首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A measuring method of the emission rate of an atmospheric pollutant source, based on the use of a tracer gas (helium) and developed in the case of a gaseous source, was tested for an aerosol source. The influence of both particle sedimentation and wall depositions was studied. The transport coefficients of the tracer gas and of alumina particles of various particle sizes (MMAD from 8 to 36 microns) were measured on a vertical axis close to the source, in a 71 m3 room swept by a piston flow. The measurements clearly demonstrated the predominant influence of sedimentation in the case of particles with aerodynamic diameters greater than 10 microns. Particle wall deposition was determined by measuring the gas and particle concentration decay in the ventilated room. To do this, a new tracing method using a fluorescent aerosol was developed. The measured aerosol deposition rates are much higher than those calculated from the formula of Corner for a cubical volume. Aerosol sedimentation and wall deposition are two phenomena limiting the use of a tracer gas to measure the aerosol emission rate. The chemical substances and materials used in work premises are likely to be released into the atmosphere and lead to the formation of pollutants. These emissions stem from either physical or chemical processes (evaporation of a solvent) or from mechanical processes (dispersion of oil droplets at the source of mists).  相似文献   

2.
The ventilation rate within a negatively pressurized room is usually determined by measuring the exhaust air flow rate. This method does not account for air mixing factors and gives limited information on ventilation efficiency within the room. Effective ventilation rates have been determined using tracer gases such as sulfur hexafluoride (SF6). The objective of this study was to determine whether artificially generated airborne particles could be used as a tracer to directly measure ventilation efficiency. We monitored the decay of artificially generated particles within negatively pressurized rooms. Separate trials were conducted at air exhaust rates ranging from about 6 to 20 room air changes per hour. Particles were generated to a minimum of 20 times the ambient concentration using a simple ventilation smoke bottle and measured with handheld light-scattering airborne particle counters. Data were obtained for aerodynamic particle size ranges of: 0.5 micron (microM) and larger, and 1.0 microM and larger. The time rate of decay of particles was plotted after subtracting the background concentrations. Results were compared with simultaneously conducted tracer gas decay analyses (ASTM method E741-95) using SF6. Particle concentrations followed an exponential decay (R2 = 0.98-0.99+) and mirrored the decay curve of the tracer gas. The air change rates predicted by the particle count procedure differed from the tracer gas results by a mean of 4.0 percent (range 0%-12%). The particle count procedure was substantially simpler and less expensive than the SF6 tracer gas method. Additional studies are needed to further refine this procedure and to explore its range of applicability.  相似文献   

3.
Certain respiratory tract infections are transmitted through air. Coughing and sneezing by an infected person can emit pathogen-containing particles with diameters less than 10 microm that can reach the alveolar region. Based on our analysis of the sparse literature on respiratory aerosols, we estimated that emitted particles quickly decrease in diameter due to water loss to one-half the initial values, and that in one cough the volume in particles with initial diameters less than 20 microm is 60 x 10(-8) mL. The pathogen emission rate from a source case depends on the frequency of expiratory events, the respirable particle volume, and the pathogen concentration in respiratory fluid. Viable airborne pathogens are removed by exhaust ventilation, particle settling, die-off, and air disinfection methods; each removal mechanism can be assigned a first-order rate constant. The pathogen concentration in well-mixed room air depends on the emission rate, the size distribution of respirable particles carrying pathogens, and the removal rate constants. The particle settling rate and the alveolar deposition fraction depend on particle size. Given these inputs plus a susceptible person's breathing rate and exposure duration to room air, an expected alveolar dosemicrois estimated. If the infectious dose is one organism, as appears to be true for tuberculosis, infection risk is estimated by the expression: R = 1-exp(-micro). Using published tuberculosis data concerning cough frequency, bacilli concentration in respiratory fluid, and die-off rate, we illustrate the model via a plausible scenario for a person visiting the room of a pulmonary tuberculosis case. We suggest that patients termed "superspreaders" or "dangerous disseminators" are those infrequently encountered persons with high values of cough and/or sneeze frequency, elevated pathogen concentration in respiratory fluid, and/or increased respirable aerosol volume per expiratory event such that their pathogen emission rate is much higher than average.  相似文献   

4.
Recently, toxicological and epidemiological studies on health effects related to particle exposure suggest that 'ultrafine particles' (particles with an aerodynamic diameter of <100 nm) may cause severe health effects after inhalation. Although the toxicological mechanisms for these effects have not yet been explained, it is apparent that measuring exposures against mass alone is not sufficient. It is also necessary to consider exposures against surface area and number concentration. From earlier research it was hypothesized that results on number concentration and particle distributions may vary with distance to the source, limiting the reliability of estimates of personal exposure from results which were obtained using static measurement equipment. Therefore, a workplace study was conducted to explore the performance of measurement methods in a multi-source emission scenario as part of a sampling strategy to estimate personal exposure. In addition, a laboratory study was conducted to determine possible influences of both distance to source and time course on particle number concentration and particle size distribution. In both studies different measurement equipment and techniques were used to characterize (total) particle number concentration. These included a condensation particle counter (CPC), a scanning mobility particle sizer (SMPS) and an electrical low pressure impactor (ELPI). For the present studies CPC devices seemed to perform well for the identification of particle emission sources. The range of ultrafine particle number concentration can be detected by both SMPS and ELPI. An important advantage of the ELPI is that aerosols with ultrafine sizes can be collected for further analysis. Specific surface area of the aerosols can be estimated using gas adsorption analysis; however, with this technique ultrafine particles cannot be distinguished from particles with non-ultrafine sizes. Consequently, estimates based on samples collected from the breathing zone and scanning electron microscopic analysis may give a more reliable estimate of the specific surface area of the ultrafine particles responsible for personal exposure. The results of both the experimental and the workplace study suggest both spatial and temporal variation in total number concentration and aerosol size distribution. Therefore, the results obtained from static measurements and grab sampling should be interpreted with care as estimates of personal exposure. For evaluation of workplace exposure to ultrafine particles it is recommended that all relevant characteristics of such exposure are measured as part of a well-designed sampling strategy.  相似文献   

5.
We derive general-purpose mathematical model for pollution concentration studies. The model is based on the aerosol general dynamic equation (GDE). It accounts for aerosol processes like coagulation and growth by deposition and is therefore suited for suspended-particle monitoring. Our model is validated by controlled experiments done using standard aerosol monitoring devices that measure PM10, particle cross section, particle-bound polycyclic aromatic hydrocarbons (PPAHs) and number concentration, showing an excellent agreement with the experimental data in a 77-m(3) room with a time sequence of cigarettes smoked. As an example of an application, we calculated the mean PPAH emission rate in environmental tobacco smoke (ETS) for a "smolder-smoked" cigarette and found it to be 8 ng/s for a total emission of 5.28 microg per cigarette. The results show that real aerosol dynamics should be taken into account when monitoring suspended particles.  相似文献   

6.
While personal aerosol samplers have been characterized primarily based on wind tunnel tests conducted at relatively high wind speeds, modern indoor occupational environments are usually represented by very slow moving air. Recent surveys suggest that elevated levels of occupational exposure to inhalable airborne particles are typically observed when the worker, operating in the vicinity of the dust source, faces the source. Thus, the first objective of this study was to design and test a new, low cost experimental protocol for measuring the sampling efficiency of personal inhalable aerosol samplers in the vicinity of the aerosol source when the samplers operate in very slowly moving air. In this system, an aerosol generator, which is located in the centre of a room-sized non-ventilated chamber, continuously rotates and omnidirectionally disperses test particles of a specific size. The test and reference samplers are equally distributed around the source at the same distance from the centre and operate in parallel (in most of our experiments, the total number of simultaneously operating samplers was 15). Radial aerosol transport is driven by turbulent diffusion and some natural convection. For each specific particle size and the sampler, the aerosol mass concentration is measured by weighing the collection filter. The second objective was to utilize the new protocol to evaluate three widely used aerosol samplers: the IOM Personal Inhalable Sampler, the Button Personal Inhalable Aerosol Sampler and the 25 mm Millipore filter holder (closed-face C25 cassette). The sampling efficiencies of each instrument were measured with six particle fractions, ranging from 6.9 to 76.9 micro m in their mass median aerodynamic diameter. The Button Sampler efficiency data demonstrated a good agreement with the standard inhalable convention and especially with the low air movement inhalabilty curve. The 25 mm filter holder was found to considerably under-sample the particles larger than 10 micro m; its efficiency did not exceed 7% for particles of 40-100 micro m. The IOM Sampler facing the source was found to over-sample compared with the data obtained previously with a slowly rotating, freely suspended sampler in a low air movement environment. It was also found that the particle wall deposition in the IOM metallic cartridge was rather significant and particle size-dependent. For each sampler (IOM, Button and C25) the precision was characterized through the relative standard deviation (RSD) of the aerosol concentration obtained with identical samplers in a specific experiment. The average RSD was 14% for the IOM Sampler, 11% for the Button Sampler and 35% for the 25 mm filter cassette. A separate set of experiments, performed with the Simplified Torso showed that in very slowly moving air a personal sampler can be adequately evaluated even when it is not attached to a body but freely suspended (confirming the data reported previously).  相似文献   

7.
A dynamic aerosol mass concentration measurement device has been developed for personal sampling. Its principle consists in sampling the aerosol on a filter and monitoring the change of pressure drop over time (Delta P). Ensuring that the linearity of the Delta P = f(mass of particles per unit area of filter) relationship has been well established, the change of concentration can be deduced. The response of the system was validated in the laboratory with a 3.5 microm alumina aerosol (mass median diameter) generated inside a 1-m(3) ventilated enclosure. As the theory predicted that the mass sensitivity of the system would vary inversely with the square of the particle diameter, only sufficiently fine aerosols were able to be measured. The system was tested in the field in a mechanical workshop in the vicinity of an arc-welding station. The aerosol produced by welding is indeed particularly well-adapted due to the sub-micronic size of the particles. The device developed, despite this limitation, has numerous advantages over other techniques: robustness, compactness, reliability of calibration, and ease of use.  相似文献   

8.
Chain aggregate aerosol particles are normally formed during many high-temperature combustion and vaporization processes. The shape of chain aggregate aerosol particles could have an effect on the pattern of inhalation deposition and retention of the particles in the respiratory tract. A chain aggregate aerosol of nuclear reactor fuel could be present as an inhalation hazard if it were released to the atmosphere after a meltdown, core-disruptive accident. Rats were exposed to a chain aggregate U-Pu aerosol made by laser vaporization of mixed-oxide, breeder reactor fuel (20% plutonium dioxide and 80% uranium dioxide), then sacrificed to measure the clearance and retention of the fuel aerosol particles. Deposition of the 0.7-micron (activity median aerodynamic equivalent diameter) aerosol particles resulted in an average initial lung burden of 4140 Bq alpha activity. The chain aggregate particle shape was not a major factor in the total deposition; however, it may have influenced the regional distribution of the activity deposited. Retention of the particles in the upper airways of the tracheobronchial tree was on the order of 1% of the concurrent lung burden, which is consistent with recent data of other investigations. This study indicates that insoluble chain aggregate particles are retained in the tracheobronchial airways to a degree similar to simple spherically shaped particles of equivalent volume diameter.  相似文献   

9.
Simultaneous measurements were made of such properties as the fraction of charged and uncharged atoms, the balance of radioactive equilibrium between 222Rn and its daughters, and the concentration of aerosol particles and their mean radii in tunnel air. It became clear that the behavior of 222Rn decay products in tunnel air could be expressed well by equations based on a simple model, taking the following into account: the attachment of free atoms to aerosol particles, the deposition of radioactive particles on the tunnel wall, emission of alpha recoils from aerosol particles and the surface of the tunnel wall, and radioactive decay. In addition, the effective attachment coefficient of an observed RaA-atom was found to agree well with that calculated. The results obtained should facilitate in the future estimation of the relation between 222Rn daughters and the lung dose to the population.  相似文献   

10.
为评价工人接触有害的气溶胶,应测定直接参与生物效应的气溶胶组分。劳动卫生学最早提出与健康有关的气溶胶组分(health-related aerosol fraction)这一概念,并用于工作场所粉尘按颗粒大小的选择性采样测定。英国医学研究委员会(BMRC)对呼吸性粉尘组分的定义在1960年即得到国际公认,尔后也制订了其他一些规则。值得注意的是,欧盟标准委员会(CEN)、国际标准化组织(ISO)和美国政府工业卫生工作者协会(ACGIH)在上世纪90年代就可吸入性、胸腔的和呼吸性气溶胶3个组分的定义达成一致意见,在世界范围采用了同一个规则。我国职业卫生标准在2002年要求测定呼吸性粉尘。近年,人们又提出超细颗粒(ultrafine particulates)这个新名词。由于它粒径小(直径≤100nm),可自由地进出细胞,其健康效应令人担心。ISO/CEN 2004年制订了一个草案,讨论其职业接触和评价问题。近期《The Annals ofOccupational Hygiene》发表的文章中,BARTLEY博士阐述了7个组分的气溶胶采样规则,包括呼吸道5个特定的区域(而不是传统的3个区域);在粒径上包括了超细气溶胶颗粒;需要多个热动力学和空气动力学不同工作原理的采样器矩阵进行测定。其目的并不是取代现有的国际标准,而是要促进采样器的创新设计。本文主要根据BARTLEY博士的述评和有关资料,简要介绍气溶胶组分和采样的一些进展,以期引起同行的关注。  相似文献   

11.
Several real-time particle sizing instruments were evaluated for measuring the size distribution and concentration of the aerosol produced during the high speed grinding of gray iron castings. Aerosol was sampled in the airstream entrained by the motion of a spinning grinding wheel in a pilot grinding operation. Measurement methods based on differing physical principles were selected for evaluation and compared: particle inertia (aerodynamic particle sizer and quartz crystal microbalance cascade impactor); light scattering (laser aerosol spectrometer); and projected-area microscopy (scanning electron microscope). Inferences of aerodynamic diameter based on measurements by the laser aerosol spectrometer consistently undersized that determined by the aerodynamic particle sizer by a factor of 1.5. Estimates of aerodynamic diameters from projected area diameters determined by scanning electron microscopy differed from those obtained by the aerodynamic particle sizer by a factor of 2. Differences appeared to be a non-linear function of particle diameter. Estimates of respirable mass determined from mass-weighted particle size spectra varied by a factor of 6 between the largest estimate (scanning electron microscope) and the smallest estimate (laser aerosol spectrometer).  相似文献   

12.
Continuous air monitor (CAM) samplers are used to detect radioactive aerosol particles in nuclear facilities and to provide alarm signals should the concentrations exceed a multiple of the derived air concentration (DAC) of the radionuclide of concern in a set amount of time. Aerosol particles are drawn into a CAM sampler where collection is to take place upon a filter. Radioactivity of the particles is determined with a detector that is placed in close proximity to the filter face. An important determinant of CAM performance is the ability of the inlet and body of the CAM to transport particulate matter in the inhalable-size range (less than or equal to 10 microns aerodynamic diameter) to the filter without substantial loss or bias with respect to particulate size. Three types of CAM samplers were tested in a low-velocity aerosol wind tunnel to determine the degree to which particles penetrate through the flow systems to the collection filter under conditions typical of normal room air exchange rates. Two air velocities were used: 0.3 and 1.0 m s-1. The CAM samplers were primarily operated at a flow rate of 56.6 L min-1, although some tests were conducted at a flow rate of 28.3 L min-1. The CAM units were prototypes manufactured by Kurz Instruments, Eberline Instrument Corporation, and Victoreen Inc. These three units represent three different approaches to CAM head design. At an air speed of 1 m s-1, aerosol penetration to the filters of the Kurz unit was essentially 100% for particle sizes of 3 and 7-microns aerodynamic diameter and was 86% for a size of 15 microns. For the Eberline sampler, the penetration was over 80% for 3-microns particles but was reduced to less than 2% for 7-microns particles. The victoreen sampler showed penetration values of 98% for 3-microns aerodynamic diameter particles, 88% for 7-microns particles and 4% for a size of 15 microns. Air speed had little effect on the penetration results for the two speeds which were tested. Tests were conducted to determine the uniformity of deposits on the filters of the CAM samplers. For a particle size of 10 microns, the deposits were nonuniform for all three of the instruments.  相似文献   

13.
Spray painters are potentially exposed to aerosols containing hexavalent chromium [Cr(VI)] via inhalation of chromate-based paint sprays. Evaluating the particle size distribution of a paint spray aerosol, and the variables that may affect this distribution, is necessary to determine the site and degree of respiratory deposition and the damage that may result from inhaled Cr(VI)-containing paint particles. This study examined the effect of spray gun atomization pressure, aerosol generation source and aerosol aging on the size distribution of chromate-based paint overspray aerosols generated in a bench-scale paint spray booth. The study also determined the effect of particle bounce inside a Marple personal cascade impactor on measured size distributions of paint spray aerosols. Marple personal cascade impactors with a modified inlet were used for sample collection. The data indicated that paint particle bounce did not occur inside the cascade impactors sufficiently to affect size distribution when using uncoated stainless steel or PVC substrate sampling media. A decrease in paint aerosol mass median aerodynamic diameter (MMAD) from 8.2 to 7.0 mum was observed as gun atomization pressure increased from 6 to 10 psi. Overspray aerosols were sampled at two locations in the spray booth. A downstream sampling position simulated the exposure of a worker standing between the painted surface and exhaust, a situation encountered in booths with multiple workers. The measured mean MMAD was 7.2 mum. The distance between the painted surface and sampler was varied to sample oversprays of varying ages between 2.8 and 7.7 s. Age was not a significant factor for determining MMAD. Overspray was sampled at a 90 degrees position to simulate a worker standing in front of the surface being painted with air flowing to the worker's side, a common situation in field applications. The resulting overspray MMAD averaged 5.9 mum. Direct-spray aerosols were sampled at ages from 5.3 to 11.7 s. Overspray and direct-spray results indicated that most of the change in aerosol size distribution occurred between the time the paint aerosol impacted the painted surface and the time the overspray became 2.8 s old. The overall mean MMAD of overspray in the study was 6.4 mum and may have been underestimated due to sampling efficiency biases. If inhaled by a worker, the overspray aerosols evaluated in this study would mostly deposit in the head airways region of the respiratory tract. Paint overspray aerosols contained Cr primarily in the Cr(VI) state.  相似文献   

14.
Study of fifteen respirable aerosol samplers used in occupational hygiene   总被引:2,自引:0,他引:2  
European and international standards lay down criteria for the size-selective aerosol sampling in occupational hygiene. Aerosol samplers are supposed to match these target sampling criteria. This study focused on 15 aerosol samplers used to sample the conventional respirable fraction. An aerodynamic particle sizer (APS) method was used to measure the sampling efficiency of the samplers in a low-velocity wind tunnel. Polydisperse coal dust was generated as the test aerosol. The data were fitted by an appropriate mathematical model. For some instruments the results show serious deviations from the conventional target curve, whereas other devices meet the convention quite well. The flow rate of certain cyclone-separator-based instruments was optimized to adjust their sampling efficiency. The mass concentration bias and accuracy of the samplers were calculated for a number of ranges of particle size distributions of aerosols commonly found in industrial workplaces. Finally, the performance of each sampler was evaluated using bias and accuracy maps. Most of these samplers are suitable for sampling the CEN-ISO-ACGIH respirable fraction of aerosols, but several require modification of the flow rate. For real industrial situations, the rough knowledge of the aerosol size distribution can guide the choice of an appropriate sampling technique.  相似文献   

15.
The effect of displacement flow on the distribution of aerosol concentration was investigated in an industrial hall. According to the displacement ventilation principle, vertical upflow is accomplished by introducing fresh air, cooler than room air, into the occupied zone near floor level. The fresh air is introduced from low-velocity devices and heated by warm processes. This technique allows warm air contaminants to rise to the ceiling, and the rising plume is then exhausted close to the ceiling. This study presents the results of a field study conducted in an industrial environment. The aerosol properties and behavior, especially the vertical gradients, are characterized in a displacement flow field. The results indicate that the fine particles, less than 1 microm in diameter, are transported away from the breathing zone by the ventilation process. However, the air quality is significantly influenced by the emission source, and therefore the number concentration of fine and ultrafine (smaller than 0.1 microm in diameter) aerosol particles in the breathing zone was clearly elevated compared to that of the incoming clean air. The vertical gradients displayed clear size dependence; the strongest gradients were found for particles between 0.003 and 0.015 microm in diameter.  相似文献   

16.
Fritsch P 《Health physics》2006,90(2):114-126
This study estimates uncertainties in aerosol deposition within the main regions of the human respiratory tract calculated using the ICRP 66 model. Uniform, triangular, normal, or lognormal distributions were assigned to the model parameters, which involve physical properties of aerosols, their inhalability, their thermo- and aerodynamic deposition efficiencies, and the anatomy, physiology, and exertion level of the individuals. Calculations were performed over a range of aerosol sizes from 0.01 to 50 mum. Monodispersed aerosols were characterized by their aerodynamic diameter (dae). Polydispersed aerosols were characterized by their activity median aerodynamic diameters (AMADs) and the geometric standard deviation (GSD) in diameter. Lognormal distributions of particle deposition were generally observed with low GSD (< 2). The highest uncertainties were observed within the deep lung for the smallest and the largest aerosol sizes, which were mainly due either to particle density or to aerodynamic deposition efficiencies and anatomical and physiological variability, respectively. In the case of diameters larger than 5 mum, uncertainties in the deep lung deposition were much more important for monodispersed than for polydispersed aerosols. This was explained both by the size distribution of the deposited aerosol, the median of which corresponded to a maximal dae value of about 7 and 5 in bronchioles and alveoli, respectively, and by the absence of deposition, which occurs for dae equal to or larger than 50 mum, depending on the exertion level. Thus, in the range of AMADs considered, for the four default workers proposed by ICRP 66, uncertainties in aerosol deposition remain low, with GSD smaller than 3.  相似文献   

17.
This study determined the plutonium particle size distribution and dissolution rate of PuO2 aerosol collected during the 16 March 2000 release of an undetermined amount of PuO2 in a room within a plutonium facility at Los Alamos National Laboratory. The facility has been in operation since 1978 to support the development, fabrication, and testing of Pu heat sources for the U.S. Department of Energy. Several workers were in the room at the time of the release and in vivo study of five of the workers began the day after the exposure event. Four of the subjects subsequently received chelation therapy. Over 30 fixed air filter samplers (FASs) and four continuous air monitors (CAMs) were operating in the room during the radiological release. One 47-mm-diameter glass fiber FAS filter and one 25-cm-diameter mixed cellulose ester CAM filter containing Pu aerosol from the incident were examined in the study described here. Total alpha radioactivity on the filters was determined by gross alpha counting. Isotopic identification of the Pu was made by alpha spectrometry. Film autoradiography was used to characterize the spatial distribution of alpha-emitting particles on the filters. Track-etch autoradiography was used to estimate the distribution of alpha radioactivity in individual plutonium particles on the filters for particle size measurement. The glass fiber filter was then cut into six sections. Particles from two sections were resuspended in alcohol, dispersed as an aerosol using a Lovelace nebulizer, and characterized by aerodynamic diameter using a Lovelace Multi-jet cascade impactor. The measured activity median aerodynamic diameter from the cascade impactor was 4.8 mum with a geometric standard deviation of 1.5. That agreed with the size distribution obtained from the alpha track detection technique. The remaining four filter sections were used in an in vitro dissolution study with synthetic serum ultrafiltrate. The retention of undissolved Pu was consistent with a biphasic exponential function. The majority of the Pu dissolved with a half-time of 900 d. The information on particle size distribution and solubility from this study was useful in assigning a radiation dose to the exposed workers, supporting the decision to administer chelation therapy, and providing a model for characterizing accident-associated aerosols in the future.  相似文献   

18.
目的 评价某种正压生物防护服对病毒气溶胶的防护效果.方法 制备Phi-X174噬菌体悬液,在气溶胶密闭舱室内发生Phi-X174噬菌体气溶胶,应用空气动力学粒子分析仪检测粒子直径,在高送风档和低送风档条件下,调节气溶胶密闭舱室内的湿度,用安德森六级采样器采样,通过计数噬菌体噬斑数评价该正压生物防护服对病毒气溶胶的防护效率.结果 Phi-X174噬菌体气溶胶粒子质量中值直径约为0.922 μm,气溶胶粒子本底浓度>2.0×104个/m3,在不同的测试条件下,该正压生物防护服内病毒气溶胶浓度为0 ~21PFU/m3,对Phi-X174噬菌体气溶胶粒子防护效率均>99.9%,送风量(P=0.84)、环境湿度(P=0.33)以及采样时间(P=0.07)对正压防护服防护效率的影响无统计学意义.结论 该正压生物防护服对Phi-X174噬菌体气溶胶的防护效果较好.  相似文献   

19.
Pesticide spraying for crop protection leads to the formation of a mist of droplets, part of which is dispersed into the atmosphere. The characteristics of this aerosol, namely its particle size distribution and concentration, were measured during five campaigns involving cereal crop growing, wine grape culture, and orcharding. The measurement method incorporated a tracer product (fluorescein) with the treatment product; the pesticide aerosol concentration was then deduced from the tracer concentration. This method was validated by comparing the pesticide concentration determined by tracing with the concentration determined by direct measurement of the active substance of the pesticide. Concentration was measured using sampling filters, and particle size distribution was measured using cascade impactors. Instruments were mounted on an agricultural vehicle cab to optimize aerosol characterization, and then the cab's confinement efficiency was determined. Aerosols analyzed were fine, featuring mass median diameters between 4 microm and 15 microm; they are therefore highly dispersive. Their concentration is sufficiently high to justify operator protection by an efficient, filtered-air, pressurized cab, especially in wine grape culture and orcharding, which are the sectors where the highest pesticide transfers have been observed.  相似文献   

20.
Collection efficiency of a personal sampler for microbiological aerosols.   总被引:1,自引:0,他引:1  
A modified personal impinger (MPI) for sampling airborne microorganisms was tested for collection efficiency with the jet nozzle placed at various positions above and below the liquid surface. The sampler was operated with 10 mL of water and sampling rates between 1.08 and 3.4 L/min. The collection efficiencies for a polydisperse aerosol of diethylhexyl phthalate (DEHP) and monodisperse aerosols of polystyrene latex particles (ULP) were determined with an optical particle counter. The results show that a test aerosol generated from a suspension, such as ULP, gives test results that agree better with theoretical predictions than a polydisperse oil aerosol such as DEHP. The measured aerodynamic 50% cutoff diameters (D50) agreed with those predicted from impaction theory with the jet nozzle 4 mm from the flask bottom. For preservation of viability during sampling of microorganisms, it is common to use impingers with the jet nozzle above the liquid surface. These tests showed that if the MPI is operated with the jet nozzle above the liquid surface, D50 will be displaced toward larger particle sizes because the jet-to-plate distance/jet diameter ratio increases substantially when a soft impaction surface such as the liquid is used. The increased D50 could to some extent be compensated for by increasing the flow rate. An increased flow rate will, however, result in more losses because of aerosol regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号