首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amyloid precursor protein (APP) is a ubiquitously expressed membrane spanning glycoprotein which is endoproteolytically processed to Aβ, a 39–43 amino acid peptide that is the main component of senile plaques in Alzheimer Disease (AD). APP is a member of a highly conserved gene family, including Amyloid Precursor-Like Proteins (APLPs) APLP1 and APLP2. We now characterize APLP1 and APLP2 mRNA and protein expression in AD and aged control brains. Using in situ hybridization in hippocampal tissue from control and AD brain, we show that APLP1 and APLP2 mRNA are expressed primarily in the granule cells of the dentate gyrus, in areas CA1–CA3, and subiculum. Immunohistochemistry reveals staining for both APLP1 and APLP2 in neurons and blood vessels in AD and control cases. In addition, in AD brain, large dystrophic neurites in a subset of senile plaques are conspicuously labeled with APLP1 and APLP2 antibodies. The aged control brains have significantly fewer immunoreactive plaques and dystrophic neurites. The regional, cellular, and subcellular distribution of APLP1 and APLP2 overlap with each other and with APP. These observations support the hypothesis that the members of this family of proteins may perform similar functions.  相似文献   

2.
Resolution process of cerebroparenchymal amyloid beta-protein (Abeta) deposition has become of increasing interest in the light of recent advance in the Abeta-vaccination therapy for Alzheimer's disease (AD). However, the neuropathological features of degraded and disappearing senile plaque remain poorly characterized, especially in the natural course of the disease. To clarify the natural removal processes of Abeta burden in the brain with AD, we devised a triple-step staining method: Bodian for dystrophic neurites, anti-glial fibrillary acidic protein for astrocytes, and anti-Abeta. We thus examined 24 autopsied AD brains. A novel form of senile plaques, termed 'remnant plaques', was identified. Remnant plaques were characterized by mesh-like astroglial fibrils within the entire plaque part, Abeta deposit debris exhibiting weak Abeta immunoreactivity, and only a few slender dystrophic neurites. In remnant plaques, amyloid burden was apparently decreased. The density of remnant plaques increased significantly with disease duration. Dual-labelling immunohistochemistry revealed many Abeta-immunoreactive granules in astrocytes and a modest number in microglia, both of which accumulated in senile plaques. We consider amyloid deposits of diffuse and neuritic plaques to be shredded by astrocytic processes from the marginal zone of plaques, and to gradually disintegrate into smaller compartments. Cerebroparenchymal Abeta deposits undergo degradation. After a long-standing resolution process, diffuse and neuritic plaques may finally proceed to remnant plaques. Astrocytes are actively engaged in the natural Abeta clearance mechanism in advanced stage AD brains, which may provide clues for developing new therapeutic strategies for AD.  相似文献   

3.
4.
Calpains are calcium-dependent neutral cysteine proteinases. We utilized a specific anti-calpain II antibody to examine immunohistochemically whether calpain II is associated with pathological changes in Alzheimer's disease (AD). Calpain II was mainly expressed in the neurons in control human brains. In AD brains, intense immunoreactivity was present in the dystrophic neurites of senile plaques. These results suggest that calpain II is involved in the pathogenesis of AD.  相似文献   

5.
One of the proteins belonging to the transmembrane 4 superfamily, T-cell acute lymphoblastic leukemia-associated antigen 1 (TALLA1), behaves like a potential tumor-associated antigen. Furthermore, its mRNA is expressed in normal brain. We examined here the histochemical localization of the protein and its mRNA in human brain tissues. Both nonneurological and Alzheimer disease (AD) brains showed astroglial staining for the TALLA1 molecule. In AD brain tissues, globular dystrophic neurites were positively stained. In damaged white matter showing leukoaraiosis by CT scan there was varicose axonal staining with the anti-TALLA1 antibody. In situ hybridization histochemistry using a RNA probe demonstrated neuronal expression of the mRNA. These results suggest that TALLA1, like amyloid precursor protein or chromogranin A, is produced in neurons and transported by axonal flow.  相似文献   

6.
This study examined the possibility that in Alzheimer disease (AD) beta-amyloid precursor protein (betaAPP) mRNA is delivered to senile plaques (SPs) via dendritic processes. BetaAPP mRNA was detected in SPs by in situ hybridization, using a 1.4-kb cRNA in which both [35S]-UTP and [35S]-CTP were incorporated together. The betaAPP mRNA was compared with that of furin, a proteolytic enzyme putatively involved in betaAPP processing, and its orthologue proprotein convertase PCI served as a control. Human presenile AD cases with mostly immature SPs and AD cases generally with mature SPs were analyzed. To decrypt SPs after hybridization, brain sections were stained with thioflavin S. To establish relationships between the density of dystrophic fibers, the degree of plaque maturation, and the concentration of mRNA in SPs, the plaque maturity markers Abeta(1-42) and Abeta(1-40) peptides were co-localized with neurofilament protein 200 and compared with microtubule-associated protein 2 (MAP 2). The results suggest that immature, Abeta(1-42)- and dystrophic dendrite-containing SPs (but not mature SPs containing Abeta(1-40) and missing dystrophic dendrites) are capable of concentrating specific mRNAs. Dystrophic dendrites may thus serve as a route for the transport of specific mRNAs from the cell bodies to SPs.  相似文献   

7.
Postmortem analyses of senile plaques reveal numerous dystrophic processes in their vicinity. We used in vivo multiphoton microscopy of a transgenic model of Alzheimer disease (AD) to simultaneously image senile plaques and nearby neuronal processes. Plaques were labeled by immunofluorescent staining or thioflavine-S and neuronal processes were labeled with a fluorescent dextran conjugate. Imaging of 3-dimensional volumes in the vicinity of plaques revealed subtle changes in neurite geometry in or near diffuse plaques. By contrast, disruptions in neurite morphology, including dystrophic neurites immediately surrounding plaques as well as major alterations in neurite trajectories, were seen in association with thioflavine-S-positive plaques. Nearly half of all labeled processes that came within 50 microm of a thioflavine-S-positive plaque were altered, suggesting a fairly large "halo" of neuropil alterations that extend beyond the discrete border of a thioflavine-S plaque. These results support the hypothesis that compact thioflavine-S-positive plaques disrupt the neuropil in AD.  相似文献   

8.
Double-labeling immunofluorescence and confocal microscopy have been used to learn about the local relationship between amyloid, mitochondria, and cytochrome c oxidase (COX) in dystrophic neurites of senile plaques in the frontal cortex in Alzheimer's disease (AD). Dystrophic neurites surrounding amyloid plaques are filled with mitochondrial porin-immunoreactive structures. In contrast with tangle-bearing and non-tangle-bearing neurons, which express mitochondrial porin and COX subunit 4, porin-immunoreactive neurites of senile plaques lack COX subunit 4. Parallel western blot studies in mitochondria-enriched fractions of the frontal cortex in the same cases disclosed reduced expression levels of COX, but not of prohibitin, in AD stages VB/C of Braak. Co-localization of porin and lysosomal associated protein 1, as revealed by double-labeling immunofluorescence and confocal microscopy, suggests that mitochondria may be engulfed by lysosomes in dystrophic neurites. These findings support a local link between amyloid deposition, abnormal mitochondria and impaired respiratory chain function (resulting from decrease of COX expression) in dystrophic neurites of senile plaques in AD.  相似文献   

9.
NDRG2: a novel Alzheimer's disease associated protein   总被引:6,自引:0,他引:6  
Our understanding of the genes involved in Alzheimer's disease (AD) is incomplete. Using subtractive cloning technology, we discovered that the alpha/beta-hydrolase fold protein gene NDRG2 (NDRG family member 2) is upregulated at both the RNA and protein levels in AD brains. Expression of NDRG2 in affected brains was revealed in (1) cortical pyramidal neurons, (2) senile plaques and (3) cellular processes of dystrophic neurons. Overexpression of two splice variants encoding a long and short NDRG2 isoform in hippocampal pyramidal neurons of transgenic mice resulted in localization of both isoforms to dendritic processes. Taken together, our findings suggest that NDRG2 upregulation is associated with disease pathogenesis in the human brain and provide new insight into the molecular changes that occur in AD.  相似文献   

10.
Presenilin 1 (PS1) is a causative gene for chromosome 14-linked familial Alzheimer's disease. The gene product is known to be cleaved into N-terminal fragments (PS1-N) and C-terminal fragments (PS1-C). To understand the pathophysiological role of PS1, we conducted immunohistochemical studies using antibodies specific for PS1-N and PS1-C in sporadic Alzheimer's disease (AD). Both antibodies showed punctuate staining exclusively in neurons and their processes in both control and AD brains. PS1-N immunolabeling colocalized with neurofibrillary tangles (NFTs) in 36% of NFT-bearing neurons and with dystrophic neurites in 28% of senile plaques (SPs). PS1-C immunolabeling colocalized with dystrophic neurites in 70% of NFT-bearing SPs and with intraneuronal NFTs in 32% of NFT-bearing neurons. Both antibodies did not detect PHF-tau-positive neuropil threads and Aβ amyloid fibrils. The colocalization was also found in 33–38% of NFT-bearing neurons in progressive supranuclear palsy. These results indicate that both PS1-N and PS1-C fragments are deposited in part of NFT-bearing neurons and dystrophic neurites in SPs; both are the pathologic hallmarks of AD. J. Neurosci. Res. 53:99–106, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
Hyperphosphorylation and accumulation of tau in neurons (and glial cells) is one the main pathologic hallmarks in Alzheimer's disease (AD) and other tauopathies, including Pick's disease (PiD), progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease and familial frontotemporal dementia and parkinsonism linked to chromosome 17 due to mutations in the tau gene (FTDP-17-tau). Hyperphosphorylation of tau is regulated by several kinases that phosphorylate specific sites of tau in vitro. GSK-3-immunoprecipitated sarcosyl-insoluble fractions in AD have the capacity to phosphorylate recombinant tau. In addition, GSK-3 phosphorylated at Ser9, that inactivates GSK-3, is found in the majority of neurons with neurofibrillary tangles and dystrophic neurites of senile plaques in AD, and in Pick bodies and other phospho-tau-containing neurons and glial cells in other tauopathies. Increased expression of active kinases, including stress-activated kinase, c-Jun N-terminal kinase (SAPK/JNK) and kinase p38 has been found in brain homogenates in all the tauopathies. Strong active SAPK/JNK and p38 immunoreactivity has been observed restricted to neurons and glial cells containing hyperphosphorylated tau, as well as in dystrophic neurites of senile plaques in AD. Moreover, SAPK/JNK- and p38-immunoprecipitated sub-cellular fractions enriched in abnormal hyperphosphorylated tau have the capacity to phosphorylate recombinant tau and c-Jun and ATF-2 which are specific substrates of SAPK/JNK and p38 in AD and PiD. Interestingly, increased expression of phosphorylated (active) SAPK/JNK and p38 and hyperphosphorylated tau containing neurites have been observed around betaA4 amyloid deposits in the brain of transgenic mice (Tg 2576) carrying the double APP Swedish mutation. These findings suggest that betaA4 amyloid has the capacity to trigger the activation of stress kinases which, in turn, phosphorylate tau in neurites surrounding amyloid deposits. Complementary findings have been reported from the autopsy of two AD patients who participated in an amyloid-beta immunization trial and died during the course of immunization-induced encephalitis. The neuropathological examination of the brain showed massive focal reduction of amyloid plaques but not of neurofibrillary degeneration. Activation of SAPK/JNK and p38 were reduced together with decreased tau hyperphosphorylation of aberrant neurites in association with decreased amyloid plaques in both Tg2576 mice and human brains. These findings support the amyloid cascade hypothesis of tau phosphorylation mediated by stress kinases in dystrophic neurites of senile plaques but not that of neurofibrillary tangles and neuropil threads in AD.  相似文献   

12.
Theories regarding the initiation and progression of Alzheimer disease (AD) often consider potential roles played by elevations of beta-amyloid precursor protein (betaAPP). Because it is the source of amyloid beta-peptide, betaAPP may simply contribute more pathogenic stimulus when elevated; some analyses have, however, reported a decline in betaAPP in AD. We found a progressive increase in neuronal betaAPP expression with increasing age in the brains of nondemented individuals, whereas in AD patient samples, betaAPP antigenicity decreased in neuronal somata in a manner that correlated with accumulation of mature amyloid beta-peptide plaques. In contrast, apolipoprotein E (ApoE) expression correlated with accumulation of plaques, and even greater amounts of ApoE were detected in plaques. Induction of betaAPP by glutamate in neuronal cell cultures was found to depend upon ApoE levels or activity. Thus, elevations in expression of ApoE and betaAPP by cellular stresses are likely normally linked in vivo, and uncoupling of this link, or other pathologic events in AD initiation, may leave neurons with diminished betaAPP expression, which might in turn reduce their resistance to stressors.  相似文献   

13.
The structural changes of Alzheimer's disease (AD) include a widespread alteration of neuronal cell processes in addition to senile plaques and neurofibrillary tangles. Since the antigenic characteristics of these abnormal neurites are similar to those of the abnormal neurites associated with the senile plaques, the question has been raised as to whether the widespread neuritic alteration is secondary to the deposition of amyloid. To answer this question, we examined brains from 2 subjects with a longer-lasting form of subacute sclerosing panencephalitis (SSPE) characterized by the presence of numerous neurofibrillary tangles but no senile plaques, 3 subjects with AD, and 2 age-matched controls. Light and electron immunocytochemical analyses revealed that abnormal neurites are present diffusely in SSPE cerebral cortex in the absence of amyloid deposits. These abnormal neurites were qualitatively identical to the widespread abnormal neurites of AD. The abnormal neurites, in contrast to the neurites of control brains, immunoreacted with antibodies to tau and ubiquitin. These distinctive antigenic features were due to the presence in these abnormal neurites of straight filaments, 14 to 16 nm in diameter, mixed with a few paired helical filaments. The spatial distribution of the widespread neuritic alteration correlated with that of neurofibrillary tangles in both conditions, but not with that of senile plaques in AD. The present findings demonstrate that a diffuse alteration of neurites similar to that present in AD takes place independently of the deposition of amyloid in SSPE, and they are consistent with the hypothesis that in AD, also, this alteration is not secondary to the deposition of amyloid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Immunocytochemical techniques were employed to examine the temporal ordering whereby amyloid β-protein (AβP) and neuronal elements collectively come together to form senile plaques in Alzheimer's disease (AD). Specifically, we addressed three questions: (1) whether AβP deposition precedes or follows neuritic changes; (2) whether paired helical filament (PHF) formation is an early or late event in the genesis of the dystrophic neurites which participate in plaque formation; and (3) whether the density of senile plaques displays any relationship with the prevalence of PHF or Alz-50 containing neurons. To address these questions we studied the amygdala from a group of patients with AD, a group of nondemented age-matched individuals exhibiting a sufficient number of senile plaques to be classified by neuropathological criteria as AD, and a group of age-matched controls without AD pathology. Amyloid-bearing plaques were demonstrated by AβP immunolabeling and thioflavine-S staining. Neuritic changes in the form of dystrophic neurites were observed with the aid of antibodies against PHF, Alz-50, as well as antibodies against several neuropeptides (i.e., substance P, somatostatin, and neurotensin) and the acetylcholine biosynthetic enzyme, choline acetyltransferase. By using a graded range of pathologic changes both within and across the patient population to provide us with a means of evaluating plaque deposition from its earliest to most advanced stages of development, we observed in patients and/or regions of the amygdala displaying a mild degree of pathologic change AβP deposition in the absence of any neuritic changes. With increasing density of AβP, however, we began to observe dystrophic neurites within plaques. In regions of relatively few plaques, the dystrophic neurites were immunolabeled only with antibodies against the various neurotransmitters and they lacked evidence of cytoskeletal pathology (i.e., Alz-50 or PHF). Only as the density of AβP increased further within a region, were dystrophic neurites observed that exhibited Alz-50 or PHF. In no instance did we observe a relationship between the density of AβP deposition and the density of Alz-50 or PHF-immunoreactive neurons. Collectively, our data suggest that the deposition of AβP is an early pathologic event in senile plaque formation. Thereafter, swollen neurites can be seen in the vicinity of AβP. This early neuritic response, which can first be visualized by immunolabeling for one or another transmitter substance, is followed by alterations in the cytoskeleton as recognized initially by antibodies to Alz-50 and subsequently by the presence of PHF. © 1993 Wiley-Liss, Inc.  相似文献   

15.
Paired helical filament (PHF)/tau immunoreactive dystrophic neurites are a common pathological feature in the brain of patients with Alzheimer's disease. Recent studies suggest that swollen neurofilament-immunoreactive neurites are also present in senile plaques. In the present study, we investigated whether PHF/tau-positive dystrophic neurites are located in all subtypes of plaques and whether swollen neurofilament-immunoreactive neurites are hyper-phosphorylated, using a battery of antibodies to PHF/tau, neurofilament, and β-amyloid protein. PHF/tau-positive dystrophic neurites were present in and around nearly all subtypes of plaques, including small amyloid deposits, diffuse plaques, and perivascular plaques in the hippocampal formation of Alzheimer brain. The earlier changes were detectable with AT8 antibody and later changes with PHF-1 antibody. Plaque-associated PHF/tau-positive dystrophic neurites were rare or absent in the hippocampal formation of normal aged brain. Swollen neurofilament-positive neurites appeared to be hyper-phosphorylated in Alzheimer's disease and to a lesser degree in aged control brains. Neurites that contained hyper-phosphorylated tau as well as neurofilament were strongly argentophilic because both populations of dystrophic neurites stained with silver stains. Swollen neurofilament-positive plaque-associated neurites were often present in the absence of PHF/tau-positive plaque-associated dystrophic neurites. These data suggest that PHF/tau-positive dystrophic neurites are a common component of all subtypes of plaques in Alzheimer brain and neurofilament protein in swollen neurites, like tau protein, is hyper-phosphorylated. Hyper-phosphorylated neurofilaments in plaque-associated neurites may represent one of the earliest cytoskeletal changes in vulnerable neurons in Alzheimer's disease and aged control brains.  相似文献   

16.
Activation of the amyloid beta-protein precursor, secretary pathway through alpha-secretase has been reported to increase the secretion of neuroprotective amyloid precursor protein and preclude the formation of amyloid beta-protein. Activation of protein kinase C has been shown to accelerate this secretory pathway. These results prompted us to focus on a potential links between protein kinase C and the amyloid beta-protein-related pathology of Alzheimer disease (AD). Although protein kinase C is reported to occur in senile plaques, its catalytic activity has not been investigated. As the phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS) has been used as a marker for activation of protein kinase C in vivo, we examined its phosphorylation in brain tissues obtained from seven AD patients and five non-demented subjects using an antibody that specifically recognized MARCKS phosphorylated by protein kinase C. Phosphorylation of MARCKS in cortical neurons in AD brains was weaker than that in control brains. Interestingly, however, phosphorylation of MARCKS was detected in microglia and dystrophic neurites within neuritic plaques, a mature form of amyloid beta-protein deposits. These results suggest that protein kinase C alteration is associated with AD pathology and that protein kinase C is activated in microglia and dystrophic neurites by amyloid beta-protein in AD brains.  相似文献   

17.
Neuritic pathology and dementia in Alzheimer's disease   总被引:16,自引:0,他引:16  
Previous studies of Alzheimer's disease (AD) have correlated the severity of dementia with either the number of senile plaques or neurofibrillary tangles. We used antibodies raised against amyloid beta/A4 protein of senile plaque cores and tau protein as well as thioflavine S and the Campbell-Switzer modification of the Hicks silver method to examine the hippocampal formation and five neocortical regions from 22 nondemented elderly control subjects and 34 demented patients with cerebral senile plaques and neurofibrillary tangles, without complicating disease processes. Ten control subjects (46%) had no beta/A4 protein deposition. Twelve control subjects (54%) had widespread beta/A4 protein deposition but no neocortical neuritic pathology. Of the 34 patients with AD-type changes, 27 (79%) had widespread senile plaques and neurofibrillary tangles, while 7 (21%) had neocortical senile plaques with few neurofibrillary tangles. All demented patients had widespread beta/A4 protein deposition and neocortical tau-immunoreactive, Hicks silver-positive dystrophic neurites. The neurites were found both free in the neuropil as well as surrounding senile plaques. Quantitative analysis showed that dystrophic neurites were significantly increased in patients with AD compared with control subjects and the number of dystrophic neurites and neurofibrillary tangles correlated with the clinical severity of dementia. Widespread cerebral beta/A4 protein deposition may be necessary but by itself is insufficient for the development of dementia in AD.  相似文献   

18.
Voltage-dependent anion channel (VDAC) is a mitochondrial porin also found in the neuronal membrane (pl-VDAC), where its function may be related to redox homeostasis and apoptosis. Murine models have evidenced pl-VDAC into caveolae in a complex with estrogen receptor alpha (mERα), which participates in neuroprotection against amyloid beta (Aβ), and whose integration into this hydrophobic domain remains unclear. Here, we have demonstrated in caveolae of human cortex and hippocampus the presence of pl-VDAC and mERα, in a complex with scaffolding caveolin-1 which likely provides mERα stability at the plasma membrane. In Alzheimer's disease (AD) brains, VDAC was accumulated in caveolae, and it was observed in dystrophic neurites of senile plaques, whereas ERα was expressed in astrocytes surrounding the plaques. Together with previous data in murine neurons demonstrating the participation of pl-VDAC in Aβ-induced neurotoxicity, these data suggest that the channel may be involved in membrane dysfunctioning observed in AD neuropathology.  相似文献   

19.
Abnormal neuritic sprouting is a prominent feature of Alzheimer's disease (AD), and the Thy-1 glycoprotein has a role in neurite growth in culture. We therefore investigated the distribution of Thy-1 immunoreactivity in the hippocampus of normal elderly patients and of AD patients. Normally, Thy-1 immunoreactivity, which was more prominent in CA1 than elsewhere in the hippocampus, was located mainly in irregular patches on the perikarya of pyramidal cells, their dendrites and axons. In AD, Thy-1-immunoreactive neurons were reduced in number in CA1, and there was diffuse staining of neurofibrillary tangle-bearing pyramidal cells, but neurofibrillary tangles themselves were not immunoreactive. There was also staining of disorganized arrays of dystrophic neurites, some with spiny processes and bizarre filopodial endings. Some Thy-1-immunoreactive dystrophic neurites entered senile plaques. The data confirm that there is extensive growth of abnormal neurites in AD and suggest that Thy-1 is involved in this process.  相似文献   

20.
In the brains of controls and individuals with Alzheimer's disease (AD), antisera to corticotropin-releasing factor (CRF) were used to immunostain neurons and their processes. In AD, we identified abnormal CRF-immunoreactive axons as well as neurites associated with deposits of amyloid in brain regions showing senile plaques. The number of immunoreactive fibers was decreased in individuals with AD. In contrast, CRF immunoreactivity was markedly increased in some neurons located within the paraventricular nucleus (PVN) of the hypothalamus. These findings support previous neurochemical studies indicating that certain CRF systems are affected in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号