首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Nasopharyngeal carcinoma (NPC) cell lines and xenografts represent valuable models for functional and therapeutic studies on this common malignancy in Southeast Asia. The karyotypic information in most NPC cell lines and xenografts, however, remains largely unclear to date. We have characterized the chromosomal aberrations in six commonly used human NPC cell lines and xenografts using the molecular cytogenetic technique of comparative genomic hybridization (CGH). Genomic imbalances identified in cell lines were further correlated with structural abnormalities indicated from spectral karyotyping (SKY) analysis. CGH revealed consistent overrepresentations of 8q (six out of six cases) with a smallest overlapping region identified on 8q21.1q22. Other common gains included 7p (4/6 cases), 7q (4/6 cases), 12q (4/6), and 20q (4/6 cases), where minimal overlapping regions were suggested on 7p15p14, 7q11.2q21, and 12q22q24.1. Common losses were detected on 3p12p21 (4/6 cases) and 11q14qter (4/6 cases). Although SKY analysis on cell lines revealed predominantly unbalanced rearrangements, reciprocal translocations that involved chromosome 2 [i.e., t(1;2), t(2;3), and t(2;4)] were suggested. Furthermore, SKY examination illustrated additional breakpoints on a number of apparently balanced chromosomes. These breakpoints included 3p21, 3q26, 5q31, 6p21.1p25, 7p14p22, and 8q22. Our finding of regional gains and losses and breakpoints represents information that may contribute to NPC studies in vitro.  相似文献   

2.
Breast cancer cell lines have been widely used as models in functional and therapeutical studies, but their chromosomal alterations are not well known. We characterized the chromosomal aberrations in 15 commonly used human breast carcinoma cell lines (BT-474, BT-549, CAMA-1, DU4475, MCF7, MDA-MB-134, MDA-MB-157, MDA-MB-361, MDA-MB-436, MPE600, SK-BR-3, T-47D, UACC-812, UACC-893, and ZR-75-1) by comparative genomic hybridization (CGH) and spectral karyotyping (SKY). By CGH the most frequent gains were detected at 1q, 8q, 20q, 7, 11q13, 17q, 9q, and 16p, whereas losses were most common at 8p, 11q14-qter, 18q, and Xq. SKY revealed a multitude of structural and numerical chromosomal aberrations. Simple translocations, typically consisting of entire translocated chromosome arms, were the most common structural aberrations. Complex marker chromosomes included material from up to seven different chromosomes. Evidence for a cytogenetic aberration not previously described in breast cancer, the isoderivative chromosome, was found in two cell lines. Translocations t(8;11), t(12;16), t(1;16), and t(15;17) were frequently found, although the resulting derivative chromosomes and their breakpoints were strikingly dissimilar. The chromosomes most frequently involved in translocations were 8, 1, 17, 16, and 20. An excellent correlation was found between the number of translocation events found by SKY in the individual cell lines, and the copy number gains and losses detected by CGH, indicating that the majority of translocations are unbalanced. Genes Chromosomes Cancer 28:308-317, 2000.  相似文献   

3.
Multicolor spectral karyotyping of serous ovarian adenocarcinoma.   总被引:2,自引:0,他引:2  
We applied multicolor spectral karyotyping (SKY) to decipher the chromosomal complexity of a panel of seven cell lines and four primary tumors derived from patients with high‐grade serous adenocarcinoma of the ovary. By this method we identified a total of 188 unbalanced translocations, nine reciprocal translocations [t(2;15)(q13;q23), t(7;17) (q32;q21), t(8;22)(p11;q11), t(8;22) (q24;q13), t(10;19) (q24;q13.2), t(11;19) (q13;p11), t(12;21)(q13;q22),t(18;20) (q?11;q?11), t(18;22)(q?11;q?13)], 6 isochromosomes [i(1q), i(7q), i(8q), i(9p), i(17q), i(21q)], and 23 deletions. By detailed mapping of rearrangement breakpoints, it was possible to identify several recurring breakpoint clusters at chromosomal bands 1p36, 2p11, 2p23, 3p21, 3q21, 4p11, 6q11, 8p11, 9q34, 10p11, 11p11, 11q13, 12p13, 12q13, 17q21, 18p11, 18q11, 20q11, and 21q22. Recurrent interstitial deletion of chromosomal bands 8p11, 11p11, and 12q13 and a recurrent unbalanced translocation—der(6)t(6;8)(q11;q11)—were also identified. In addition, a homogeneously staining region localized in one cell line to 11q13 was found using SKY to be derived from genetic material originating from chromosome 12. Subsequent comparative genomic hybridization (CGH) studies on this tumor revealed the amplification of DNA sequences derived from the short arm of chromosome 12 at the 12p11.2 region. These studies demonstrate the power of SKY, CGH, and G‐banding to resolve the full spectrum of chromosomal rearrangements in serous ovarian adenocarcinoma. © 2002 Wiley‐Liss, Inc.  相似文献   

4.
We report the use of spectral karyotyping (SKY) and comparative genomic hybridization (CGH) to describe the numerous genomic imbalances characteristic of stage IV clear cell renal cell carcinoma (CCRCC). SKY and CGH were performed on 10 cell lines established from nephrectomy specimens, and CGH on uncultured material from five of the primary renal tumors. The mutational status of VHL (3p25) and MET (7q31), genes implicated in renal carcinogenesis, were determined for each case. Each case showed marked aneuploidy, with an average number of copy alterations of 14.6 (+/-2.7) in the primary tumors and 19.3 (+/-4.6) in the cell lines. Both whole-chromosome and chromosome-segment imbalances were noted by CGH: consistent losses or gains included +5q23-->ter (100%), -3p14-->ter (80%), and +7 (70%). All VHL mutations and 83% of the genomic imbalances found in the primary tumors were also found in the cell lines derived from them. SKY showed many complex structural rearrangements that were undetected by conventional banding analysis in these solid tumors. All cases with VHL inactivation had 3p loss and 5q gain related primarily to unbalanced translocations between 3p and 5q. In contrast, gains of chromosome 7 resulted primarily from whole-chromosome gains and were not associated with mutations of MET. SKY and CGH demonstrated that genomic imbalances in advanced RCC were the result of either segregation errors [i.e., whole chromosomal gains and losses (7.8/case)] or chromosomal rearrangements (10.7/case), of which the majority were unbalanced translocations.  相似文献   

5.
Molecular cytogenetic characterization of non-Hodgkin lymphoma cell lines.   总被引:3,自引:0,他引:3  
Spectral karyotyping (SKY) and comparative genomic hybridization (CGH) have greatly enhanced the resolution of cytogenetic analysis, enabling the identification of novel regions of rearrangement and amplification in tumor cells. Here we report the analysis of 10 malignant non-Hodgkin lymphoma (NHL) cell lines derived at the Ontario Cancer Institute (OCI), Toronto, designated as OCI-Ly1, OCI-Ly2, OCI-Ly3, OCI-LY4, OCI-Ly7, OCI-Ly8, OCI-Ly12, OCI-Ly13.2, OCI-Ly17, and OCI-Ly18, by G-banding, SKY, and CGH, and we present their comprehensive cytogenetic profiles. In contrast to the 52 breakpoints identified by G-banding, SKY identified 87 breakpoints, which clustered at 1q21, 7p15, 8p11, 13q21, 13q32, 14q32, 17q11, and 18q21. G-banding identified 10 translocations, including the previously described recurring translocations, t(8;14)(q24;q32) and t(14;18)(q32;q21). In contrast, SKY identified 60 translocations, including five that were recurring, t(8;14)(q24;q32), t(14;18)(q32;q21), t(4;7)(p12;q22), t(11;18)(q22;q21), and t(3;18)(q21;p11). SKY also identified the source of all the marker chromosomes. In addition, 10 chromosomes that were classified as normal by G-banding were found by SKY to be rearranged. CGH identified seven sites of high-level DNA amplification, 1q31-32, 2p12-16, 8q24, 11q23-25, 13q21-22, 13q32-34, and 18q21-23; of these, 1q31-32, 11q23-25, 13q21-22, and 13q32-34 have previously not been described as amplified in NHL. This comprehensive cytogenetic characterization of 10 NHL cell lines identified novel sites of rearrangement and amplification; it also enhances their value in experimental studies aimed at gene discovery and gene function.  相似文献   

6.
7.
A continuously growing human hepatocellular carcinoma (HCC) cell line was established from a Chinese male, carrier of the hepatitis B virus (HBV). This cell line, designated HKCI-1, grows as an adhering monolayer of polygonal epithelial cells that embody one or more nuclei. HKCI-1 secretes alpha-fetoprotein but shows no evidence of HBV carriage. Conventional banding analysis of the short-term cultured primary tumor and the propagated HKCI-1 revealed a chromosome modal number of near-triploidy. It was, however, impossible to derive their complete karyotype due to the complex nature of chromosomal rearrangements and many marker chromosomes of uncertain origin. Spectral karyotyping (SKY) is a newly developed molecular cytogenetic technique that allows the unprecedented discernment of chromosomal abnormalities. Spectral karyotyping analysis on HKCI-1 and the primary tumor elucidated all aberrant chromosomes and revealed complex karyograms. Recurring aberrations detected in both primary tumor and HKCI-1 included der(X)t(X;11)(q10;p10), der(1)t(1;10)(q10;?pq), der(4)t(4;16)(p10;q10), i(5p), del(5)(q13), der(7)t(7;21)(q32q10::q10), der(8)t(8;17)(q10;p10), and der(9)t(9;22)(q34;?pq). Comparative genomic hybridization (CGH) was employed to monitor the culture evolution in vitro. Genomic imbalances in HKCI-1 involved chromosomal losses on 4q, 5q13-qter, 8p, 9pter-q33, 10q, 11q, 13q, 16q, 17q12-qter, and 22, and low-level gains on 6pter-q22, 7p, 8q, 9q34, 10p, 11p, 12, 17pter-q11.2, 18, 19, 20, 21, and Y. High-level amplifications were also detected on 5pter-q12, 7q11.2-qter, and Xq. The corresponding CGH finding on the primary tumor indicated similar imbalances. TP53 mutational analysis showed that both HKCI-1 and the primary tumor had the aflatoxin-associated mutation in codon 249 and an additional TP53 polymorphism in codon 72. Our present study demonstrates the value of combined SKY and CGH study in defining complex rearrangements and identifying cryptic translocations, and provides a comprehensive analysis on the chromosomal abnormalities in HKCI-1.  相似文献   

8.
We investigated relationships between DNA copy number aberrations and chromosomal structural rearrangements in 11 different cell lines derived from oral squamous cell carcinoma (OSCC) by comparative genomic hybridization (CGH), spectral karyotyping (SKY), and fluorescence in situ hybridization (FISH). CGH frequently showed recurrent chromosomal gains of 5p, 20q12, 8q23 approximately qter, 20p11 approximately p12, 7p15, 11p13 approximately p14, and 14q21, as well as losses of 4q, 18q, 4p11 approximately p15, 19p13, 8p21 approximately pter, and 16p11 approximately p12. SKY identified the following recurrent chromosomal abnormalities: i(5)(p10), i(5)(q10), i(8)(q10), der(X;1)(q10;p10), der(3;5)(p10;p10), and der(3;18)(q10;p10). In addition, breakpoints detected by SKY were clustered in 11q13 and around centromeric regions, including 5p10/q10, 3p10/q10, 8p10/q10 14q10, 1p10/1q10, and 16p10/16q10. Cell lines with i(5)(p10) and i(8)(q10) showed gains of the entire chromosome arms of 5p and 8q by CGH. Moreover, breakages near the centromeres of chromosomes 5 and 8 may be associated with 5p gain, 8q gain, and 8p loss in OSCC. FISH with a DNA probe from a BAC clone mapping to 5p15 showed a significant correlation between the average numbers of i(5)(p10) and 5p15 (R(2) = 0.8693, P< 0.01) in these cell lines, indicating that DNA copy number of 5p depends upon isochromosome formation in OSCC.  相似文献   

9.
In defining the genetic profiles in cancer, cytogenetically aberrant cell lines derived from primary tumors are important tools for the study of carcinogenesis. Here, we present the results of a comprehensive investigation of 15 established colorectal cancer cell lines using spectral karyotyping (SKY), fluorescence in situ hybridization, and comparative genomic hybridization (CGH). Detailed karyotypic analysis by SKY on five of the lines (P53HCT116, T84, NCI‐H508, NCI‐H716, and SK‐CO‐1) is described here for the first time. The five lines with karyotypes in the diploid range and that are characterized by defects in DNA mismatch repair had a mean of 4.8 chromosomal abnormalities per line, whereas the 10 aneuploid lines exhibited complex karyotypes and a mean of 30 chromosomal abnormalities. Of the 150 clonal translocations, only eight were balanced and none were recurrent among the lines. We also reviewed the karyotypes of 345 cases of adenocarcinoma of the large intestine listed in the Mitelman Database of Chromosome Aberrations in Cancer. The types of abnormalities observed in the cell lines reflected those seen in primary tumors: there were no recurrent translocations in either tumors or cell lines; isochromosomes were the most common recurrent abnormalities; and breakpoints occurred most frequently at the centromeric/pericentromeric and telomere regions. Of the genomic imbalances detected by array CGH, 87% correlated with chromosome aberrations observed in the SKY studies. The fact that chromosome abnormalities predominantly result in copy number changes rather than specific chromosome or gene fusions suggests that this may be the major mechanism leading to carcinogenesis in colorectal cancer. Published 2009 Wiley‐Liss, Inc.  相似文献   

10.
Conventional cytogenetic studies have shown that osteosarcomas (OSs) are often highly aneuploid, with a large number of both structural and numerical chromosomal alterations. To investigate the complexity of OS karyotypes in detail, we applied spectral karyotyping (SKY) to a series of 14 primary OS tumors and four established OS cell lines. A total of 531 rearrangements were identified by SKY, of which 300 breakpoints could be assigned to a specific chromosome band. There was an average of 38.5 breakpoints identified by SKY per primary tumor. Chromosome 20 was involved in a disproportionately high number of structural rearrangements, with 38 different aberrations being detected. Chromosomal rearrangements between chromosomes 20 and 8 were evident in four tumors. FISH analysis using a 20q13 subtelomeric probe identified frequent involvement of 20q in complex structural rearrangements of OS cell lines. Characterization of the structural aberrations of chromosomes 8 and 17 by use of SKY demonstrated frequent duplication or partial gains of chromosome bands 8q23-24 and 17p11-13. Other chromosomes frequently involved in structural alteration were chromosomes 1 (47 rearrangements) and 6 (38 rearrangements). Centromeric rearrangements often involving chromosomes 1, 6, 13, 14, 17, and 20 were present. Four of the 14 primary OS tumors were characterized by nonclonal changes that included both structural and numerical alterations. In summary, OS tumors have a very high frequency of structural and numerical alterations, compounded by gross changes in ploidy. This intrinsic karyotype instability leads to a diversity of rearrangements and the acquisition of composite chromosomal rearrangements, with the highest frequency of alteration leading to gain of 8q23-24 and 17p11-13 and rearrangement of 20q. These findings suggest that specific sequences mapping to these chromosomal regions will likely have a role in the development and progression of OS.  相似文献   

11.
Molecular cytogenetic studies were conducted on three multidrug-resistant cancer sublines which are highly resistant to the chemotherapeutic agent mitoxantrone, an anthracenedione. The three independently selected sublines were derived by exposure to mitoxantrone or Adriamycin and do not overexpress MDR1 or MRP. Two sublines, MCF-7 AdVp3000 and MCF-7 MX, showed an amplification peak at 4q21-q22, as demonstrated by comparative genomic hybridization (CGH), while the third, S1-M1-80, did not. FISH using a whole chromosome 4 paint demonstrated multiple rearrangements involving chromosome 4 in MCF-7 AdVp3000 and MCF-7 MX, while S1-M1-80 contained only a simple reciprocal translocation. The parental cell lines had no chromosome 4 rearrangements and no copy number gain or amplification of chromosome 4. Spectral karyotyping (SKY) analysis revealed a balanced translocation, t(4;17)(q21-q22;p13) in S1-M1-80 and multiple clonal translocations involving chromosome 4 in MCF-7 AdVp3000 and MCF-7 MX. A novel cDNA, designated MXR, which encodes an ABC half-transporter and is highly overexpressed in the three sublines, was localized to chromosome 4 by somatic cell hybrid analysis. Southern blot analysis demonstrated amplification of the MXR gene in MCF-7 AdVp3000 and MCF-7 MX, but not in S1-M1-80. FISH studies with a BAC probe for MXR localized the gene to 4q21-22 in the normal chromosome 4 and revealed in both MCF-7 AdVp3000 and MCF-7 MX amplification of MXR at one translocation juncture, shown by SKY to be t(4;5)(4qter-->4cen-->4q21-22::5q13-->5qter++ +) in MCF-7 AdVp3000 and t(6;4;6;3)(6pter-->6q15::4q21-q22::hsr::6q?::3q?27-->+ ++3qter) in MCF MX; neither of the breakpoints in the partner chromosomes showed amplification by CGH. The data are consistent with the hypothesis of a transporter, presumably that encoded by the MXR gene, mediating mitoxantrone resistance. The MXR gene encodes a half-transporter and the absence of cytogenetic evidence of coamplification of other regions suggests that a partner may not be overexpressed, and instead the MXR half-transporter homodimerizes to mediate drug transport. Genes Chromosomes Cancer 27:110-116, 2000. Published 2000 Wiley-Liss, Inc.  相似文献   

12.
We have previously characterized an experimental system in which the role of candidate metastasis-related genes can be screened and tested. Monoclonal cell lines M4A4 and NM2C5 originated from the MDA-MB-435 breast tumor cell line but have opposite metastatic capabilities in vivo. To investigate gross genetic changes present in this model, we performed a detailed molecular cytogenetic evaluation of the parental cell line, the M4A4 and NM2C5 cell lines, and related clones of metastatic phenotype. Using a combination of spectral karyotyping (SKY), G-banding, and fluorescence in situ hybridization (FISH), we were able to resolve the identity of all common marker chromosomes present in MDA-MB-435 cells, and to define several chromosomal changes, which were specific to each monoclonal cell line. Twenty identical structural and numerical chromosomal aberrations, including trisomies of chromosomes 2 and 5 as well as t(1;7), t(1;10), t(8;11), t(8;15), and t(20;21), were present in all cell lines. The majority of translocations were relatively simple non-reciprocal rearrangements, most frequently involving chromosomes 19, 1, 6, and 20. Chromosomal gains of 1, 7q, 8q, and 20q are common alterations in breast cancer. The metastatic M4A4 cell line contained numerous unique chromosomal aberrations, of which an abnormal banding region on chromosome 22, abr(22), was the best clone-specific identifier. Conversely, the t(12;15)(q22;q26.1) was found exclusively in the non-metastatic NM2C5 cell line. The integration of these karyotypic data with other cytogenetic and genomic databases will enhance our ability to identify genes that play critical roles in cancer development and progression.  相似文献   

13.
We characterized the chromosomal alterations in eight osteosarcoma cell lines (OST, HOS, U-2 OS, ZK-58, MG-63, SJSA-1, Saos-2, and MNNG) by comparative genomic hybridization (CGH); gains and losses of DNA sequences were defined as chromosomal regions with a fluorescence ratio, wherein all of the 95% confidence interval was above 1.25 and below 0.75, respectively. In four of 8 cell lines, multicolor karyotyping (MK) was added. CGH revealed the average number of aberrations per cell line was 20.8 (range: 10–31); the average numbers of gains and losses were 11.1 and 9.6, respectively. The frequent gains were identified on 1p21q24, 1q25q31, 7p21, 7q31, 8q23q24, and 14q21; frequent losses were at 18q21q22, 18q12, 19p, and 3p12p14. High-level gains were observed on 8q23q24, 5p, and 1p21p22. MK revealed the most common translocations in the four cell lines were t(8;9), t(1;3), t(3;5), t(1;13), t(2;6), t(3;17), t(1;15), t(10;20), and t(6;20). Chromosomes 1, 3, 8, 9, and 20 were most frequently involved in translocation events. The concordance rate of aberrations in CGH and translocations in MK was 76%. MK was useful to identify the chromosomal alterations and as a supplement to the CGH results in three of four chromosomes.  相似文献   

14.
We applied a combination of molecular cytogenetic methods, including comparative genomic hybridization (CGH), spectral karyotyping (SKY), and fluorescence in situ hybridization (FISH), to characterize the genetic aberrations in eight widely used cervical cancer (CC) cell lines. CGH identified the most frequent chromosomal losses including 2q, 3p, 4q, 6q, 8p, 9p, 10p, 13q, and 18q; gains including 3q, 5p, 5q, 8q, 9q, 11q, 14q, 16q, 17q, and 20q; and high-level chromosomal amplification at 3q21, 7p11, 8q23-q24, 10q21, 11q13, 16q23-q24, 20q11.2, and 20q13. Several recurrent structural chromosomal rearrangements, including der(5)t(5;8)(p13;q23) and i(5)(p10); deletions affecting chromosome bands 5p11, 5q11, and 11q23; and breakpoint clusters at 2q31, 3p10, 3q25, 5p13, 5q11, 7q11.2, 7q22, 8p11.2, 8q11.2, 10p11.2, 11p11.2, 14q10, 15q10, 18q21, and 22q11.2 were identified by SKY. We detected integration of HPV16 sequences by FISH on the derivative chromosomes involving bands 18p10 and 18p11 in cell line C-4I, 2p16, 5q21, 5q23, 6q, 8q24, 10, 11p11, 15q, and 18p11 in Ca Ski, and normal chromosome 17 at 17p13 in ME-180. FISH analysis was also used further to determine the copy number changes of PIKA3CA and MYC. This comprehensive cytogenetic characterization of eight CC cell lines enhances their utility in experimental studies aimed at gene discovery and functional analysis.  相似文献   

15.
Wilms tumor is the fourth most common malignancy of childhood; its pathogenesis, however, remains largely unknown. With advancements in cytogenetic techniques, such as array comparative genomic hybridization (aCGH), there is new hope for uncovering small chromosomal microdeletions or microduplications that may contribute to our understanding of Wilms tumor. We performed aCGH on 10 samples of Wilms tumor with normal conventional cytogenetic and chromosomal CGH findings. Array CGH revealed abnormalities in 3 of the 10 samples, including microdeletions (2q37.1, 7q31 approximately q32, and 11q22.3), microduplication (18q21.1), and gains and losses of larger chromosomal areas (1q and 7q gain and loss of 7p, 11q, 14q, and 16q). Fluorescence in situ hybridization (FISH) analysis confirmed the abnormalities and revealed the majority of them existed only in a proportion cells (> or =30% of cells). We also performed aCGH on three samples of Wilms tumor with previously identified translocations between chromosomes 1 and 16, to determine the breakpoints. The breakpoints were seen in the pericentromeric regions of both chromosomes. Array CGH is useful for identifying submicroscopic changes in Wilms tumor and is more sensitive for detecting clonal abnormalities than conventional methods.  相似文献   

16.
The chromosome 22q11.2 region is susceptible to rearrangements, mediated by low copy repeats (LCR22s). Deletions and duplications are mediated by homologous recombination events between LCR22s. The recurrent balanced constitutional translocation t(11;22)(q23;q11) breakpoint occurs in an LCR22 and is mediated by double strand breaks in AT-rich palindromes on both chromosomes 11 and 22. Recently, two cases of a t(17;22)(q11;q11) were reported, mediated by a similar mechanism (21). Except for these constitutional translocations, the molecular basis for non-recurrent, reciprocal 22q11.2 translocations is not known. To determine whether there are specific mechanisms that could mediate translocations, we analyzed cell lines derived from 14 different individuals by genotyping and FISH mapping. Somatic cell hybrid analysis was carried out for four cell lines. In five cell lines, the translocation breakpoints occurred in the same LCR22 as for the t(11;22) translocation, suggesting that similar molecular mechanisms are responsible. An additional three occurred in other LCR22s, and six were in non-LCR22 regions, mostly in the proximal half of the 22q11.2 region. The translocation breakpoints on the partner chromosomes were all located in the telomeric bands, proximal to the most telomeric unique sequence probe, in eight cell lines and distal to those loci in six. Therefore, several of the breakpoints were found to occur in the vicinity of highly dynamic regions of the genome, 22q11.2 and telomeric bands. We hypothesize that these regions are more susceptible to breakage and repair, resulting in translocations.  相似文献   

17.
In many B-cell malignancies, 14q32.3 chromosomal rearrangements involving the immunoglobulin heavy chain (IgH) locus have been shown to be pathognomonic for the disease. Although in myeloma heterogeneous and complex karyotypes are found, 14q32.3 translocations are prominent. However, owing to the telomeric position of the IgH locus, 14q32.3 translocations may be easily missed. We established fluorescence in situ hybridization (FISH) assays on chromosomes and DNA fibers to determine both the occurrence of 14q32.3 rearrangements in myeloma cell lines and the precise localization of the breakpoints in the IgH locus. Our results show that 14q32.3 chromosomal rearrangements are present in almost every myeloma cell line analyzed (17 of 19, 89%). Breakpoint analysis of the lines harboring one or more 14q32.3 rearrangements with the use of fiber-FISH revealed the involvement of switch regions in the IgH locus in 11 of 17 cell lines. Remarkably, pseudogamma genes without switch regions were involved in 3 of 17 cell lines, all derived from IgA myelomas. Three of 17 cell lines contained breakpoints outside a switch or immunoglobulin heavy chain constant region. The almost ubiquitous presence of 14q32.3 rearrangements suggests an obligatory role in the development of myeloma. The high incidence of breakpoints involving switch regions indicates an oncogenic event in a late stage of B-cell differentiation.  相似文献   

18.
In view of the certain anatomic site-dependent frequency of chromosomal translocations involved in extranodal marginal zone B cell lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) pathogenesis, 17 salivary gland MALT lymphoma cases were analyzed for MALT1 and FOXP1 translocations. B cell CLL/lymphoma 10 (BCL10) and forkhead box PA (FOXP1) protein expression were studied by immunohistochemistry and translocations identified using fluorescence in situ hybridization (FISH)-specific probes FOXP1, t(11;18)(q21;q21)/API2-MALT1 and t(14;18)(q32;q21)/IgH-MALT1. None of the 11 analyzed cases showed FOXP1 rearrangement or amplification. The t(11;18) was present in five of 13 cases and the t(14;18) in three of 13 cases. MALT1 translocations were mostly mutually exclusive except in a single case. FOXP1 protein expression showed differences in the proportion of tumor cells with nuclear expression but not in their intensity, with the exception of one case where very intense nuclear staining was noted. BCL10 nuclear expression was present in four of 17 cases, two of which lacked t(11;18). Our results suggest that MALT1-specific translocations and FOXP1 rearrangements are not commonly involved in pathogenesis. A case with strong FOXP1 protein expression indicates the possibility that the upregulation of FOXP1 expression is significant in a small subset of salivary gland MALT lymphomas. Also a single case in which both MALT1 translocations were present indicates that these are not always mutually exclusive.  相似文献   

19.
20.
Using array comparative genome hybridisation (CGH) 41 de novo reciprocal translocations and 18 de novo complex chromosome rearrangements (CCRs) were screened. All cases had been interpreted as "balanced" by conventional cytogenetics. In all, 27 cases of reciprocal translocations were detected in patients with an abnormal phenotype, and after array CGH analysis, 11 were found to be unbalanced. Thus 40% (11 of 27) of patients with a "chromosomal phenotype" and an apparently balanced translocation were in fact unbalanced, and 18% (5 of 27) of the reciprocal translocations were instead complex rearrangements with >3 breakpoints. Fourteen fetuses with de novo, apparently balanced translocations, all but two with normal ultrasound findings, were also analysed and all were found to be normal using array CGH. Thirteen CCRs were detected in patients with abnormal phenotypes, two in women who had experienced repeated spontaneous abortions and three in fetuses. Sixteen patients were found to have unbalanced mutations, with up to 4 deletions. These results suggest that genome-wide array CGH may be advisable in all carriers of "balanced" CCRs. The parental origin of the deletions was investigated in 5 reciprocal translocations and 11 CCRs; all were found to be paternal. Using customized platforms in seven cases of CCRs, the deletion breakpoints were narrowed down to regions of a few hundred base pairs in length. No susceptibility motifs were associated with the imbalances. These results show that the phenotypic abnormalities of apparently balanced de novo CCRs are mainly due to cryptic deletions and that spermatogenesis is more prone to generate multiple chaotic chromosome imbalances and reciprocal translocations than oogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号