首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: It is well known that the immunoregulatory cytokine interleukin (IL)-10 inhibits the accessory function of human dendritic cells (DC) in vitro. Recently, we have shown that these IL-10 DC inhibit the production of T helper cell 1 (Th1) and T helper cell 2 (Th2) cytokines by T cells from atopic individuals in vitro. The current study was set out to analyze whether IL-10 DC also exert inhibitory effects in vivo in a murine model of allergy to ovalbumin adsorbed to the adjuvant aluminium hydroxide (OVA/alum). METHODS: OVA-pulsed or unpulsed bone marrow-derived DC, treated with IL-10 or left untreated during generation, were injected intravenously into BALB/c mice prior to and during OVA/alum sensitization, and sera and immune responses of mesenterial lymph node cells were analyzed. Additionally, bronchoalveolar lavage was performed after intranasal challenge with OVA. RESULTS: Treatment of BALB/c mice with OVA-pulsed DC led to a significantly enhanced proliferation as well as Th2 (IL-4, IL-5), Th1 (interferon-gamma) and IL-10 cytokine production after restimulation of lymph node cells with OVA in vitro compared with OVA immunization alone. In contrast, using OVA-pulsed IL-10 DC for transfer, proliferation and cytokine production by lymph node cells were not enhanced. OVA-specific immunoglobulin G1 (IgG1) and IgG2a production were significantly increased after transfer of OVA-pulsed DC and OVA-pulsed IL-10 DC, respectively, whereas anti-OVA IgE production and airway eosinophilia remained unchanged. CONCLUSIONS: Our data indicate that IL-10 treatment of DC decreases the Th1 and Th2 stimulatory capacity of DC but does not actually inhibit systemic (IgE) and local (airway inflammation) allergen-specific immune responses in a murine model of allergy.  相似文献   

2.
BACKGROUND: Different subsets of dendritic cells (DCs), identified in mouse spleen by their differential expression of CD8 alpha, can induce different T-helper (Th) responses after systemic administration. CD8 alpha(-) DCs have been shown to preferentially induce Th type 2 (Th2) responses whereas CD8 alpha(+) DCs induce Th1 responses. OBJECTIVE: To study if these DC subsets can still induce different Th responses in the Th2-prone milieu of the lung and differentially prime for eosinophilic airway inflammation, typical of asthma. METHODS: Donor mice first received daily Flt3L injections to expand DC numbers. Purified CD8 alpha(+) or CD8 alpha(-) splenic DCs were pulsed with ovalbumin (OVA) or phosphate-buffered saline and injected intratracheally into recipient mice in which carboxyfluorescein diacetate succinimidyl ester-labelled OVA-specific T cell receptor transgenic T cells had been injected intravenously 2 days earlier. T cell proliferation and cytokine production of Ag-specific T cells were evaluated in the mediastinal lymph nodes (MLNs) 4 days later. The capacity of both subsets of DCs, to prime for eosinophilic airway inflammation was determined by challenging the mice with OVA aerosol 10 days later. RESULTS: CD8 alpha(-) DCs migrated to the MLN and induced a vigorous proliferative T cell response accompanied by high-level production of IL-4, IL-5, IL-10 and also IFN-gamma during the primary response and during challenge with aerosol, leading to eosinophilic airway inflammation. In the absence of migration to the MLN, CD8 alpha(+) DCs still induced a proliferative response with identical levels of IFN-gamma but reduced Th2 cytokines compared with CD8 alpha(-) DCs, which led to weak eosinophilic airway inflammation upon OVA aerosol challenge. Unpulsed DCs did not induce proliferation or cytokine production in Ag-specific T cells. CONCLUSION: CD8 alpha(-) DCs are superior compared with CD8 alpha(+) DCs in inducing Th2 responses and eosinophilic airway inflammation in the Th2-prone environment of the lung.  相似文献   

3.
Peroxisome proliferator-activated receptors (PPARs) are activated by an array of polyunsaturated fatty acid derivatives, oxidized fatty acids, and phospholipids and are proposed to be important modulators of immune and inflammatory responses. Recently, we showed that activation of PPAR-gamma alters the maturation process of dendritic cells (DCs), the most potent antigen-presenting cells. In the present report, we investigated the possibility that, by targeting DCs, PPAR-gamma activation may be involved in the regulation of the pulmonary immune response to allergens. Using a model of sensitization, based on the intratracheal transfer of ovalbumin (OVA)-pulsed DCs, we show that rosiglitazone, a selective PPAR-gamma agonist, reduces the proliferation of Ag-specific T cells in the draining mediastinal lymph nodes but, surprisingly enough, dramatically increases the production of the immunoregulatory cytokine interleukin (IL)-10 by T cells, as compared to control mice sensitized with OVA-pulsed DCs. After aerosol challenge, the recruitment of eosinophils in the bronchoalveolar lavage fluids was strongly reduced compared to control mice. Finally, T cells from the mediastinal lymph nodes produced higher amounts of IL-10 and interferon-gamma. Inhibition of IL-10 activity with anti-IL-10R antibodies partly restored the inflammation. The specificity of the phenomenon was confirmed by treating OVA-pulsed DCs with ciglitazone, another PPAR-gamma agonist, and by using GW9662, a PPAR-gamma antagonist. Our data suggest that PPAR-gamma activation prevents induction of Th2-dependent eosinophilic airway inflammation and might contribute to immune homeostasis in the lung.  相似文献   

4.
BACKGROUND: Polyclonal cytokine responses following stimulation of T cells with mitogens or superantigens provides information on cytokine production from a wide range of T cells. Alternatively allergen-induced T cell responses can provide information on cytokine production by allergen-reactive T cells. While there is evidence of increased Th2 and reduced Th1 cytokine production following T cell stimulation with non-specific mitogens and superantigens, the evidence that Th1 cytokine production to allergens is decreased in line with a postulated imbalance in Th1/Th2 responses is unclear, with studies finding decreased, no difference or increased IFN-gamma responses to allergens in atopic subjects. OBJECTIVE: To examine childhood polyclonal and allergen-induced cytokine responses in parallel to evaluate cytokine imbalances in childhood atopic disease. METHODS: PBMC cytokine responses were examined in response to a polyclonal stimulus, staphylococcal superantigen (SEB), in parallel with two inhalant allergens, house dust mite (HDM) and rye grass pollen (RYE), and an ingested allergen, ovalbumin (OVA), in (a) 35 healthy children (non-atopic) and (b) 36 children with atopic disease (asthma, eczema and/or rhinitis) (atopic). RESULTS: Atopic children had significantly reduced IFN-gamma and increased IL-4 and IL-5 but not IL13 production to SEB superantigen stimulation when compared with non-atopic children. HDM and RYE allergens stimulated significantly increased IFN-gamma, IL-5 and IL-13, while OVA stimulated significantly increased IFN-gamma production in atopic children. CONCLUSION: We show that a polyclonal stimulus induces a reduced Th1 (IFN-gamma) and increased Th2 (IL-4 and IL-5) cytokine pattern. In contrast, the allergen-induced cytokine responses in atopic children were associated with both increased Th1 (INF-gamma) and Th2 (IL-5 and IL-13) cytokine production. The increased Th1 response to allergen is likely to reflect prior sensitization and indicates that increases in both Th1 and Th2 cytokine production to allergens exists concomitantly with a decreased Th1 response to a polyclonal stimulus in atopic children.  相似文献   

5.
BACKGROUND: Airway dendritic cells (DCs) are crucial for the generation of TH2 cells from naive T cells during sensitization and for reactivation of primed TH2 cells on allergen challenge in mouse models of asthma. It is unknown whether CD80/CD86 costimulation is necessary during both phases of the response because primed T cells rely less on costimulatory molecules compared with naive T cells. OBJECTIVE: We sought to study the contribution of CD80/CD86 costimulatory molecules on DCs during sensitization or challenge in a mouse model of asthma. METHODS: Naive BALB/c mice received an intratracheal injection of ovalbumin (OVA)-pulsed DCs obtained from the bone marrow of wild-type (WT) or CD80/CD86-/- mice and were subsequently challenged with OVA aerosol to address the role of costimulation during sensitization. OVA-sensitized mice received OVA-pulsed WT or CD80/CD86-/- DCs without OVA aerosol to address the role of costimulation during challenge. RESULTS: WT DCs induced the proliferation and effector TH2 differentiation of naive OVA-specific T cells, whereas CD80/CD86-/- DCs induced only proliferation. Not surprisingly, WT DCs but not CD80/CD86-/- DCs induced sensitization to OVA in naive mice. In contrast, in OVA-sensitized mice intratracheal injection of CD80/CD86-/- OVA-pulsed DCs led to eosinophilic airway inflammation, goblet cell hyperplasia, and effector TH2 cytokine production that was not different from that seen after injection with WT OVA-DCs, even when the inducible costimulator ICOS was blocked or cytotoxic T lymphocyte-associated antigen 4 immunoglobulin was given. CONCLUSION: CD80/CD86 costimulation on DCs is only necessary during priming of naive T cells into TH2 cells but not during restimulation of previously primed TH2 cells in the challenge phase.  相似文献   

6.
7.
BACKGROUND: Dendritic cells (DC) play a decisive role in the induction of allergen-induced Th1 and Th2 responses. Since the induction of allergen-specific Th1 responses has shown to inhibit allergen-induced Th2-type inflammation, in this study we investigated whether manipulated myeloid-derived DC pulsed with the specific allergen would predominantly induce allergen-specific Th1 responses thereby reducing the development of Th2 responses. METHODS: Murine bone marrow (BM)-DC were generated and pulsed with ovalbumin (OVA) and CpG oligodeoxynucleotides (CpG-ODN). Langerhans cells (LC) were also isolated and pulsed in vitro with OVA. Subsequently, mice were vaccinated intravenously with either CpG/OVA-pulsed BM-DC or OVA-pulsed LC, and the protocol to induce OVA-specific Th2 responses using OVA/alum sensitization was initiated. Airway inflammation and OVA-specific serum antibody levels were evaluated 6 days after the intranasal challenge with OVA. RESULTS: The application ofCpG/OVA-pulsed BM-DC was unable to reduce airway eosinophilia and inflammation in OVA/alum-immunized mice. OVA-specific IgG1 or IgE serum levels were also not reduced. The experiments using LC pulsed with OVA yielded similar results. However, mice vaccinated with CpG/OVA-pulsed BM-DC had greatly enhanced levels of serum OVA-specific IgG2a, suggesting the induction of allergen-specific Th1 responses in vivo. Moreover, allergen-induced mast cell degranulation was decreased using this approach. CONCLUSIONS: Taken together, our results demonstrated that the vaccination with OVA-pulsed BM-DC matured with CpG-ODN or OVA-pulsed LC did not result in a reduction in allergen-specific Th2 responses in a murine model of severe atopic asthma. Other DC-based vaccination strategies should be evaluated in order to prevent the development of allergic disorders.  相似文献   

8.
BACKGROUND: IL-10 affects dendritic cell (DC) function, but the effects on airway hyperresponsiveness (AHR) and inflammation are not defined. OBJECTIVE: We sought to determine the importance of IL-10 in regulating DC function in allergen-induced AHR and airway inflammation. METHODS: DCs were generated from bone marrow in the presence or absence of IL-10. In vivo IL-10-treated DCs from IL-10(+/+) and IL-10(-/-) donors pulsed with ovalbumin (OVA) were transferred to naive or sensitized mice before challenge. In recipient mice AHR, cytokine levels, cell composition of bronchoalveolar lavage (BAL) fluid, and lung histology were monitored. RESULTS: In vitro, IL-10-treated DCs expressed lower levels of CD11c, CD80, and CD86; expressed lower levels of IL-12; and suppressed T(H)2 cytokine production. In vivo, after transfer of OVA-pulsed IL-10-treated DCs, naive mice did not have AHR, airway eosinophilia, T(H)2 cytokine increase in BAL fluid, or goblet cell metaplasia when challenged, and in sensitized and challenged mice IL-10-treated DCs suppressed these responses. Levels of IL-10 in BAL fluid and numbers of lung CD4(+)IL-10(+) T cells were increased in mice that received OVA-pulsed IL-10-treated DCs. Transfer of IL-10-treated DCs from IL-10-deficient mice were ineffective in suppressing the responses in sensitized and challenged mice. CONCLUSIONS: These data demonstrate that IL-10-treated DCs are potent suppressors of the development of AHR, inflammation, and T(H)2 cytokine production; these regulatory functions are at least in part through the induction of endogenous (DC) production of IL-10. CLINICAL IMPLICATIONS: Modification of DC function by IL-10 can attenuate lung allergic responses, including the development of AHR.  相似文献   

9.
Eosinophilic inflammation and bronchial mucus secretion are among the characteristic pathological changes in asthmatic reaction, which is mediated by Th2 type responses. Although it belongs to Th2 cytokines especially in the mouse, IL-10 is often considered an inhibitory cytokine for both Th1 and Th2 cells. In the present study, using a murine asthma model induced by ovalbumin (OVA), we demonstrated that endogenous IL-10 is critical for the development of asthma-like responses. Specifically, in comparison with wild-type controls, IL-10 gene knockout (KO) mice showed significantly reduced IL-5 production, eosinophilic inflammation and mucus production without notable changes in IL-4 and IgE responses following i. p. sensitization and subsequent intranasal challenge with OVA. In addition, Th1-related cytokine (IFN-gamma and IL-12) production in IL-10 KO mice was significantly higher than that in wild-type mice. The results suggest that endogenous IL-10 plays an important role in promoting pulmonary eosinophilic inflammatory reaction and mucus production during asthmatic reaction. The data also argue that IL-10 may be more influential in the development of IL-5-producing Th2 cells which differ from typical Th2 cells producing both IL-4 and IL-5.  相似文献   

10.
BACKGROUND: Bacterial infection occasionally exacerbates asthma, although the cellular and molecular mechanisms have not been well defined. An involvement of mast cells has been suggested, as lipopolysaccharides (LPS)-induced cytokine production from mast cells in vitro. OBJECTIVE: This study was undertaken to examine the effects of LPS inhalation on mast cell functions and allergen-specific immune responses in a murine model of asthma. METHODS: Female BALB/c mice or mast cell-deficient W/W(v) mice were immunized intraperitoneally with ovalbumin (OVA). Mice were challenged with aerosolized OVA or OVA with LPS daily from day 21 to day 24. Twenty-four hours after the last challenge, airway inflammation and OVA-specific immune responses were examined. Allergen-specific T cell responses were further analysed by adoptively transferring OVA-specific CD4(+) T cells. Expression of chemokines in the lung was also examined. RESULTS: LPS inhalation with OVA resulted in exacerbated airway infiltration, which was not evident in mast cell-deficient mice. IL-5 production by mast cells in the lung was enhanced by LPS inhalation. OVA-specific IgE production as well as proliferation, cytokine production and local infiltration of OVA specific T-helper lymphocytes type 2 (Th2) were also enhanced. Up-regulated expression of Th2- and/or eosinophil-attracting chemokines was observed in the lung of mice inhalated with LPS. CONCLUSIONS: LPS inhalation exacerbates airway inflammation, which is accompanied by mast cell activation and enhanced Th2 responses. These observations provide clues towards understanding the mechanisms of bacterial infection-induced exacerbation of the clinical features of asthma.  相似文献   

11.
BACKGROUND: Epidemiological studies suggest that ozone exposure is related to increased asthma symptoms. Dendritic cells (DCs) are the principal antigen-presenting cells in the airways. OBJECTIVE: We have examined whether ambient doses of ozone (100 ppb for 2 h) enhance allergic sensitization and/or airway inflammation in a mouse model. METHODS: C57BL/6 mice were sensitized to inhaled ovalbumin (OVA) by intratracheal instillation of OVA-pulsed DCs on day 0. Daily exposure to OVA aerosol on days 14-20 resulted in an eosinophilic airway inflammation, as reflected in bronchoalveolar lavage fluid and lung histology. In a first experiment, mice were exposed to ozone or room air immediately prior to and following sensitization. Subsequently, we tested the effect of ozone exposure during antigen challenge in DC-sensitized mice. RESULTS: Exposure to ozone during sensitization did not influence airway inflammation after subsequent allergen challenge. In contrast, in sensitized mice, challenge with OVA together with ozone (days 14-20) resulted in enhanced airway eosinophilia and lymphocytosis, as compared with mice exposed to OVA and room air (1.91 x 106 +/- 0.46 x 106 vs. 0.16 x 106 +/- 0.06 x 106 eosinophils/mL lavage fluid; P = 0.015; 0.49 x 106 +/- 0.11 x 106 vs. 0.08 x 106 +/- 0.03 x 106 lymphocytes/mL lavage fluid; P = 0.004). Ozone exposure without subsequent OVA exposure did not cause airway inflammation. CONCLUSION: Ozone exposure does not increase allergic sensitization but enhances antigen-induced airway inflammation in mice that are sensitized via the airways.  相似文献   

12.
Although IL-18 was initially regarded as a factor that enhances IFN-gamma production from Th1 cells, later studies revealed its potential to induce Th2 cytokine production from T cells, NK cells and basophils/mast cells. Very recently, we demonstrated that passively transferred memory phenotype Th1 cells induce airway inflammation and hyperresponsiveness in a host mouse by production of Th1-, Th2-cytokines, GM-CSF and chemokines, when the transferred cells are stimulated in the host mice with nasally administered Ag and IL-18. Moreover, IL-18 is suggested to contribute to asthma exacerbation in human patients. Therefore, it is important to determine whether human Th1 cells also have the potential to produce these soluble factors when stimulated with anti-CD3 and IL-18 in vitro. Here we demonstrated that only Th1 cells, but not Th2 cells, produce IFN-gamma, IL-13, GM-CSF and IL-8 after stimulation with anti-CD3 and IL-18. Furthermore, highly purified IFN-gamma-producing Th1 cells have the same potential. Thus, human Th1 cells may become very harmful cells, when stimulated with Ag and IL-18 in vivo, and produce IFN-gamma, IL-13, GM-CSF and IL-8, which in combination might induce severe inflammation such as airway inflammation.  相似文献   

13.
Allergic asthma occurs as a consequence of inappropriate immunologic inflammation to allergens and characterized by Th2 adaptive immune response. Recent studies indicated that interleukin (IL)-25, a member of the IL-17 cytokine family, had been implicated in inducing Th2 cell-dependent inflammation in airway epithelium and IL-25-deficient mice exhibit impaired Th2 immunity responses; however, how these cytokines influence innate immune responses remains poorly understood. In this study, we used ovalbumin (OVA) sensitization and challenge to induce the murine asthmatic model and confirmed by histological analysis of lung tissues and serum levels of total and OVA-specific immunoglobulin (Ig)-E. The expression of IL-25 was detected by quantitative real-time PCR and immunohistochemistry, respectively, and the dendritic cells (DCs) activation was detected by levels of CD80 and CD86 in bronchoalveolar lavage fluid (BALF) by flow cytometry. The mice sensitized and challenged with OVA showed high expression of IL-25 in both mRNA and protein levels in lungs. We detected the expression of CD80 and CD86 in BALF was also increased. A tight correlation between IL-25 mRNA and other Th2 cells producing cytokines such as IL-4, IL-5, and IL-13 in BALF was identified. Furthermore, when the asthmatic mice were treated with inhaled corticosteroids, the inflammatory cells infiltration and the inflammatory cytokines secretion were significantly decreased. In this study, we show that IL-25 promoted the accumulation of co-stimulatory molecules of CD80 and CD86 on DCs and then induced the differentiation of prime naive CD4+ T cells to become proinflammatory Th2 cells and promoted Th2 cytokine responses in OVA-induced airway inflammation. The ability of IL-25 to promote the activation and differentiation of DCs population was identified as a link between the IL-17 cytokine family and the innate immune response and suggested a previously unrecognized innate immune pathway that promotes Th2 cytokine responses in asthmatic airway inflammation. Inhaled corticosteroids might be capable of inhibiting the promotion of IL-25 and present a promising strategy for the treatment of asthma  相似文献   

14.
BACKGROUND: Allergen-induced sensitization and airway disease are the results of adverse immune reactions against environmental antigens that may be prevented or inhibited by immune modifying strategies. OBJECTIVE: To investigate the effects of the novel immune response modifier resiquimod (R-848), from the family of imidazol-derivates, in a murine model of allergen-mediated Th2-immune responses and concomitant airway inflammation and airway hyper-reactivity. METHODS: BALB/c mice were systemically sensitized with ovalbumin (OVA) on days 1 and 14 and challenged with OVA aerosol on days 28 and 29. R-848 was applied intranasally to sensitized animals once prior to the first allergen airway challenge, on day 27. RESULTS: A single application of R-848 significantly reduced numbers of eosinophils and lymphocytes in bronchoalveolar lavage fluid and inhibited mucus gland hyperplasia, compared with sensitized and challenged controls. Associated with the decrease in airway inflammation, single intranasal treatment with R-848 abolished the development of airway hyper-reactivity after allergen sensitization and airway challenges. Additionally, Th2-cytokine production in lung tissues from sensitized and R-848-treated animals was reduced, whereas IL-12 and IFN-gamma production was increased, compared with non-treated sensitized mice. CONCLUSION: These data indicate that R-848 effectively inhibits allergen-induced airway inflammation and hyper-reactivity by modulation of increased Th2-immune responses.  相似文献   

15.
To clarify the essential role of NKT cells in allergy, we investigated the contribution of NKT cells to the pathogenesis of eosinophilic airway inflammation using alpha-galactosylceramide (alpha-GalCer), a selective ligand for NKT cells. Although continuous administration of alpha-GalCer during ovalbumin (OVA) sensitization increased OVA-specific IgE levels and worsened eosinophil inflammation, a single administration of alpha-GalCer at the time of OVA challenge completely prevented eosinophilic infiltration in wild-type mice. This inhibitory effect of alpha-GalCer was associated with a decrease in airway hyperresponsiveness, an increase in IFN-gamma, and decreases in IL-4, IL-5 and IL-13 levels in the bronchoalveolar lavage fluids. Analysis of lung lymphocytes revealed that production of IFN-gamma increased in NK cells, but not in T or NKT cells, following alpha-GalCer administration. Induction of vascular cell adhesion molecule-1 in the lungs of wild-type mice was also significantly attenuated by treatment with alpha-GalCer. These effects of alpha-GalCer were abrogated in J alpha281-/- mice, which lack NKT cells, and in wild-type mice treated with anti-IFN-gamma Ab. Hence, our data indicate that alpha-GalCer suppresses allergen-induced eosinophilic airway inflammation, possibly by inducing a Th1 bias that results in inhibition of eosinophil adhesion to the lung vessels.  相似文献   

16.
In mice, respiratory syncytial virus (RSV) infection during allergic provocation aggravates the allergic Th2 immune response, characterised by production of interleukin (IL)-4, IL-5, and IL-13, and eosinophilic inflammation. This enhancement of the Th2 response occurs simultaneously with a strong RSV-induced Th1 cytokine response (IL-12 and IFN-gamma). The present study investigated whether IFN-gamma and IL-12 are critically involved in this RSV-enhanced OVA allergy. Therefore, IFN-gammaR- and IL-12-deficient mice (both on a 129/Sv/Ev background) were sensitised and challenged with ovalbumin (OVA) and infected with RSV during the OVA challenge period. Neither gene deletion affected the development of ovalbumin-induced allergic inflammation in mice. However, when OVA-allergic IFN-gammaR deficient mice were infected with RSV, an increased pulmonary eosinophilic infiltrate and increased IL-4 and IL-13 mRNA expression in lung tissue were observed compared with identically treated wild-type mice. In contrast, deficiency of IL-12 did not aggravate the Th2 immune and inflammatory response in OVA/RSV-treated mice, compared with wild-type. In conclusion, the virus-induced IFN-gamma response diminishes the Th2 inflammatory response during OVA allergy but fails to prevent totally the enhancement of the OVA allergy by RSV. In contrast, IL-12 is not involved in inhibiting nor increasing the RSV-enhanced allergy in 129/Sv/Ev mice.  相似文献   

17.
Antigen-pulsed dendritic cells (DCs) have been used extensively as cellular vaccines to induce a myriad of protective immune responses. Adoptive transfer of antigen-pulsed DCs is especially effective at generating Th1 and CD8 immune responses. However, recently this strategy has been shown to induce Th2 cells when DCs are administered locally into the respiratory tract. We sought to address whether systemic rather than local antigen-pulsed DC administration could induce Th2 experimental allergic asthma. We found that OVA-pulsed splenic DCs injected intraperitoneally induced polarized Th2 allergic lung disease upon secondary OVA aerosol challenge. Disease was characterized by eosinophilic lung inflammation, excess mucus production, airway hyperresponsiveness, and OVA-specific IgG1 and IgE. In addition, unusual pathology characterized by macrophage alveolitis and multinucleated giant cells was observed. These data show that systemic administration of antigen-pulsed DCs and subsequent aeroantigen challenge induces Th2 immunity. These findings have important implications for the development of DC-based vaccines.  相似文献   

18.
Interleukin-10 was originally described as a factor that inhibits cytokine production by murine Th1 clones. Recent studies have since shown that IL-10 can also downregulate Th2 clones and their production of IL-4 and IL-5. Because of its immuno-suppressive properties, IL-10 has been suggested as a potential therapy for allergic inflammation and asthma. However, the pathophysiological role of IL-10 in vivo has not been clearly elucidated. We investigated the effects of IL-10 administration on the production of IgE, cytokine and allergen-induced Th2 cytokine production as well as its effects on eosinophilic inflammation. We established GATA-3/TCR double transgenic (GATA-3/TCR-Tg) mice by crossing GATA-3 transgenic mice with ovalbumin (OVA)-specific TCR transgenic mice; these mice were then sensitized using an intraperitoneal injection of OVA adsorbed to alum and challenged with the intratracheal instillation of an allergen. When GATA-3/TCR-Tg mice sensitized with OVA and alum were injected with C57-IL-10 cells before OVA inhalation, the levels of IL-5, IL-13, and IL-4 decreased by 40-85% and number of eosinophils decreased by 70% (P < 0.03) in the murine bronchoalveolar lavage fluid (BALF). These results suggest that IL-10 plays an important role downstream of the inflammatory cascade in the Th2 response to antigens and in the development of BALF eosinophilia and cytokine production in a murine model of asthma. These immunosuppressive properties in animal models indicate that IL-10 could be a potential clinical therapy for the treatment of allergic inflammation.  相似文献   

19.
IL-33 is becoming a central molecule in allergic asthma that addresses various cascades of innate and adaptive immune responses that lead to inflammation in the lung. Its effects are exerted via its heterodimeric receptor that consists of ST2 and the ubiquitously expressed IL-1 receptor accessory protein (ILRAcP). IL-33 integrates both innate and adaptive immunity in a unique fashion via basophils, mast cells, eosinophils, innate lymphoid cells, NK and NKT cells, nuocytes, Th2 lymphocytes and a CD34(pos) precursor cell population. These actions of IL-33 seem to be particularly strong and dominant in models with mucosal inflammation. A study in this issue of the European Journal of Immunology demonstrates that IL-33 acts, in an ST2-dependent manner, as a maturation factor for BM-derived DCs via up-regulation of CD80, CD40 and OX40L. This process is accompanied by the release of pro-inflammatory cytokines, such as IL-6, IL-1β, TNF-α and TARC/CCL17. IL-33-pre-treated DCs were significantly more potent for the generation of allergen-specific Th2-type cells with IL-5 and IL-13 production. Intratracheal administration of OVA-pulsed DCs with IL-33 significantly enhances eosinophil numbers and mucous secretion. In conclusion, IL-33 affects both the development of allergic sensitization and the development of lung inflammation in allergic asthma.  相似文献   

20.
Lymphoid chemokines CCL19 and CCL21 are crucial for the recruitment of circulating naive T cells into lymph nodes. However, it is not completely known how they contribute to the development of allergic diseases. To determine whether the lack of CCL19 and CCL21 affects allergic airway inflammation, CCL19- and CCL21-deficient [paucity of lymph node T cells (plt/plt)] and wild-type (WT) mice were immunized intra-peritoneally and then challenged intra-nasally with chicken ovalbumin (OVA). Plt/plt mice developed more severe allergic airway inflammation characterized by increased eosinophils and lymphocytes in bronchoalveolar lavage (BAL) and profound inflammation in peribronchiolar and perivascular regions than did WT mice. CD4+ alpha4 integrin+ and CD4+ beta7 integrin+ T cells were significantly increased in the BAL of OVA-immunized and OVA-challenged (OVA/OVA) plt/plt mice compared with OVA/OVA WT mice. Moreover, there were higher levels of IL-4 and IL-13 mRNAs and lower levels of IL-2 and IFN-gamma mRNAs in inflamed lungs of OVA/OVA plt/plt mice compared with OVA/OVA WT mice. Plt/plt mice produced higher levels of total and OVA-specific IgE antibody. Thus, our results suggest that lack of lymphoid chemokines CCL19 and CCL21 enhances allergic airway inflammation by modulating the recruitment of CD4+ T cells into the lung, the balance between Th1 and Th2 cytokines and the IgE production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号