首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxymatrine (OM) is an alkaloid extracted from the Chinese herb Sophora flavescens Ait. with a variety of pharmacological activities. The aim of this study was to investigate the preventive effects of OM on bleomycin (BLM)-induced pulmonary fibrosis (PF) and to further explore the underlying mechanisms. C57BL/6 mice were randomly assigned to five groups: the saline sham group; the BLM group, in which mice were endotracheally instilled with BLM (3.0?mg/kg); and the BLM plus OM groups, in which OM was given to mice daily (10, 20 or 40?mg/kg) one day after BLM instillation for 21?days. The bronchoalveolar lavage fluid (BALF) and lung tissues were collected at 15 and 22?days post BLM administration, respectively. Lung tissues were stained with hematoxylin and eosin (H&E) for histological evaluation. Levels of tumor necrosis factor (TNF)-α, interleukin-6 (IL-6) and nitric oxide (NO) in mouse BALF were measured, as well as myeloperoxidase (MPO) activity and malondialdehyde (MDA) content in lung homogenates. The inducible nitric oxide synthase (iNOS) expression in the lung tissues was determined by immunohistochemical staining, quantitative real-time PCR and western blot analysis. Moreover, the expression of transforming growth factor (TGF)-β1, Smad2, Smad3, p-Smad2 and p-Smad3 were also detected. We found that OM improved BLM-induced lung pathological changes, inhibited MPO activity and reduced MDA levels in a dose-dependent manner. OM also dose-dependently inhibited the release of TNF-α and IL-6, and decreased the expression of iNOS in lung tissues and thus prevented NO release in response to BLM challenge. In addition, OM decreased the expression of TGF-β1, p-Smad2 and p-Smad3, which are all important members of the TGF-β/Smad signaling pathway. Our study provides evidence that OM significantly ameliorated BLM-induced PF in mice via the inhibition of iNOS expression and the TGF-β/Smad pathway.  相似文献   

2.
3.
7,8-Dihydroxyflavone (7,8-DHF), a member of the flavonoid family, has received considerable attention as a selective tyrosine kinase receptor B agonist. Several studies have indicated that 7,8-DHF has neurotrophic and antioxidant activities. However, little is known about the cellular and molecular mechanisms underlying the anti-inflammatory activity of 7,8-DHF. Therefore, we investigated whether 7,8-DHF affects the expression of inflammatory mediators in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Our results indicated that 7,8-DHF significantly attenuated secretion of LPS-induced inflammatory mediators nitric oxide (NO), prostaglandin E? (PGE?) and interleukin-1β (IL-1β) in RAW264.7 cells. Additionally, LPS-induced expression of inducible NO synthase (iNOS), cyclooxygenase (COX)-2 and IL-1β was decreased by pre-treatment with 7,8-DHF. Our results also showed that 7,8-DHF reduces LPS-induced nuclear factor-κB (NF-κB) activity via the suppression of the nuclear translocation of NF-κB p65 and the degradation of inhibitor κB (lκB). In addition, 7,8-DHF inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) such as extracellular-signal-related kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). These results suggest that the anti-inflammatory property of 7,8-DHF is related to the downregulation of iNOS, COX-2 and IL-1β, due to NF-κB inhibition as well as to the negative regulation of MAPK activation in RAW264.7 cells. Thus, 7,8-DHF may be a novel therapeutic agent for the prevention of various inflammatory diseases.  相似文献   

4.
Excessive activation of macrophages is implicated in various inflammation resulted injuries. Saponins from Panax japonicus (SPJ) have been shown to possess anti-inflammatory activities. However, whether Chikusetsusaponin V (CsV), the most abundant component of SPJ, can exert anti-inflammatory activities is unknown. The present study was aimed to investigate the anti-inflammatory effects of CsV in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells and the underlying mechanisms. Our data showed that CsV dose-dependently inhibited NO, iNOS, TNF-α and IL-1β expressions in LPS-stimulated RAW264.7 cells. Increased protein levels of nuclear NF-κB and elevated phosphorylation levels of ERK and JNK in LPS-stimulated RAW 264.7 cells were also found downregulated by CsV treatment. Furthermore, the increase of CD14 and TLR4 mRNA expression due to LPS stimulation were significantly reversed by CsV treatment. These results suggested that CsV attenuated LPS-induced inflammatory responses partly via TLR4/CD14-mediated NF-κB and MAPK pathways.  相似文献   

5.
Dysfunction of the retinal pigment epithelium (RPE) resulting from chronic inflammation is implicated in the pathogenesis of age-related macular degeneration (AMD). It has been reported that tumor necrosis factor-α (TNF-α) could induce intercellular adhesion molecule-1 (ICAM-1) expression in RPE cells. FLZ, a novel synthetic squamosamide derivative from a Chinese herb, Annona glabra, has displayed significant anti-inflammatory activity. However, the effects of FLZ on TNF-α-induced ICAM-1 expression in RPE cells remain unknown. Therefore, in the present study, we evaluated the effects of FLZ on TNF-α-induced ICAM-1 expression in RPE cells. We found that FLZ prevented TNF-α-induced ICAM-1 expression and the ability of monocytes to adhere to ARPE-19 cells induced by TNF-α. Furthermore, FLZ inhibited TNF-α-induced NF-κB p65 expression, as well as phosphorylation of IκBα in ARPE-19 cells. Taken together, these results suggest that FLZ inhibited TNF-α-induced ICAM-1 expression through blocking NF-κB signaling pathway in ARPE-19 cells. Thus, FLZ could be used for designing novel therapeutic agents against AMD.  相似文献   

6.
7.
8.
Abstract

Since E-selectin-mediated adhesion of leukocytes or tumor cells to the vascular endothelium is a key early event in the initiation of inflammatory response and cancer metastasis, E-selectin inhibition is thought to be a good target for therapeutic intervention. Several flavones have been shown to have anti-inflammatory and anticancer properties. In the present study, we investigated the effects of plant flavones on expression of E-selectin in human umbilical vein endothelial cells. Among 11 flavones, acacetin strongly inhibited TNF-α-induced E-selectin expression in HUVECs. Acacetin suppressed the TNF-α-induced phosphorylation of p38 but did not inhibit TNF-α-induced phosphorylations of JNK and ERK. Acacetin also inhibited the activation of NF-κB by stimulation with TNF-α. Furthermore, adhesion of monocytes to TNF-α-treated endothelial cells was inhibited by cotreatment with acacetin. These results suggest that acacetin inhibits the expression of E-selectin by regulation of the p38 MAPK signaling pathway and activation of NF-κB.  相似文献   

9.
10.
This study sought to explore the mechanism of anti-inflammatory effect of triphala in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and in adjuvant-induced arthritic rats. In stimulated RAW 264.7 cells, triphala (100–300 μg/ml) significantly suppressed production of inflammatory mediators (e.g. TNFα, IL-1β, IL-6, MCP-1, VEGF, NO, PGE2), intracellular free radicals and release of lysosomal enzymes (e.g. acid phosphatase, β-galactosidase, N-acetyl glucosamindase and cathepsin D) in a dose-related manner. With triphala, mRNA levels of genes for pro-inflammatory TNFα, IL-1β, IL-6 and MCP-1, inflammatory iNOS and COX-2 enzymes and NF-κBp65 were down-regulated in the stimulated cells; in contrast, there was up-regulation of heme oxygenase-1 (HO-1) expression. Western blot analyses revealed that triphala suppressed the protein expression of NF-κB p65 and p-NF-κB p65 in the stimulated cells, which subsequently reduced over-expression of TNFα, IL-17, iNOS and COX-2 in a manner similar to that observed with BAY 11-7082, an IκB kinase inhibitor. Immunofluorescence analysis revealed inhibition of p-NF-κB p65 nuclear translocation and COX-2 protein expression caused by triphala. Consistent with these findings, the animal studies presented confirmed that triphala exhibited anti-inflammatory effects in a rat adjuvant-induced arthritis model by reducing of inflammatory mediator (e.g. IL-17, COX-2 and RANKL) expression via inhibition of NF-κB activation. Taken together, the results here demonstrated that triphala has potential anti-inflammatory applications that could be used for the treatment of inflammatory disorders, including rheumatoid arthritis.  相似文献   

11.

Objective  

Indirubin-3-monoxime (I3M), an indirubin analogue that shows favorable inhibitory activity targeting cyclin-dependent kinase and glycogen synthase kinase, exhibits various biological properties, including chemopreventive, antiangiogenic, and neuropreventive activities. In the present study, we investigated the ability of I3M to regulate inflammatory reactions in macrophages.  相似文献   

12.
Patrinia scabiosaefolia (PS) has been used for curing various types of inflammatory-related disorders. However, the precise mechanism of the anti-inflammatory activity of PS remains unclear. Here, we investigated the anti-inflammatory effects of several fractions isolated from the PS in RAW 264.7 macrophages. The results indicated that the ethyl acetate fraction of PS (EAPS) concentration highly suppressed lipopolysaccharide (LPS)-induced nitric oxide (NO) and IL-6 productions without a cytotoxic effect on RAW 264.7 cells. EAPS inhibited the expressions of LPS-induced iNOS and COX-2 protein and their mRNA in a dose-dependent manner. Particularly, EAPS suppressed the level of nuclear factor-κB (NF-κB) activity, which was linked with the suppression of LPS-induced phosphorylation of p65 at serine 276 and p65 translocation into nuclei, but not MAPK signaling. In addition, treatment with EAPS inhibited the production of TNF-α in LPS-injected mice and suppressed the production of IL-6 and TNF-α in LPS-stimulated splenocytes from BALB/c mice. Therefore, we demonstrate here that Patrinia scabiosaefolia potentially inhibits the biomarkers related to inflammation through the blocking of NF-κB p65 activation, and it may be a potential therapeutic candidate for the treatment of inflammatory diseases.  相似文献   

13.
Patrinia scabiosaefolia (PS) has been used for curing various types of inflammatory-related disorders. However, the precise mechanism of the anti-inflammatory activity of PS remains unclear. Here, we investigated the anti-inflammatory effects of several fractions isolated from the PS in RAW 264.7 macrophages. The results indicated that the ethyl acetate fraction of PS (EAPS) concentration highly suppressed lipopolysaccharide (LPS)-induced nitric oxide (NO) and IL-6 productions without a cytotoxic effect on RAW 264.7 cells. EAPS inhibited the expressions of LPS-induced iNOS and COX-2 protein and their mRNA in a dose-dependent manner. Particularly, EAPS suppressed the level of nuclear factor-κB (NF-κB) activity, which was linked with the suppression of LPS-induced phosphorylation of p65 at serine 276 and p65 translocation into nuclei, but not MAPK signaling. In addition, treatment with EAPS inhibited the production of TNF-α in LPS-injected mice and suppressed the production of IL-6 and TNF-α in LPS-stimulated splenocytes from BALB/c mice. Therefore, we demonstrate here that Patrinia scabiosaefolia potentially inhibits the biomarkers related to inflammation through the blocking of NF-κB p65 activation, and it may be a potential therapeutic candidate for the treatment of inflammatory diseases.  相似文献   

14.
Punicalagin (2,3,hexahydroxydiphenoyl-gallagyl-d-glucose and referred to as PUN) is a bioactive ellagitannin isolated from pomegranate, which is widely used for the treatment of inflammatory bowel disease (IBD), diarrhea, and ulcers in Chinese traditional medicine. In this study, we detected the anti-inflammation potentials of PUN in lipopolysaccharide (LPS)-induced macrophages and tried to uncover the underlying mechanism. Results demonstrated that PUN (25, 50, or 100 μM) treatment could significantly decrease the LPS-induced production of nitric oxide), prostaglandin E2 (PGE2), interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in RAW264.7 cells. Molecular research showed that PUN inhibited the activation of upstream mediator nuclear factor-κB by suppressing the phosphorylation of IκBα and p65. Results also indicated that PUN could suppress the phosphorylation of mitogen-activated protein kinase including p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase. In conclusion, we observed that PUN could inhibit LPS-induced inflammation, and it may be a potential choice for the treatment of inflammation diseases.  相似文献   

15.
The present study was designed to examine and compare the effects of three suppressors on the cytokine response in tandem with examining: the synthesis of inducible forms of heat shock proteins; HSP72 and HSP90α; activities of NF-κB and SAPK/JNK signaling pathways; and TLR4 expression. Pre-treatment with inhibitors offers promise as protective means to lower the activity of these cascades, thereby circumventing the formation of excessive amounts of pro-inflammatory molecules. Three inhibitors of TLR4, SAPK/JNK, and NF-κB signaling, namely CLI-095, SP600125, and IKK Inhibitor XII, respectively, were added to cultured RAW 264.7 macrophages before the Escherichia coli lipopolysaccharide (LPS) application. Treatments of RAW 264.7 cells with each of the inhibitors resulted in a reduced response to LPS as was visualized by a decrease of TNF-α, IL-1, and IFN-γ production. In addition, inhibitors of the NF-κB and SAPK/JNK signaling reduced IL-6 production in LPS-treated cells, whereas the IKK inhibitor XII also decreased IL-10 production. Further, the NO production in LPS-stimulated macrophages was significantly reduced following application of CLI-095 or IKK inhibitor XII. The results also showed that the inhibitors suppressed TLR4 production and decreased phosphorylation of NF-κB and SAPK/JNK proteins, thereby preventing the activation NF-κB and SAPK/JNK signaling pathways in LPS-activated cells. In addition, the production of inducible heat shock proteins, HSP72 and HSP90-α, was reduced in LPS-stimulated RAW 264.7 cells pre-treated with inhibitors. These results suggest that inhibitors CLI-095, SP600125, and IKK inhibitor XII demonstrate potential effectiveness in the reduction of the inflammatory response by mechanisms involving both the cellular defense system and cellular signaling. In conclusion, suppressor of NF-κB cascade, IKK inhibitor XII, seems to be the most effective anti-toxic agent among studied inhibitors.  相似文献   

16.
《Immunobiology》2022,227(3):152208
ML365 is a selective inhibitor of the twik-related acid-sensitive potassium channel 1/two-pore domain channel subfamily k member 3 two-pore domain potassium channel. There are no functional studies of the relationship between ML365 and inhibition of inflammation. In this study, we evaluated the anti-inflammatory effect of ML365 on lipopolysaccharide (LPS)-induced inflammation and elucidated the possible mechanism. ML365 showed no cytotoxicity and did not induce apoptosis on RAW264.7 cells and inhibited nitric oxide production. ML365 suppressed the release of tumor necrosis factor-alpha, interleukin (IL)-6 and IL-1β measured using enzyme-linked immunosorbent assay and quantitative polymerase chain reaction assays. LPS-induced activation and co-localization of NF-κB was inhibited by ML365 pre-treatment. ML365 inhibited the protein expression of Erk, p38 and Jnk. In vivo, ML365 appeared to prevent pathological damages in the LPS-induced endotoxin shock model. These findings suggest that ML365 inhibits LPS-induced inflammatory responses by regulating the NF-κB signaling pathway.  相似文献   

17.
Yang  Lawei  Wang  Yahong  Pan  Zhanchun  Gao  Shenglan  Zou  Bao&#;an  Lin  Ziying  Feng  Dehui  HuangFu  Changmei  Liu  Gang 《Inflammation research》2018,67(11):951-964
Objective

Tetraspanin family plays an important role in the pathogenesis of cancer, but its role in lung fibrosis is unknown. To determine whether tetraspanin 1 (TSPAN1), a member of the family, may be involved in the pathogenesis of pulmonary fibrosis.

Methods

TNFα -stimulated human alveolar epithelial (A549) and alveolar epithelial type II cell (AT2) were treated in vitro. Murine pulmonary fibrosis model was generated by injection of bleomycin (BLM). The expression of TSPAN1 was examined in vivo using the bleomycin-induced lung fibrosis model and tissue sample of IPF patients. Then we transfected the cells with TSPAN1 siRNA or plasmid and detected the expression changes of related proteins and cell apoptosis.

Results

In our study, we found that TSPAN1 was markedly down-regulated in lung tissue of patients with idiopathic pulmonary fibrosis (IPF) and in bleomycin-induced pulmonary fibrosis in mice. We also found that TSPAN1 was significantly down-regulated in A549 and primary (AT2) cells following exposure to TNFα. Meanwhile, TSPAN1 inhibited p-IκBα, which attenuated nuclear NF-κB translocation and activation and inhibited apoptosis. We demonstrated that TSPAN1 reduced Bax translocation and caspase-3 activation, inhibited the apoptosis by regulating the NF-κB pathway in response to TNFα.

Conclusions

We conclude that TSPAN1 mediated apoptosis resistance of alveolar epithelial cells by regulating the NF-κB pathway. TSPAN1 may be a potential therapeutic target for pulmonary fibrosis or acute lung injury.

  相似文献   

18.

Objective

Tetraspanin family plays an important role in the pathogenesis of cancer, but its role in lung fibrosis is unknown. To determine whether tetraspanin 1 (TSPAN1), a member of the family, may be involved in the pathogenesis of pulmonary fibrosis.

Methods

TNFα -stimulated human alveolar epithelial (A549) and alveolar epithelial type II cell (AT2) were treated in vitro. Murine pulmonary fibrosis model was generated by injection of bleomycin (BLM). The expression of TSPAN1 was examined in vivo using the bleomycin-induced lung fibrosis model and tissue sample of IPF patients. Then we transfected the cells with TSPAN1 siRNA or plasmid and detected the expression changes of related proteins and cell apoptosis.

Results

In our study, we found that TSPAN1 was markedly down-regulated in lung tissue of patients with idiopathic pulmonary fibrosis (IPF) and in bleomycin-induced pulmonary fibrosis in mice. We also found that TSPAN1 was significantly down-regulated in A549 and primary (AT2) cells following exposure to TNFα. Meanwhile, TSPAN1 inhibited p-IκBα, which attenuated nuclear NF-κB translocation and activation and inhibited apoptosis. We demonstrated that TSPAN1 reduced Bax translocation and caspase-3 activation, inhibited the apoptosis by regulating the NF-κB pathway in response to TNFα.

Conclusions

We conclude that TSPAN1 mediated apoptosis resistance of alveolar epithelial cells by regulating the NF-κB pathway. TSPAN1 may be a potential therapeutic target for pulmonary fibrosis or acute lung injury.
  相似文献   

19.
Hesperetin (Hesp), a common flavanone glycoside, was extracted from the fruit peel of Citrus aurantium L. (Rutaceae). Hesp has been shown to possess various biological properties, including antioxidant, neuroprotective, and anti-inflammatory properties. In this study, we investigated the protective effect of Hesp on inflammatory responses in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Our results indicated that Hesp treatment dramatically suppressed secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β; reduced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) gene expression; inhibited NF-κB (p65) phosphorylation; and blocked IκBα phosphorylation and degradation. Further studies revealed Hesp markedly enhanced the heme oxygenase (HO)-1 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression, which were involved with inducing Nrf2 nuclear translocation and decreasing Keap1 protein expression. Together, these results indicated that the anti-inflammatory effect of Hesp may be associated with NF-κB inhibition and Nrf2/HO-1 activation.  相似文献   

20.
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease and the pathogenesis remains unclear. Previous studies suggested that fibroblast-like synoviocytes (FLSs) play an important role in RA pathogenesis, including the injury of cartilage, the hyperplasia of the synovium and the release of inflammatory cytokines. We used complete Freund’s adjuvant (CFA) induced rats as animal models for studying the RA pathogenesis. NLRC5 as the largest member of the NLR family has been reported to play a critical role in regulating immune responses. Increasing evidence suggests that NLRC5 is an pivotal negative modulator of inflammatory pathways. We investigated the mechanisms and signaling pathways of NLRC5 in RA progression. Significantly increased expression of NLRC5 was found in AA rats synovial tissues and cells. And high expression of inflammatory cytokine and cell proliferation of FLSs accompanied with NLRC5 overexpression, but inhibited in cells with NLRC5 silencing treatment. Interestingly, we found that overexpression of NLRC5 also coordinated the activation of NF-κB signaling pathway. These results suggested that NLRC5 promotes RA progression via the NF-κB signaling pathway potentially.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号