首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 96 毫秒
1.
By motif searching of the unfinished sequences in the Malaria Genome Sequencing Project databases we have identified a novel EGF-like domain-containing protein of Plasmodium falciparum. The sequence lies within a single open reading frame of 1791 bp and is predicted to encode a polypeptide of 597 amino acids. There are hydrophobic regions at the extreme N- and C-termini, which could represent secretory signal peptide and GPI attachment sites, respectively. Similar to MSP1, there are two EGF-like domains located near the C-terminus. RT-PCR analysis of the novel gene shows that it is transcribed in asexual stages of the malaria parasite. We have expressed portions of the protein as recombinant GST fusions in Escherichia coli and raised antisera in rabbits. Antibodies to the EGF-like domains of the novel protein are highly specific and do not cross-react with the EGF-like domains of MSP1, MSP4 or MSP5 expressed as GST fusion proteins. Antiserum raised to the most C-terminal region of the protein reacts with four bands of 98, 50, 25 and 19 kDa in P. falciparum parasite lysates whereas antisera to the N-terminal fusion proteins recognise the 98 and 50 kDa bands, suggesting that the novel protein may undergo processing in a similar way to MSP1. Immunoblot analysis of stage-specific parasite samples reveals that the protein is present throughout the parasite asexual life cycle and in isolated merozoites, with the smaller fragments present in ring stage parasites. The protein partitions in the detergent-enriched phase after Triton X-114 fractionation and is localized to the surfaces of trophozoites, schizonts and free merozoites by indirect immunofluorescence. Antisera to the C-terminus stain the surface of rings, whereas antisera to the N-terminus do not, suggesting that a fragment of the protein is carried into the developing ring stage parasite. Based on the accepted nomenclature in the field we designate this protein MSP8. We have shown that the MSP8 fusion proteins are in a conformation that can be recognised by human immune sera and that there is very limited diversity in the MSP8 gene sequences from various P. falciparum laboratory isolates. MSP8 shows significant similarity to the recently reported sequence of the protective P. yoelii merozoite surface protein pypAg-2 [Burns JM, Belk CC, Dunn PD. Infect Immun 2000;68:6189-95.] suggesting that the two proteins are homologues. Taken together, these findings suggest that MSP8/pypAg-2 may play an important role in the process of red cell invasion and is a potential malaria vaccine candidate.  相似文献   

2.
Previous studies of Plasmodium falciparum have identified a region of chromosome 2 in which are clustered three genes for glycosylphosphatidylinositol (GPI)-anchored merozoite surface proteins, MSP2, MSP5, and MSP4, arranged in tandem. MSP4 and MSP5 both encode proteins 272 residues long that contain hydrophobic signal sequences, GPI attachment signals, and a single epidermal growth factor (EGF)-like domain at their carboxyl termini. Nevertheless, the remainder of their protein coding regions are quite dissimilar. The locations and similar structural features of these genes suggest that they have arisen from a gene duplication event. Here we describe the identification of the syntenic region of the genome in the murine malaria parasite, Plasmodium chabaudi adami DS. Only one open reading frame is present in this region, and it encodes a protein with structural features reminiscent of both MSP4 and MSP5, including a single EGF-like domain. Accordingly, the gene has been designated PcMSP4/5. The homologue of the P. falciparum MSP2 gene could not be found in P. chabaudi; however, the amino terminus of the PcMSP4/5 protein shows similarity to that of MSP2. The PcMSP4/5 gene encodes a protein with an apparent molecular mass of 36 kDa, and this protein is detected in mature stages of the parasite. The protein partitions in the detergent-enriched phase after Triton X-114 fractionation and is localized to the surfaces of trophozoites and developing and free merozoites. The PcMSP4/5 gene is transcribed in both ring and trophozoite stages but appears to be spliced in a stage-specific manner such that the central intron is spliced from the mRNA in the parasitic stage in which the protein is expressed.  相似文献   

3.
Using sorbitol-synchronised cultures and metabolic labelling with [35S]methionine, the stage specificity of polypeptides synthesised by the intraerythrocytic stages of Plasmodium falciparum was studied. We confirmed that the synthesis of many polypeptides is restricted to defined morphological stages of parasite development, while other polypeptides are synthesised more or less throughout the cycle. The synthesis of at least 6 polypeptides was confined to the period of differentiation of mature trophozoites to schizonts and merozoites. Polypeptides synthesised by a cloned long-term passage isolate were very similar to those of a recently cultured uncloned isolate. Comparison of polypeptides synthesized during differentiation of mature trophozoites to schizonts and merozoites by P. falciparum with those of P. chabaudi and P. knowlesi showed that while P. chabaudi and P. knowlesi synthesised a 250 000 molecular weight polypeptide at this stage the apparently equivalent polypeptide of P. falciparum was of significantly lower molecular weight being 200 000. Using a surface immunoprecipitation technique, it was shown that this 200 000 mol. wt. polypeptide was accessible to antibodies on the surface of erythrocytes infected with mature trophozoites and schizonts. A 150 000 mol. wt. polypeptide was also accessible to antibodies. By comparing polypeptides synthesised during the differentiation of mature trophozoites to schizonts and merozoites with those recovered in the ring stage parasites after schizogony and erythrocyte invasion, it was shown that this 200 000 mol. wt. polypeptide and 140 000 and 120 000 mol. wt. polypeptides were not taken into the erythrocyte by the invading merozoite. The importance of these polypeptides in terms of the parasite biology and in the induction and expression of immunity to malaria is discussed.  相似文献   

4.
The C-terminal 19-kDa domain of merozoite surface protein 1 (MSP1??) is the target of protective antibodies but alone is poorly immunogenic. Previously, using the Plasmodium yoelii murine model, we fused P. yoelii MSP1?? (PyMSP1??) with full-length P. yoelii merozoite surface protein 8 (MSP8). Upon immunization, the MSP8-restricted T cell response provided help for the production of high and sustained levels of protective PyMSP1??- and PyMSP8-specific antibodies. Here, we assessed the vaccine potential of MSP8 of the human malaria parasite, Plasmodium falciparum. Distinct from PyMSP8, P. falciparum MSP8 (PfMSP8) contains an N-terminal asparagine and aspartic acid (Asn/Asp)-rich domain whose function is unknown. Comparative analysis of recombinant full-length PfMSP8 and a truncated version devoid of the Asn/Asp-rich domain, PfMSP8(ΔAsn/Asp), showed that both proteins were immunogenic for T cells and B cells. All T cell epitopes utilized mapped within rPfMSP8(ΔAsn/Asp). The dominant B cell epitopes were conformational and common to both rPfMSP8 and rPfMSP8(ΔAsn/Asp). Analysis of native PfMSP8 expression revealed that PfMSP8 is present intracellularly in late schizonts and merozoites. Following invasion, PfMSP8 is found distributed on the surface of ring- and trophozoite-stage parasites. Consistent with a low and/or transient expression of PfMSP8 on the surface of merozoites, PfMSP8-specific rabbit IgG did not inhibit the in vitro growth of P. falciparum blood-stage parasites. These studies suggest that the further development of PfMSP8 as a malaria vaccine component should focus on the use of PfMSP8(ΔAsn/Asp) and its conserved, immunogenic T cell epitopes as a fusion partner for protective domains of poor immunogens, including PfMSP1??.  相似文献   

5.
Merozoite surface proteins of Plasmodium falciparum are one major group of antigens currently being investigated and tested as malaria vaccine candidates. Two recently described P. falciparum merozoite surface antigens, MSP4 and MSP5, are GPI-anchored proteins that each contain a single EGF-like domain and appear to have arisen by an ancient gene duplication event. The genes are found in tandem on chromosome 2 of P. falciparum and the syntenic region of the genome was identified in the rodent malarias P. chabaudi, P. yoelii and P. berghei. In these species, there is only a single gene, designated MSP4/5 encoding a single EGF-like domain similar to the EGF-like domain in both PfMSP4 and PfMSP5. Immunization of mice with PyMSP4/5 provides mice with high levels of protection against lethal challenge with blood stage P. yoelii. In this study, we show that in P. vivax, which is quite phylogenetically distant from P. falciparum, both MSP4 and MSP5 homologues can be found with their relative arrangements with respect to the surrounding genes mostly preserved. However, the gene for MSP2, found between MSP5 and adenylosuccinate lyase (ASL) in P. falciparum, is absent from P. vivax. The PvMSP4 and PvMSP5 genes have a two-exon structure and encode proteins with potential signal and GPI anchor sequences and a single EGF-like domain near the carboxyl-terminus. Rabbit antisera raised against purified recombinant proteins show that each of the antisera react with distinct proteins of 62 kDa for PvMSP4 and 86 kDa for PvMSP5 in parasite lysates. Indirect immunofluorescence assays (IFA) localized PvMSP4 over the entire surface of P. vivax merozoites, as expected, whereas, the MSP5 homologue was found to be associated with an apical organellar location consistent with micronemes or over the polar prominence.  相似文献   

6.
A 26 kDa protein, present in trophozoites and schizonts of Plasmodium falciparum, has been identified as the target of a monoclonal antibody that weakly inhibits parasite growth in vitro. The antigen has been purified to homogeneity by immuno-affinity chromatography and electrophoresis. The sequence of 19 amino acids at the N-terminus of the protein has been determined.  相似文献   

7.
The genes encoding merozoite surface protein 4/5 (MSP4/5) from Plasmodium berghei and Plasmodium yoelii have been cloned and completely sequenced. Comparisons of the predicted protein sequences with those of Plasmodium chabaudi MSP4/5 and Plasmodium falciparum MSP4 and MSP5 show general structural similarities. All predicted proteins contain hydrophobic signal sequences, potential GPI attachment sequences and a single epidermal growth factor (EGF)-like domain at the C-terminus. The amino acid sequence of the EGF-like motif is highly conserved in rodent malaria species and also shows a considerable degree of similarity with the EGF-like domains found in the P. falciparum proteins. Both the P. yoelii and P. berghei genes show evidence of both spliced and unspliced mRNA at steady state. This phenomenon is similar to that seen for the P. chabaudi MSP4/5 gene, and is believed to be involved in regulation of protein expression. We describe here the construction of clones expressing full length recombinant protein. Antibodies directed against recombinant MSP4/5 proteins recognize a single polypeptide on parasite material and show crossreactivity between MSP4/5 from different murine malaria species, but do not crossreact with either MSP4 or MSP5 from P. falciparum. The various antisera show reactivity against reduction sensitive epitopes as well as reduction insensitive epitopes.  相似文献   

8.
A monoclonal antibody raised against merozoites of Plasmodium falciparum clone T9/96 was shown to react with an extremely strain specific epitope on a 195 kDa protein synthesized only by late trophozoites and schizonts. This protein was shown to exhibit all of the characteristics attributed to the molecule known variously as merozoite surface protein precursor, polymorphic schizont antigen and p195. The monoclonal antibody also identified a cross-reactive epitope on a distinct protein of 100 kDa in ring stage parasites which was shown to be synthesized throughout the asexual cycle and was not a processing product of p195. One-dimensional peptide mapping studies suggested that these two proteins share a degree of common sequence or structure.  相似文献   

9.
In Plasmodium falciparum, merozoite surface protein 7 (MSP7) was originally identified as a 22kDa protein on the merozoite surface and associated with the MSP1 complex shed during erythrocyte invasion. MSP7 is synthesised in schizonts as a 351-amino acid precursor that undergoes proteolytic processing. During biosynthesis the MSP1 and MSP7 precursors form a complex that is targeted to the surface of developing merozoites. In the sequential proteolytic processing of MSP7, N- and C-terminal 20 and 33kDa products of primary processing, MSP7(20) and MSP7(33) are formed and MSP7(33) remains bound to full length MSP1. Later in the mature schizont, MSP7(20) disappears from the merozoite surface and on merozoite release MSP7(33) undergoes a secondary cleavage yielding the 22kDa MSP7(22) associated with MSP1. In free merozoites, both MSP7(22) and a further cleaved product, MSP7(19) present only in some parasite lines, were detected; these two derivatives are shed as part of the protein complex with MSP1 fragments during erythrocyte invasion. Primary processing of MSP7 is brefeldin A-sensitive while secondary processing is resistant to both calcium chelators and serine protease inhibitors. Primary processing of MSP7 occurs prior to that of MSP1 in a post-Golgi compartment, whereas the secondary cleavage occurs on the surface of the developing merozoite, possibly at the time of MSP1 primary processing and well before the secondary processing of MSP1.  相似文献   

10.
We have identified a novel conserved protein of Plasmodium falciparum, designated D13, that is stage-specifically expressed in asexual blood stages of the parasite. The predicted open reading frame (ORF) D13 contains 863 amino acids with a calculated molecular mass of 99.7 kDa and displays a repeat region composed of pentapeptide motives. Northern blot analysis with lysates of synchronized blood stage parasites showed that D13 is highly expressed at the mRNA level during schizogony. The first N'-terminal 138 amino acids of D13 were expressed in Escherichia coli and the purified protein was used to generate anti-D13 monoclonal antibodies (MAbs). Using total lysates of blood stage parasites and Western blot analysis, these MAbs stained one single band of approximately 100 kDa, corresponding to the predicted molecular mass of ORF D13. Western blot analysis demonstrated further that D13 is expressed during schizogony, declines rapidly in early ring stages and is undetectable in trophozoites. D13 protein is localized in individual merozoites in a distinct area, as demonstrated by indirect immunofluorescence analysis. After subcellular fractionation, D13 was confined to the pelleted fraction of the parasite lysate and its extraction by alkaline carbonate buffer treatment indicated that D13 is not a membrane-integral protein. Inclusion of certain anti-D13 MAbs into in vitro cultures of blood stage parasites resulted in considerable reduction in parasite growth. The N'-terminal domain encompassing 158 amino acids is 94 and 95%, respectively, identical at the amino acid level between Plasmodium knowlesi, Plasmodium yoelii, and P. falciparum. In summary, we describe a novel stage-specifically expressed, highly conserved gene product of P. falciparum that is recognized by parasite growth inhibitory antibodies.  相似文献   

11.
The gene coding for merozoite surface protein 7 has been identified and sequenced in three lines of Plasmodium falciparum. The gene encodes a 351 amino acid polypeptide that is the precursor of a 22-kDa protein (MSP7(22)) on the merozoite surface and non-covalently associated with merozoite surface protein 1 (MSP1) complex shed from the surface at erythrocyte invasion. A second 19-kDa component of the complex (MSP7(19)) was shown to be derived from MSP7(22) and the complete primary structure of this polypeptide was confirmed by mass spectrometry. The protein sequence contains several predicted helical and two beta elements, but has no similarity with sequences outside the Plasmodium databases. Four sites of sequence variation were identified in MSP7, all within the MSP7(22) region. The MSP7 gene is expressed in mature schizonts, at the same time as other merozoite surface protein genes. It is proposed that MSP7(22) is the result of cleavage by a protease that may also cleave MSP1 and MSP6. A related gene was identified and cloned from the rodent malaria parasite, Plasmodium yoelii YM; at the amino acid level this sequence was 23% identical and 50% similar to that of P. falciparum MSP7.  相似文献   

12.
The merozoite surface of the pathogenic malaria parasite Plasmodium falciparum is comprised of proteins that are important for the identification and invasion of human red cells. Merozoite surface protein (MSP)3 is a polymorphic protein associated with the surface of merozoites and is also a vaccine candidate. A distinct feature of the MSP3 sequence is three blocks of alanine-rich heptad repeats that are predicted to form an intramolecular coiled-coil. Three orthologues of MSP3 that also contain alanine-rich heptad repeats have been described in P. vivax and we therefore searched the P. falciparum genome database for MSP3 paralogues. We have identified two genes, H101 and H103 related to MSP3, however like another MSP3 paralogue, MSP6, H101 and H103 do not contain heptad repeats. H101 and H103 are expressed during the asexual cycle and immunofluorescence indicates H103 localises to the merozoite surface as a peripheral membrane protein. Transfected parasite lines that express truncated forms of H101 or H103 were viable and grew at the same rate as the parental parasite line. This result may reflect redundancy in function among members of the MSP3/MSP6 gene family as has been described for other families of paralogue genes in P. falciparum.  相似文献   

13.
Merozoites of the human malaria parasite Plasmodium falciparum express on their surface several antigens derived from a polymorphic glycoprotein precursor of Mr 185,000 synthesised earlier on by trophozoites and schizonts. A panel of 18 monoclonal antibodies against a range of different specificities of the precursor was used to characterise its mature products in spontaneously released merozoites. Merozoites released by [35S]methionine or [14C]glucosamine-labelled schizonts, or surface 125I-labelled purified merozoites, were extracted in detergents, and the antigens were detected by immunoprecipitation or Western blotting. We show that a nonglycosylated peptide of Mr 80,000 and two glycosylated fragments of Mr 40,000 and Mr 16,000, all derived from the precursor, are exposed on the surface of the mature merozoite. Precipitations from extracts in different detergents indicate that the 80 and 40 kDa fragments can form a non-covalent complex with each other and two additional major surface antigens of 36 and 22 kDa. Several antibodies react strongly with the complex but not with its dissociated subunits, thus indicating presence of conformational epitopes. Other epitopes are positively mapped on different dissociated subunits by immunoprecipitation and Western blotting. The 80 and 40 kDa antigens each carry a different polymorphic marker epitope, and both of these markers are absent on the 16 kDa fragment. The 40 and 16 kDa glycoproteins share common epitopes, and the latter may be derived from the former fragments. Only epitopes present on the 16 kDa antigen, but not those specific for the larger fragments, are detectable by immunofluorescence in the ring-stage. This indicates that the whole or a part of the 16 kDa antigen remains on the parasite through the invasion process.  相似文献   

14.
A gene encoding a 352 amino acid protein with a putative signal sequence, transmembrane domain and thrombospondin structural homology repeat was identified in the genome of the human malaria parasite, Plasmodium falciparum and the rodent malaria parasite, Plasmodium berghei. The protein localises in the apical organelles of P. falciparum and P. berghei merozoites within intraerythrocytic schizonts and has, therefore, been termed the Plasmodium thrombospondin-related apical merozoite protein (PTRAMP). PTRAMP co-localises with the Apical Merozoite Antigen-1 (AMA-1) in developing micronemes and subsequently relocates onto the merozoite surface. Although the gene appears to be specific to the Plasmodium genus, orthologues are present in the genomes of all malaria parasite species examined suggesting a conserved function in host-cell invasion. PTRAMP, therefore, has all the features to merit further evaluation as a malaria vaccine candidate.  相似文献   

15.
The serine repeat antigen (SERA) is a vaccine candidate antigen of Plasmodium falciparum. Immunization of mice with Escherichia coli-produced recombinant protein of the SERA N-terminal domain (SE47') induced an antiserum that was inhibitory to parasite growth in vitro. Affinity-purified mouse antibodies specific to the recombinant protein inhibited parasite growth between the schizont and ring stages but not between the ring and schizont stages. When Percoll-purified schizonts were cultured with the affinity-purified SE47'-specific antibodies, schizonts and merozoites were agglutinated. Indirect-immunofluorescence assays with unfixed parasite cells showed that SE47'-specific immunoglobulin G (IgG) bound to SERA molecules on rupturing schizonts and merozoites but the IgG did not react with the schizont-infected erythrocytes (RBC). Furthermore, double-fluorescence staining against SE47'-specific IgG and anti-human RBC membrane IgG showed that the RBC membrane disappeared from SE47'-specific-IgG-bound schizonts after cultivation. These observations suggest that the SE47'-specific antibodies inhibit parasite growth by cross-linking SERA molecules that are associated with merozoites in rupturing schizonts with partly broken RBC and parasitophorous vacuole membranes, blocking merozoite release.  相似文献   

16.
17.
An antigenic complex in the rhoptries of Plasmodium falciparum   总被引:2,自引:0,他引:2  
A previously identified putative rhoptry antigen of Plasmodium falciparum is composed of two major components, one of 80 kDa and a doublet at 42/40 kDa. An inhibitory monoclonal antibody immunoprecipitated both the 80 kDa protein and the 42/40 kDa doublet, but immunoblotted only the 80 kDa component. A second monoclonal antibody, raised against the affinity purified complex, immunoblotted only the 42 kDa band under non-reducing conditions. Electron microscopic examination of thin sections of parasites immunolabeled with these monoclonal antibodies and colloidal gold anti-mouse conjugate has confirmed that this antigen is localised in the rhoptry organelles of mature schizonts and free merozoites. The antigen is associated with apparent membranous structures released from free merozoites. Immunoblotting and immunoprecipitation with two different monoclonal antibodies, and protease digestion experiments, have clearly demonstrated that this antigen is a complex composed of two separate and distinct proteins, and does not represent a monomer/dimer pair. The 80 kDa protein is synthesised as an 84 kDa precursor.  相似文献   

18.
The gene encoding the 25 kDa ookinete surface antigen (Pgs25) of Plasmodium gallinaceum has been cloned using an oligonucleotide probe directed against one of the EGF-like domains of the P. falciparum 25 kDa ookinete surface antigen (Pfs25). The Pgs25 gene codes for a polypeptide of 215 amino acids, two amino residues less than Pfs25. The deduced amino acid sequence contains a putative signal sequence at the amino-terminus, four tandemly repeated EGF-like domains, and a hydrophobic region at the carboxyl-terminus. By comparing Pgs25 with Pfs25, six conserved regions, consisting of six or more amino acid residues, have been identified. Most of the conserved regions are outside EGF-like core consensus sequences. The most striking conservation is the spacing of the cysteines.  相似文献   

19.
This study reports on T-cell proliferative responses to the 19-kDa C-terminal domain of the Plasmodium falciparum merozoite surface protein (MSP1(19)). Three different recombinant proteins were used: an Escherichia coli product expressing the first EGF-like domain and Saccharomyces cerevisiae and baculovirus/insect-cell-produced proteins containing both EGF-like domains, the latter protein being produced with or without N-glycosylation. Cell donors were P. falciparum-immune adults with no recent history of clinical malaria and recruited from three Senegalese settings with different epidemiological parasite transmission. Each mononuclear-blood-cell preparation was stimulated with a range of concentrations of the three proteins. Most subjects' mononuclear cells were reactive to at least one protein, but significant differences in lymphoproliferation were seen between the settings and within individual cultures depending on the protein source and concentration. Importantly, lymphoproliferation indices correlated inversely with the intensity of P. falciparum malaria transmission. When purified T lymphocytes were cultured in the presence of MSP1(19) plus autologous monocytes, B lymphocytes or a proposed CD1+ dendritic-cell population as costimulatory cells, significant differences were observed depending on the individual's previous exposure to parasites. This study shows that the stimulation of lymphocyte proliferation in vitro with MSP1(19) depends on several factors, including epidemiological conditions and protein preparations.  相似文献   

20.
MSP8 is a recently identified merozoite surface protein that shares similar structural features with the leading vaccine candidate MSP1. Both proteins contain two C-terminal epidermal growth factor (EGF)-like domains, a glycosylphosphatidylinositol (GPI) anchor attachment sequence and undergo proteolytic processing. By double recombination, we have disrupted the MSP8 gene in P. falciparum 3D7 parasites, and confirmed integration by southern hybridisation and PCR. Western blot analysis of lysates from asynchronous cultures and isolated merozoites demonstrated the absence of MSP8 in two cloned knockout lines. There was no significant difference in growth rate observed between 3D7 and the cloned DeltaMSP8 lines. Thus, unlike MSP1, MSP8 is not required for asexual stage parasite growth and replication in vitro. Further analysis of the cloned lines showed that loss of MSP8 had no effect on the levels of expression of other merozoite surface proteins including MSP1-5, 7 and 10. Stage-specific immunoblots showed that MSP8 expression commences in late rings and extends throughout the rest of the erythrocytic life cycle in the 3D7 parent line, but is absent from all stages in the DeltaMSP8 transfectants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号