic mice that express both mouse globins and human HbS, volume stimulation is weak and insensitive to NO3- and dihydroindenyl-oxy-alkanoic acid (DIOA). DIOA and NO3- are inhibitors in all other mammalian red cells. In contrast, in knock-out mice expressing exclusively human hemoglobin HbC or HbS+ gamma, replacement of isotonic Cl- media by hypotonic Cl- resulted in strong volume stimulation and sensitivity to DIOA, okadaic acid, and NO3-. In summary, we find that HbC, under all conditions, and HbS+ gamma, in the absence of mouse globins, have significant quantitative and qualitative effects on K-Cl cotransport in mouse red cells and activate mouse K-Cl. We conclude that human globins are able to stimulate the activity and/or regulation of K-Cl cotransport in mouse red cells. These observations support the contention that HbS and HbC stimulate K-Cl cotransport in human red cells.  相似文献   

6.
Calcium influx into sickle cells, with consequential activation of the Ca2(+)-activated K+ efflux (Gardos) channel, is a potential cause of cellular dehydration and loss of deformability. Bepridil, a recently described inhibitor of the Gardos channel, was found at pharmacological concentration (1 mumol/l) to inhibit significantly (P less than 0.01) the loss of deformability when sickle cells were subjected to cycles of oxygenation-deoxygenation for 15 h at 37 degrees C. Bepridil also inhibited significantly (P less than 0.005) the formation of irreversibly sickled cells. Drugs that preserve the K+ and therefore water content of erythrocytes are of potential value for hydrotherapy of sickle cell disease.  相似文献   

7.
The inhibition by loop diuretics of K efflux (tracer (86)Rb) from the rat femoral arterial smooth muscle was measured in normotension and in DOCA-salt hypertension. The sensitivity sequence (bumetanide > piretanide > furosemide) was the characteristic pharmacological profile of (Na+K+Cl) cotransport. In hypertension, cotransport activity was 46% greater than in normotension and the sensitivity to loop diuretics was threefold less. Intracellular ?K and the Na, K and Cl permeability ratios and electrogenic Na pump activity were assessed electrophysiologically in normotension and hypertension. ?K(i) was lower in hypertension (173 mM) than normotension (198 mM) but the other parameters (P(Na/Cl) = 0.14, P(Cl)/P(K) = 0.19 and electrogenic pump = -8.3 mV in normotension) were not significantly different. Ionic permeabilities to Na, K and Cl were significantly lower in hypertension than normotension. Plasma ?Na, but not ?K, was higher in hypertension than normotension. The conclusion is that increased activation of (Na+K+Cl) cotransport in hypertension plays a major role in the elevation of ?Cl(i) and depolarisation of the membrane potential in vascular smooth muscle in DOCA-salt hypertension. The role of (Na+K+Cl) cotransport in vascular smooth muscle in this model of hypertension is discussed in relation to ?Cl(i), depolarisation of the membrane potential and contraction and in relation to cell growth.  相似文献   

8.
Calabro A  Oken MM  Hascall VC  Masellis AM 《Blood》2002,99(7):2578-2585
Interaction of hemoglobin S polymers with the red blood cell (RBC) membrane induces a reversible increase in permeability ("P(sickle)") to (at least) Na(+), K(+), Ca(2+), and Mg(2+). Resulting changes in [Ca(2+)] and [H(+)] in susceptible cells activate 2 transporters involved in sickle cell dehydration, the Ca(2+)-sensitive K(+) ("Gardos") channel (K(Ca)) and the acid- and volume-sensitive K:Cl cotransport. We investigated the distribution of P(sickle) expression among deoxygenated sickle cell anemia (SS) RBCs using new experimental designs in which the RBC Ca(2+) pumps were partially inhibited by vanadate, and the cells' dehydration rates were detected as progressive changes in the profiles of osmotic fragility curves and correlated with flow cytometric measurements. The results exposed marked variations in (sickling plus Ca(2+))-induced dehydration rates within populations of deoxygenated SS cells, with complex distributions, reflecting a broad heterogeneity of their P(sickle) values. P(sickle)-mediated dehydration was inhibited by clotrimazole, verifying the role of K(Ca), and also by elevated [Ca(2+)](o), above 2 mM. Very high P(sickle) values occurred with some SS discocytes, which had a wide initial density (osmotic resistance) distribution. Together with its previously shown stochastic nature, the irregular distribution of P(sickle) documented here in discocytes is consistent with a mechanism involving low-probability, reversible interactions between sickle polymers and membrane or cytoskeletal components, affecting only a fraction of the RBCs during each deoxygenation event and a small number of activated pathways per RBC. A higher participation of SS reticulocytes in P(sickle)-triggered dehydration suggests that they form these pathways more efficiently than discocytes despite their lower cell hemoglobin concentrations.  相似文献   

9.
De Franceschi  L; Beuzard  Y; Jouault  H; Brugnara  C 《Blood》1996,88(7):2738-2744
Prevention of erythrocyte dehydration is a potential therapeutic strategy for sickle cell disease. Increasing erythrocyte magnesium (Mg) could inhibit sickle cell dehydration by increasing chloride (CI) and water content and by inhibiting potassium chloride (K-CI) cotransport. In transgenic SAD 1 and (control) C57BL/6 normal mice, we investigated the effect of 2 weeks of diet with either low Mg (6 +/- 2 mg/kg body weight/d) or high Mg (1,000 +/- 20 mg/kg body weight/ d), in comparison with a diet of standard Mg (400 +/- 20 mg/ kg body weight/d). The high- Mg diet increased SAD 1 erythrocyte Mg and K contents and reduced K-CI cotransport activity, mean corpuscular hemoglobin concentration (MCHC), cell density, and reticulocyte count. SAD 1 mice treated with low-Mg diet showed a significant reduction in erythrocyte Mg and K contents and increases in K-CI cotransport, MCHC, cell density, and reticulocyte counts. In SAD 1 mice, hematocrit (Hct) and hemoglobin (Hb) decreased significantly with low Mg diet and increased significantly with high-Mg diet. The C57BL/6 controls showed significant changes only in erythrocyte Mg and K content, and K-CI cotransport activities, similar to those observed in SAD 1 mice. Thus, in the SAD 1 mouse, changes in dietary Mg modulate K-CI cotransport, modify erythrocyte dehydration, and ultimately affect Hb levels.  相似文献   

10.
Both green tea extract (GTE or tea polyphenols) and aged garlic extract (AGE) effectively inhibited in vitro dehydration of sickle red blood cells induced by K-Cl cotransport or red cell storage. For K-Cl cotransport induced by 500 mM urea, 0.3 mg/ml EGCg (epigallocatechin gallate; a major component in GTE) almost completely inhibited dehydration, and 6 mg/ml AGE inhibited dehydration to 30% of the control level. Both vitamins E and C had no effect at the level of 2 mM. Different tea extracts had different degrees of inhibition, but the inhibitory activity increased when the number of hydroxyl groups in the compounds increased. With storage of sickle cells at 4 degrees C for 6 days, the cells started to undergo spontaneous dehydration when incubated at 37 degrees C. Neither inhibitors for Ca-induced K efflux nor K-Cl cotransport could inhibit cell dehydration of stored sickle cells, but both GTE and AGE effectively inhibited it. Chloride efflux measurements using a chloride electrode demonstrated that both GTE and AGE inhibited anion transport in red blood cells. The inhibitory mechanism of these compounds may be related to anion transport inhibition, although involvement of their antioxidant activities can not yet be ruled out.  相似文献   

11.
Polymerization of hemoglobin S in sickle red cells, in deoxygenated conditions, is associated with K+ loss and cellular dehydration. It was previously reported that deoxygenation of sickle cells increases protein tyrosine kinase (PTK) activity and band 3 tyrosine phosphorylation and that PTK inhibitors reduce cell dehydration. Here, the study investigates which PTKs are involved and the mechanism of their activation. Deoxygenation of sickle cells induced a 2-fold increase in Syk activity, measured by autophosphorylation in immune complex assays, but had no effect on Lyn. Syk was not stimulated by deoxygenation of normal red cells, and stimulation was partly reversible on reoxygenation of sickle cells. Syk activation was independent of the increase in intracellular Ca++ and Mg2+ associated with deoxygenation. Lectins that promote glycophorin or band 3 aggregation did not activate Syk. In parallel to Syk stimulation, deoxygenation of sickle cells, but not of normal red cells, decreased the activity of both membrane-associated protein tyrosine phosphatase (PTPs) and membrane protein thiol content. In vitro pretreatment of Syk immune complexes with membrane PTP inhibited Syk autophosphorylation. It is suggested that Syk activation in vivo could be mediated by PTP inhibition, itself resulting from thiol oxidation, as PTPs are known to be inhibited by oxidants. Altogether these data indicate that Syk could be involved in the mechanisms leading to sickle cell dehydration.  相似文献   

12.
A critical link between the single molecular defect in sickle cell anemia and the extensive pathology of this disease is the reversible increase in red cell membrane permeability generated by hemoglobin S polymers in the deoxygenated state. This permeability, usually described as P (sickle), triggers a chain of events in which two constitutive transporters of the red cell membrane become activated-the recently cloned intermediate conductance, Ca 2+ -sensitive K channel, and the electroneutral K:Cl cotransporter-leading to sickle cell dehydration. This article reviews knowledge of the dehydration mechanism, stressing the marked heterogeneity of dehydration rates in sickle cell populations, and discusses recent contributions to understanding of the function and regulation of P (sickle), Ca 2+ -sensitive K channel, and K:Cl cotransporter, and of therapies targeted at these transporters.  相似文献   

13.
Muzolimine is a diuretic which has been proposed in the treatment of hypertension. Muzolimine shared both the high ceiling effect of loop diuretics and the long duration of action of thiazides but has a chemical structure different from those of other loop diuretics. It may act as a prodrug and an active metabolite present in the urine may inhibit NaCl reabsorption in the Henle's loop. We studied the effect of urines of piretanide and muzolimine treated rats on Na+K+Cl- cotransport in renal cells in culture (MDCK). In the presence of ouabain (0.5 mM), the Na+K+Cl- cotransport measured by 86Rb influx, represented 92 p.100 of the total 86Rb influx (6.16 +/- 1.12 nmol 86Rb/min/mg prot, n = 10). Both diuretics were administered i.v. to rats where they induced marked diuresis. Excreted urine (dilution to 1/100) was tested for cotransport inhibition. After piretanide (27 mumol/kg) the urine inhibited the Na+K+Cl- cotransport in MDCK cells (72% and 41% inhibition at the 15th and 45th minutes after diuretic injection). After muzolimine (50 mumol/kg), urines also inhibited Na+K+Cl- cotransport but the effect was slower in onset and more prolonged (42% and 49% inhibition at the 15th and 60th min). Diuretic effects in vivo and Na+K+Cl- cotransport inhibition in vitro by the urine developed parallel for both diuretics. Probenecid (100 mumol/kg) suppressed simultaneously the diuretic effect of muzolimine and the Na+K+Cl- cotransport inhibition by the urine of muzolimine treated rats. Our results suggest that muzolimine acts as a prodrug. Its active metabolite is secreted into the tubular lumen through a probenecid sensitive pathway and inhibits, like other loop diuretics, Na+K+Cl- cotransport.  相似文献   

14.
Outward Na+ - K+ cotransport in erythrocytes from essential hypertensive Caucasian subjects was found to be excessively low (Co -) compared to normotensives (Co +) carefully selected for their negative family history of hypertension. Since the frequency of essential hypertension varies widely among different populations and is particularly high in certain coloured peoples, we compared erythrocyte Na+ - K+ cotransport in normotensive and hypertensive subjects in Paris (France) and in Abidjan (Ivory Coast) to seen whether defective cotransport was related to high blood pressure in the African group as well. Of the 66 French unselected normotensives investigated, 26 (39%) were Co - whereas 14 of the 18 Ivory Coast unselected normotensives (79%) were Co -. 64 (80%) of the 80 essential hypertensives examined in France were Co -, but the proportion of Co - subjects among the Ivory Coast hypertensives was even higher. In addition, both hypertensives and normotensives in the African groups often had undetectable outward Na+ effluxes, a rare finding in the French subjects. We suggest that the high incidence of abnormal Na+ - K+ cotransport in the Ivory Coast series may reflect a genetic propensity to hypertension in this population, and that consequently, Na+ - K+ erythrocyte cotransport measurements might prove useful in defining geographic variations in hypertension.  相似文献   

15.
Deoxygenation (DO) of sickle cell anemia red blood cells (SS cells) induces membrane permeabilization to Ca2+, Na+, and K+ and cell dehydration mostly through the activation of the Ca(2+)-dependent K+ channels. We show that DO of both SS cells and normal red blood cells was accompanied by a nonspecific dephosphorylation of membrane proteins. After treatment with a protein kinase C activator (phorbol myristate acetate) or a phosphoprotein phosphatase inhibitor (okadaic acid), the level of membrane protein phosphorylation in deoxygenated cells was maintained higher or equal, respectively, to that of the oxygenated controls. We found that these drugs in SS cells (1) inhibited by 40% the DO-stimulated net Ca2+ uptake, without affecting the DO-stimulated Ca2+ influx, suggesting that they activated the Ca2+ efflux; (2) slightly increased the DO-induced Na+ uptake and decreased the DO-induced K+ loss; and (3) prevented the DO-induced cell dehydration. Both drugs are known to stimulate both phosphorylation and activity of the Ca pump and of the Na/H antiport. Inhibition of SS cell dehydration might be due to an activation of the Ca pump preventing [Ca2+]i elevation responsible for the stimulation of the K+ channels and/or to an activation of the Na/H exchange resulting in cell water gain.  相似文献   

16.
王军  臧益民  徐洪涛 《心脏杂志》2002,14(2):100-105
目的 :研究细胞容积调节机制 ,探讨人类小肠上皮细胞调节性容积减小 (RVD)过程中离子通道的作用及其种类。方法 :膜片钳全细胞记录和单通道记录法记录培养的人类小肠上皮细胞 RVD过程中电流的变化 ,细胞容积测定法观察 RVD过程中特异性钙激活性钾通道阻断剂 (clotrimazole)的作用。结果 :全细胞记录法证实细胞 RVD过程中 K+通道和 Cl-通道电流同时被激活 ,该 K+通道电流具有明显的钙依赖性并可被 clotrim azole阻断。单通道记录法进一步证实 RVD过程中激活的 K+通道为 Interm ediate- conductance钙激活性钾通道。结论 :人类小肠上皮细胞在低渗溶液作用下具有 RVD过程 ,钙激活性钾通道在 RVD过程中具有十分重要的作用。  相似文献   

17.
The red blood cells (RBCs) derived from blood taken from homozygous sickle cell (SS) patients demonstrate densities that are inversely proportional to the intracellular reduced glutathione (GSH) content. Addition of 1 mM 1-chloro-2,4-dinitrobenzene (CDNB) to low-density sickle cells (LDSS), at 4 degrees C, results in a shift of LDSS erythrocytes to high-density sickle cells (HDSS), with corresponding decreases in GSH. We have previously demonstrated that this CDNB effect was due to increased K(+) leakage and that dense cell formation could be inhibited by clotrimazole (specific for the Gardos channel) but not DIOA (specific for the K(+)-Cl(-) co-transport system) at pH 7.4 (Shartava et al. Am. J. Hematol. 1999;62:19-24). Here we demonstrate that clotrimazole (10 microM) inhibits dense cell formation at pH 7.1 and 6.8, while DIOA (1 mM) has no effect. As pH 6.8 is the optimal pH for the K(+)-Cl(-) co-transport system, we can now reasonably conclude that damage to the Gardos channel is responsible for CDNB-induced dense cell formation.  相似文献   

18.
A number of situations that result in abnormal permeability pathways in human red blood cells (RBCs) have been investigated. In sickle cell disease (SCD), RBCs contain HbS, rather than the normal HbA. When deoxygenated, an abnormal conductance pathway, termed P(sickle), is activated, which contributes to cell dehydration, largely through allowing Ca(2+) entry and subsequent activation of the Gardos channel. Whole-cell patch-clamp recordings from sickle RBCs show a deoxygenated-induced conductance, absent from normal RBCs, which shares some of the properties of P(sickle): equivalent Na(+) and K(+) permeability, significant Ca(2+) conductance, partial inhibition by DIDS and also Zn(2+). Gd(3+) markedly attenuates conductance in both normal and sickle RBCs. In addition, deoxygenated sickle cells, but not oxygenated ones or normal RBCs regardless of the oxygen tension, undergo haemolysis in isosmotic non-electrolyte solutions. Non-electrolyte entry was confirmed radioisotopically whilst haemolysis was inhibited by DIDS. These findings suggest that under certain circumstances P(sickle) may also be permeable to non-electrolytes. Finally, RBCs from certain patients with hereditary stomatocytosis have a mutated band 3, which appears able to act as a conductance pathway for univalent cations. These results extend our understanding of the abnormal permeability pathways of RBCs.  相似文献   

19.
In erythrocytes, the extrusion of a cell sodium load is accomplished by the ouabain-sensitive sodium-potassium pump and by the furosemide-sensitive sodium-potassium cotransport, which operate against the passive sodium permeability. The precise characterization of these transport pathways requires the determination of the turnover rates of cation translocation and the affinities for substrates and effectors. The preliminary results of such kinetic study in essential hypertension is reported here. An abnormally low rate of net sodium extrusion by the sodium-potassium co-transport system was observed in essential hypertensive patients and in a high proportion of their young normotensive offspring. A normal cotransport system found in secondary hypertensive subjects devoid of familial history of hypertension confirmed that the abnormal cotransport system is not the consequence of high blood pressure per se. At the molecular level, the cotransport abnormality seems to be consecutive to a diminished apparent affinity for intracellular Na+. A 20-40% increase in the rate of net sodium extrusion by the sodium-potassium pump seems to compensate for the abnormal cotransport in erythrocytes from some young normotensive subjects born of essential hypertensive parents and from some benign essential hypertensive subjects. No difference could be detected between the passive sodium permeability of erythrocytes from hypertensive subjects and normotensive controls. In conclusion, essential hypertension seems to be associate with an inherited defect in the apparent affinity for intracellular Na+ of the sodium-potassium cotransport system. We propose therefore the laboratory study of this system for (i) the distinction between essential and secondary hypertension and (ii) the preventive investigation of young normotensive subjects in hypertensive families.  相似文献   

20.
Chloride-activated passive potassium transport in human erythrocytes.   总被引:13,自引:0,他引:13       下载免费PDF全文
Passive K+ transport in human erythrocytes (defined as ouabain-insensitive transport) was inhibited 70% by replacement of Cl- by several permeant monovalent anions. The Vmax of Cl--dependent K+ influx was 1.14 mmol . liter-1, hr-1; its apparent Km for K+ was 4.7 mM. There was a much smaller component of Na+ influx dependent on Cl- (Vmax, 0.23 mmol . liter-1 . hr-1). Furosemide and other inhibitors of Cl- transport inhibited passive K+ transport to the same extent as replacement of Cl-, but 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid, a specific inhibitor of anion exchange in erythrocytes, was ineffective. The Cl--dependent K+ transport, which may be K+/Cl- cotransport, could reflect a mechanism for regulating cell volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号