首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inactivation of cytochrome P450 2E1 by benzyl isothiocyanate.   总被引:3,自引:0,他引:3  
The cytochrome P450 enzymes constitute a family of phase I enzymes that play a prominent role in the metabolism of a great variety of endogenous and xenobiotic compounds. In this study, the kinetics for the inactivation of cytochrome P450 2E1 by benzyl isothiocyanate (BITC) were elucidated. BITC is a naturally occurring compound found in cruciferous vegetables such as broccoli. BITC inhibited the 7-ethoxy-4-(trifluoromethyl)coumarin (7-EFC) O-deethylation activity of purified and reconstituted P450 2E1 in a time- and concentration-dependent manner. The concentration of inactivator needed for half-maximal inactivation (K(I)) was 13 microM, and the maximum rate of inactivation at saturation (k(inact)) was 0.09 min-1. The partition ratio for the inactivation of P450 2E1 by BITC was found to have an approximate value of 27. Inactivation of P450 2E1 by BITC was dependent on the presence of NADPH. Following incubation for 5 min with BITC, a 65% loss in enzymatic activity was observed, while approximately 74% of the spectrally detectable enzyme remained. 7-Ethoxycoumarin (7-EC), a substrate of P450 2E1, protected P450 2E1 from BITC inactivation, reducing the loss in 7-EFC O-deethylation activity from 50 to 18% when a 1:20 molar ratio of BITC:7-EC was used. Inactivation of P450 2E1 by BITC was irreversible, and no activity was regained after extensive washes to remove BITC. Addition of cytochrome b(5) to the reconstituted system did not affect the rate of inactivation. Reductase activity was unaffected by BITC. The results reported here indicate that BITC is a mechanism-based inactivator of cytochrome P450 2E1 and that the inactivation was primarily due to a modification of the apoprotein by BITC.  相似文献   

2.
7-Ethynylcoumarin was synthesized as a potential mechanism-based inhibitor, and it was found to be an effective inactivator of 7-ethoxy-4-(trifluoromethyl)coumarin (7EFC) O-deethylation catalyzed by purified, reconstituted P450 2B1. In contrast, 7-ethynylcoumarin demonstrated minimal inactivation of P450 2A6-mediated 7-hydroxycoumarin formation. The inactivation of P450 2B1 demonstrated pseudo-first-order kinetics and was NADPH- and inhibitor-dependent. The maximal rate constant for the inactivation of 2B1 was 0.39 min(-)(1) at 30 degrees C, and thus, the time required to inactivate 50% of the P450 2B1 that was present (t(1/2)) was 1.8 min. The estimated concentration which led to half-maximal inactivation (K(I)) was 25 microM. No protection from inactivation was seen in the presence of nucleophiles (glutathione and sodium cyanide), an iron chelator (deferroxamine), or superoxide dismutase and catalase. Addition of the substrate (7EFC) protected P450 2B1 from inactivation, in a concentration-dependent manner. The partition ratio for P450 2B1 was 25; i.e., the number of metabolic events was 25-fold higher than the number of inactivating events. Incubations of 7-ethynylcoumarin with P450 2B1 for 10 min resulted in an 80% loss in enzymatic activity, while 90% of the ability to form a reduced-CO complex remained. This activity loss was not recovered following dialysis, indicative of irreversible inactivation. Covalent attachment of the entire inhibitor and oxygen to apo-P450 2B1, in a 1:1 ratio, was shown via electrospray ion trap mass spectrometry. This method also verified the absence of modification to the heme or the cytochrome P450 reductase. Taken together, the characterization of the inhibition seen with P450 2B1 and 7-ethynylcoumarin was consistent with all of the criteria required to distinguish a mechanism-based inactivator. In addition, electrospray ion trap mass spectrometry has the potential to be applied to protein adducts above and beyond those associated with the mechanism-based inactivation of cytochrome P450s.  相似文献   

3.
Mechanism-based inactivators serve as probes of enzyme mechanism, function, and structure. Koshland's Reagent II (2-methoxy-5-nitrobenzyl bromide, KR-II) is a potential mechanism-based inactivator of enzymes that perform O-dealkylations. The major phenobarbital-inducible form of cytochrome P-450 in male rat liver microsomes, CYP2B1, is capable of catalyzing O-dealkylations. The interactions of KR-II with purified CYP2B1 in the reconstituted system containing P-450, NADPH:P-450 oxidoreductase, and sonicated dilaurylphosphatidyl choline were studied. The benzphetamine N-demethylase activity of CYP2B1 was inactivated by KR-II in a time- and NADPH-dependent manner, and the loss of activity followed pseudo-first-order kinetics. The inactivation also required KR-II, and the rate of activity loss was dependent on the concentration of KR-II in a saturable fashion. The inactivator concentration required for the half-maximal rate of inactivation (KI) was approximately 0.1 mM. The inactivation was not prevented by the addition of the nucleophiles dithiothreitol and glutathione, nor was it reversed by gel filtration. The present results demonstrate that KR-II is a mechanism-based inactivator of rat CYP2B1.  相似文献   

4.
The inhibition and mechanism-based inactivation potencies of phenethyl isothiocyanate (PEITC) for human cytochrome P450 (CYP) activities were investigated using microsomes from baculovirus-infected insect cells expressing specific human CYP isoforms. PEITC competitively inhibited phenacetin O-deethylase activity catalyzed by CYP1A2 (K(i) = 4.5 +/- 1.0 microM) and coumarin 7-hydroxylase activity catalyzed by CYP2A6 (K(i) = 18.2 +/- 2.5 microM). Benzyloxyresorufin O-dealkylase activity catalyzed by CYP2B6 was most strongly and noncompetitively inhibited (K(i) = 1.5 +/- 0.0 microM). Paclitaxel 6alpha-hydroxylase activity catalyzed by CYP2C8 was not affected by PEITC up to 100 microM. PEITC noncompetitively inhibited S-warfarin 7-hydroxylase activity catalyzed by CYP2C9 (K(i) = 6.5 +/- 0.9 microM), S-mephenytoin 4'-hydroxylase activity catalyzed by CYP2C19 (K(i) = 12.0 +/- 3.2 microM), bufuralol 1'-hydroxylase activity catalyzed by CYP2D6 (K(i) = 28.4 +/- 7.9 microM), and chlorzoxazone 6-hydroxylase activity catalyzed by CYP2E1 (K(i) = 21.5 +/- 3.4 microM). The inhibition for testosterone 6beta-hydroxylase activity catalyzed by CYP3A4 was a mixed-type of competitive (K(i) = 34.0 +/- 6.5 microM) and noncompetitive (K(i) = 63.8 +/- 12.5 microM) inhibition. Furthermore, PEITC is a mechanism-based inactivator of human CYP2E1. The k(inact) value was 0.339 min(-1) and K(i) was 9.98 microM. Human CYP1A2, CYP2A6, CYP2B6, CYP2D6, and CYP3A4 were not inactivated. The present study directly proved that the chemopreventive effects of PEITC for nitrosamine-induced carcinogenesis are due to the inhibition of CYP by an in vitro study. The possibility that PEITC would affect the pharmacokinetics of clinically used drugs that are metabolized by these CYP isoforms was also suggested.  相似文献   

5.
n-Propylxanthate (nPX) inactivated the 7-ethoxy-4-(trifluoromethyl)coumarin (7-EFC) O-deethylation activity of purified, reconstituted rat hepatic P450 2B1 or human P450 2B6 in a mechanism-based manner. The inactivation followed pseudo-first-order kinetics and was entirely dependent on both NADPH and nPX. The maximal rate constant for inactivation of P450 2B1 at 30 degrees C was 0.2 min-1. The apparent KI was 44 microM, and the half-time for inactivation was 4.1 min. Purified, reconstituted human P450 2B6 was also inactivated by nPX with a KI of 12 microM. The kinactivation for P450 2B6 was 0.06 min-1, and the t1/2 was 11 min. Incubations of P450 2B1 with nPX and NADPH for 20 min resulted in a 75% loss in enzymatic activity and a concurrent 25% loss of the enzyme's ability to form a reduced CO complex. Little loss in the absolute spectrum of nPX-inactivated P450 2B1 was observed. With P450 2B6, an 83% loss in enzymatic activity and a 12% loss in the CO-reduced spectra were observed. The extrapolated partition ratio for nPX with P450 2B1 was 32. P450 2B1 could be protected from inactivation by nPX by adding an alternate substrate to the reaction mixture. Removal of unbound nPX by dialysis did not reverse the inactivation. The alternate oxidant iodosobenzene was able to partially restore enzymatic activity to nPX-inactivated P450 2B1 samples. A stoichiometry for labeling of 1.2:1 for binding of radiolabeled nPX metabolite to P450 2B1 was seen. These results indicated that nPX inactivated P450 2B1 and P450 2B6 in a mechanism-based manner. P450 2B1 was inactivated primarily by a nPX reactive intermediate that bound to the apoprotein.  相似文献   

6.
Human cytochrome P450 (P450) 2B6 plays an important role in the metabolism of many drugs used in the clinic, and it has been shown to be highly polymorphic and inducible by a variety of substrates. The metabolism of phencyclidine (PCP) by P450 2B6 results in mechanism-based inactivation of the enzyme. We investigated the effects of a naturally occurring mutation of P450 2B6 where a lysine 262 is changed to an arginine (K262R) on PCP metabolism and mechanism-based inactivation of 2B6 by PCP. The K262R mutant retained the 7-ethoxy-4-trifluoromethylcoumarin O-deethylation activity when it was incubated with PCP and NADPH in the reconstituted system, whereas the wild-type enzyme was readily inactivated by PCP. Spectral binding studies showed that PCP was reversibly bound in the active site of the K262R mutant with slightly higher affinity (156 muM) compared with the wild-type 2B6 (397 muM). In addition, all the metabolites of PCP (M1-M8) that were formed by the wild-type enzyme were also formed by the K262R mutant. Although the K262R mutant metabolized PCP to give similar metabolite profiles, the overall rate of metabolite formation was lower than the wild-type enzyme. A reactive intermediate of PCP was formed by wild-type P450 2B6 and trapped with glutathione (GSH). However, no GSH conjugates were detected from incubations with the K262R mutant. These data suggest that the lysine 262 residue plays an important role in the formation of a reactive intermediate of PCP that leads to the mechanism-based inactivation of P450 2B6.  相似文献   

7.
17-alpha-Ethynylestradiol (17EE) is a mechanism-based inactivator of P450 2B1 and P450 2B6 in the reconstituted monooxygenase system. The loss in enzymatic activity was due to the binding of a reactive intermediate of 17EE to the apoprotein. P450 2B1 and P450 2B6 were inactivated by 17EE and digested with trypsin. The peptides obtained following digestion with trypsin of 17EE-inactivated P450 2B1 and P450 2B6 were separated by liquid chromatography and analyzed by ESI-MS. Adducted peptides exhibiting an increase in mass consistent with the addition of the mass of the reactive intermediate of 17EE were identified for each enzyme. Analysis of these modified peptides by ESI-MS/MS and precursor ion scanning facilitated the identification of the Ser360 in both enzymes as a site that had been adducted by a reactive intermediate of 17EE. A P450 2B1 mutant where Ser360 was replaced by alanine was constructed, expressed, and purified. Activity and inactivation studies indicated that mutation of the Ser360 residue to alanine did not prevent inactivation of the mutant enzyme by 17EE. These observations suggest that Ser360 is not critical for the catalytic function of these P450s. Spectral binding studies of the 17EE-inactivated P450 2B1 and P450 2B6 indicated that modification of the enzymes by the reactive intermediate of 17EE resulted in an enzyme that was no longer capable of binding substrates. These results suggest that the inactivation by 17EE may be due to modification of an amino acid residue in the substrate access channel near the point of entry into the active site.  相似文献   

8.
The metabolism of arylhydrazines by cytochromes P450 (P450s) has previously been shown to yield aryl-iron complexes that inhibit P450 enzymes as a result of heme modification. These modifications of the heme have been used to probe the topology of the active site of several P450s. Therefore, diaziridines containing one or more substitutions on the phenyl ring were synthesized and evaluated as potential mechanism-based inactivators of P450 2B enzymes that could be used to elucidate the active site topology. Five of the six trifluoroaryldiaziridines tested selectively inactivated P450 2B6 in the reconstituted system in a time-, concentration-, and NADPH-dependent manner as measured using the 7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation assay. The kinetic parameters for P450 2B6 inactivation by the five compounds were calculated. Analysis of the P450 heme from P450s inactivated by the five substituted diaziridines suggested that the activity loss was not due to heme destruction as measured by the reduced-CO spectrum or high-performance liquid chromatography of the P450 heme. Dialysis experiments indicated the irreversible nature of the inactivation and the reaction between the diaziridine compounds and the P450 enzyme. Interestingly, a thiomethyl-substituted phenyl diaziridine had no effect on the activity of P450 2B6 in the reconstituted system, but competitively inhibited the O-debenzylation activity of P450 3A4 with 7-benzyloxy-4-(trifluoromethyl)coumarin as substrate. Binding spectra suggest that this compound bound reversibly to P450 2B6, and preliminary results indicate that 3-(4-methylthiophenyl)-3-(trifluoromethyl)diaziridine is metabolized by P450 2B6.  相似文献   

9.
The isothiocyanate sulforaphane (SFN) has been shown to induce phase 2 and antioxidant enzymes in cultured cells and in vivo via a Nrf2 dependent signal transduction pathway. However, little is known regarding the effect of structurally related compounds such as allyl isothiocyanate (AITC), butyl isothiocyanate (BITC) and phenylethyl isothiocyanate (PEITC) on Nrf2 target gene expression. In this study AITC, BITC and PEITC significantly increased phosphorylation of ERK1/2, an upstream target of Nrf2 in NIH3T3 fibroblasts. EKR1/2 phosphorylation was accompanied by an increased nuclear translocation and transactivation of Nrf2. AITC, BITC and PEITC significantly enhanced mRNA and protein levels of the Nrf2 targets γ-glutamyl cysteine synthetase (γGCS), heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase (NQO1). HO-1 and γGCS both contain CpG islands within their promoter region. However, analysis of DNA methylation status in NIH3T3 cells indicated that expression of these genes may not be dependant on promoter methylation. Current data indicate that not only SFN but also other aliphatic and aromatic isothiocyanates such as AITC, BITC and PEITC induce phase 2 and antioxidant enzymes in cultured fibroblasts.  相似文献   

10.
A group of arylalkyl isothiocyanates were tested for their abilities to inhibit tumorigenicity and DNA methylation induced by the esophageal- specific carcinogen, N-nitrosomethylbenzylamine (NMBA) in the F344 rat esophagus. Phenylpropyl isothiocyanate (PPITC) was more potent than either phenylethyl isothiocyanate (PEITC) or benzyl isothiocyanate (BITC). Phenylbutyl isothiocyanate (PBITC), however, had a lesser inhibitory effect on esophageal tumorigenesis, and phenylhexyl isothiocyanate (PHITC) actually enhanced esophageal tumorigenesis. Thus, the two- and three-carbon isothiocyanates were more effective inhibitors of NMBA-esophageal carcinogenesis than the longer chain isothiocyanates. The effects of the isothiocyanates on tumorigenesis were well correlated as to their effects on DNA adduct formation. The most likely mechanism of inhibition of tumorigenesis by these isothiocyanates is via inhibition of the cytochrome P450 enzymes responsible for the metabolic activation of NMBA in rat esophagus. A freeze-dried strawberry preparation was also evaluated for its ability to inhibit NMBA-esophageal tumorigenesis. It proved to be an effective inhibitor, although not as potent as either PEITC or PPITC. The inhibitory effect of the berries could not be attributed solely to the content of the chemopreventive agent, ellagic acid, in the berries.   相似文献   

11.
It has been demonstrated previously that several 3-trifluoromethyl-3-(4-alkoxyphenyl)diaziridines inhibit the 7-ethoxy-4-(trifluoroethyl)coumarin (7-EFC) O-deethylation activity of P450 2B6 in a mechanism-based manner. In contrast, 3-trifluoromethyl-3-(4-methylthio)phenyl)diaziridine did not have any effect on the activity of P450 2B6. It is interesting that both the alkoxy and the thiophenyl compounds were metabolized by P450 2B6. In this report, the structure-activity relationships for the mechanism-based inactivation of cytochrome P450 2B6 by a series of aryl diaziridines were investigated. Three diaziridines that did not contain a 4-alkoxy-substituent on their phenyl ring, namely, 3-trifluoromethyl-3-(3-methoxyphenyl)diaziridine, 3-trifluoromethyl-3-phenyl diaziridine, and 3-trifluoromethyl-3-(4-chlorophenyl)diaziridine had no effect on the P450 2B6 7-EFC activity. Another analog that did not contain a diaziridine substructure, 3-trifluoromethyl-3-(4-methoxyphenyl)ethanone, also had no effect on the activity of P450 2B6. Glutathione ethyl ester adducts of the phenyldiaziridine reactive intermediates were isolated from reaction mixtures of the inactivated samples and analyzed by liquid chromatography-tandem mass spectrometry. The structures of the conjugates suggested that the electrophilic reactive intermediate in each case was a quinone methide (quinomethane), 4-ethylidene-cyclohexa-2,5-dienone, generated from the 4-alkoxyphenyldiaziridines by removal of both of the diaziridine and the 4-alkyl groups. In conclusion, the determinant factor for the mechanism-based inactivator activity of the aryl diaziridines seems to be the formation of the reactive quinomethane intermediate, which is generated from the 4-alkoxyphenyl diaziridines by a cytochrome P450-catalyzed metabolic reaction.  相似文献   

12.
Recent studies with cytochrome P450 (P450) enzymes from the 2E and 2B subfamilies have shed light on what may be a new trend in the mechanism-based inactivation of P450s: reversibility. The reversible inactivation of P450-type enzymes was first reported in the mid-1990s by Dexter and Hager [Dexter AF and Hager LP (1995) J Am Chem Soc 117:817-818], who studied the transient heme N-alkylation of chloroperoxidase by allylbenzene and 1-hexyne. While characterizing small tert-butyl acetylenes as mechanism-based inactivators of P450s 2E1 and 2B4, Hollenberg and coworkers observed the reversible inactivation of an acetylene-inactivated T303A mutant of P450 2E1. The mechanism of reversibility was a combined product of the structure of the inactivator and the positioning of conserved amino acid residues, threonine 303 (alanine in the mutant) and glutamate 302, in the enzyme active site. Reversibility was also observed with both wild-type P450 2B4 and the T302A mutant of 2B4, although this inactivation and reversibility did not seem to depend on the T302 residue. Subsequent studies have attempted to elucidate the chemical/structural requirements of the inactivator in determining reversibility and have shown that both the size and the chemical nature of functional groups play an important role. At this time, reversibility has only been observed with P450 2E and 2B enzymes during their mechanism-based inactivation by terminal alkynes. Future studies with P450s from other subfamilies and structurally distinct inactivators will greatly aid our understanding of the molecular and chemical determinants of reversibility.  相似文献   

13.
N-(3,5-Dichloro-4-pyridyl)-3-(cyclopentyloxy)-4-methoxybenzamide (DCMB) is a known marker substrate for cytochrome p450 2B6. Based on the chemical template of DCMB, a novel terminal acetylene compound, N-(3,5-dichloro-4-pyridyl)-4-methoxy-3-(prop-2-ynyloxy)benzamide (TA) was synthesized and evaluated as a mechanism-based inactivator of p450 2B6. The pseudo first-order inactivation of expressed p450 2B6 by TA was both substrate and time-dependent. The kinetics of inhibition resulted in a maximal rate constant (k(inactivation)) of 0.09 min(-1) and an apparent K(I) of 5.1 microM. Incubation of expressed p450 2B6 with TA and NADPH resulted in a 68% loss in enzyme activity and a concurrent 62% loss in the formation of a reduced carbon monoxide complex, suggesting that heme destruction is the primary mode of enzyme inactivation. Enzyme inactivation of p450 2B6 was not reduced by the presence of 10 mM glutathione and was protected by incubation of excess DCMB with TA. The production of the carboxylic acid metabolite, N-(3,5-Dichloro-4-pyridyl)-3-(2-carboxyethoxy)-4-methoxybenzamide (TA-COOH), during the incubation of TA with 2B6 suggests that inactivation proceeds through a ketene intermediate. For 2B6 inactivation, the partition ratio was approximately 1.5 nmol TA-COOH formed/nmol P450 inactivated. Finally, TA was evaluated for mechanism-based inactivation of p450 3A4, 2C9, 2C19, 2D6, and 2E1 using human liver microsomes. In addition to 2B6, p450 2C forms were also found to be sensitive to TA-mediated inactivation, suggesting that subtle changes in the O-alkyl chain of the parent may be critical for the selectivity of enzyme inactivation.  相似文献   

14.
The objective of this investigation was to evaluate the effects of two dietary isothiocyanates (ITCs), benzyl- (BITC) and phenethyl isothiocyanate (PEITC), and one synthetic ITC, alpha-naphthyl isothiocyanate (1-NITC), on the P-glycoprotein (P-gp)- and multidrug-resistance protein 1 (MRP1)-mediated efflux of daunomycin (DNM), determine whether PEITC is a substrate of P-gp and/or MRP1, and elucidate the mechanism(s) involved in the inhibition of transport. BITC, PEITC, and 1-NITC significantly increased the 2-h accumulation of DNM in MCF-7/ADR (P-gp overexpression), PANC-1 (MRP1 overexpression), and human colon adenocarcinoma Caco-2 cells (except for 1-NITC). The accumulation of (14)C-PEITC was not changed in Caco-2, human breast cancer MDA435/LCC6 and MDA435/LCC6MDR1 (P-gp overexpression) cells in the absence and presence of the P-gp inhibitor verapamil, but significantly increased with the MRP inhibitor MK571 in PANC-1 cells. The isocyanate and amine metabolites had no effect on DNM accumulation in any cell line. After 2- and 24-h ITC treatments, cellular concentrations of glutathione (GSH) in PANC-1 and Caco-2 cells were depleted by BITC and PEITC, but not by 1-NITC; glutathione-S-transferase activity exhibited small changes. Our results suggest that (1) BITC, PEITC, and 1-NITC inhibit the P-gp- and MRP1-mediated efflux of DNM; (2) PEITC and/or its conjugates do not represent P-gp substrates; (3) BITC and PEITC, but not 1-NITC, inhibit MRP1 through the depletion of intracellular GSH, which acts as a cosubstrate for DNM efflux via MRP1; and (4) PEITC and/or its conjugates are MRP1 substrates so binding interactions with DNM represent a second potential mechanism involved in MRP1 inhibition.  相似文献   

15.
The aim of this study was to investigate the protective effect of isothiocyanates alone or in combination with vitamin C towards N-nitrosodibutylamine (NDBA) or N-nitrosopiperidine (NPIP)-induced oxidative DNA damage in the single cell gel electrophoresis (SCGE)/HepG2 assay. Phenethyl isothiocyanate (PEITC) and indole-3-carbinol (I3C) alone showed a weak protective effect towards NDBA (0.1 microm, 26-27%, respectively) or NPIP (1 microm, 26-28%, respectively)-induced oxidative DNA damage. Allyl isothiocyanate (AITC) alone did not attenuate the genotoxic effect provoked by NDBA or NPIP. In contrast, HepG2 cells simultaneously treated with PEITC, I3C and AITC in combination with vitamin C showed a stronger inhibition of oxidative DNA-damage induced by NDBA (0.1 microm, 67%, 42%, 32%, respectively) or NPIP (1 microm, 50%, 73%, 63%, respectively) than isothiocyanates (ITCs) alone. One feasible mechanism by which ITCs alone or in combination with vitamin C exert their protective effects towards N-nitrosamine-induced oxidative DNA damage could be by the inhibition of their cytochrome P450 dependent bioactivation. PEITC and I3C strongly inhibited the p-nitrophenol hydroxylation (CYP2E1) activity (0.1 microm, 66-50%, respectively), while the coumarin hydroxylase (CYP2A6) activity was slightly reduced (0.1 microm, 25-37%, respectively). However, the ethoxyresorufin O-deethylation (CYP1A1) activity was only inhibited by PEITC (1 microm, 55%). The results indicate that PEITC and I3C alone or PEITC, I3C and AITC in combination with vitamin C protects human-derived cells against the oxidative DNA damaging effects of NDBA and NPIP, two food carcinogenic compounds.  相似文献   

16.
2-Phenyl-2-(1-piperidinyl)propane (PPP), an analog of phencyclidine, was tested for its ability to inactivate cytochrome P450s (P450s) 2B1 and 2B6. PPP inactivated the 7-(benzyloxy)resorufin O-dealkylation activity of liver microsomes obtained from phenobarbital-induced rats with a K(I) of 11 microM. The 7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation activity of purified rat liver P450 2B1 and expressed human P450 2B6 was inactivated by PPP in a reconstituted system containing NADPH-cytochrome P450 reductase and lipid. In the presence of NADPH, the loss of activity was time- and concentration-dependent, and followed pseudo first order kinetics. The rate of inactivation for P450 2B1 was 0.3 min(-1), and the concentration of PPP required to achieve half-maximal inactivation was 12 microM. The time for 50% of the P450 2B1 to become inactivated at saturating concentrations of PPP was 2.5 min. P450 2B6 was inactivated with a k(inact) of 0.07 min(-1), a K(I) of 1.2 microM, and a t(1/2) of 9.5 min. The inactivated P450s 2B1 and 2B6 lost about 25 and 15%, respectively, of their ability to form a CO-reduced complex, suggesting that the loss of activity was caused by a PPP modification of the apoprotein rather than the heme. The estimated partition ratio for P450s 2B1 and 2B6 with PPP was 31 and 15, respectively. The inactivation was not reversible and reductase activity was not affected. Coincubation of P450 2B1 and 2B6 with PPP and NADPH in the presence of an alternate substrate protected both enzymes from inactivation. The exogenous nucleophile GSH did not affect the rate of inactivation. PPP-inactivated P450s 2B1 and 2B6 were recognized on Western blots by an antibody generated to phencyclidine that had been conjugated to BSA. Stoichiometries of 1.4:1 and 0.7:1 were determined for the binding of a [3H]PPP metabolite to P450 2B1 and 2B6, respectively.  相似文献   

17.
Thiol conjugates of isothiocyanates (thiol-ITCs) are metabolites of ITCs formed in the mercapturic acid pathway in mammals. They are effective chemopreventive agents in mouse lung tumor bioassays and in other models. Thiol-ITCs are inhibitors of P450s, but it has not been determined if P450 inhibition is due to conjugates themselves or to parent ITCs released by deconjugation reactions. In studies of mechanism of chemopreventive action of thiol-ITCs, rates of deconjugation of Cys, GSH, and N-acetyl-L-cysteine (NAC) conjugates of benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC), 6-phenylhexyl isothiocyanate (PHITC), and sulforaphane (SFN), expressed as the first-order rate constant k(1) and the half-life of decomposition Dt(1/2), were measured in aqueous solutions at pH 7.4 and 37 degrees. The Dt(1/2)s for the Cys conjugates were severalfold shorter than the Dt(1/2)s for respective GSH conjugates, while the Dt(1/2)s for the NAC conjugates were the longest. Cleavage of thiol conjugates was pH dependent, much slower under acidic conditions than at pH 7.4. Inhibition of P450 enzymes by thiol-ITCs was followed using PROD (pentoxyresorufin O-dealkylation) for P450 2B1 and EROD (ethoxyresorufin O-dealkylation) for P450 1A1. The inhibition of PROD and EROD by aqueous thiol-ITCs increased with preincubation time and was roughly parallel to the extent of decomposition of the conjugate that had occurred, indicating that both potency of the respective parent ITC and the rate of reductive cleavage of the conjugate influenced enzyme inhibition. In the presence of 250-1000 microM GSH, comparable to physiological levels, rates of deconjugation of thiol-ITCs were markedly reduced; inhibition of PROD was also proportionately reduced. Slow rates of decomposition of thiol-ITCs anticipated in plasma and tissues suggests that inhibition of P450 enzymes involved in carcinogen activation by ITCs released from thiol-ITCs may not be a principal mechanism for their tumor inhibitory activity; other mechanisms probably contribute to their chemopreventive activity.  相似文献   

18.
The oral contraceptive 17-alpha-ethynylestradiol (17EE) is a mechanism-based inactivator of cytochrome P450s (P450s) 2B1 and 2B6. Inactivation of P450s 2B1 and 2B6 in the reconstituted system by [3H]17EE resulted in labeling of the P450 apoprotein. Mass spectral analysis of 17EE-inactivated P450 2B1 showed an increase in the mass of the apoprotein by 313 Da, consistent with the mass of 17EE plus one oxygen atom. P450s 2B1 and 2B6 were inactivated with [3H]17EE and digested with CNBr. Separation of these peptides resulted in the identification of one major labeled peptide for each enzyme. N-Terminal sequencing of these peptides yielded the amino acid sequences PYTDAVIHEI (for P450 2B1) and PYTEAV (for P450 2B6) that corresponded to amino acids P347-M376 and P347-M365 in P450s 2B1 and 2B6, respectively. Electrospray ionization (ESI)-liquid chromatography-mass spectrometry (LC-MS) and matrix-assisted laser desorption ionization (MALDI)-MS analysis of the P450 2B1-derived peptide resulted in a mass of 3654 Da consistent with the mass of the P347-M376 peptide (3385 Da) plus a 268 Da 17EE adduct. Chemically reactive intermediates of 17EE that were generated during the metabolism of 17EE by P450s 2B1 and 2B6 were trapped with gluthathione (GSH). ESI-LC-MS/MS analysis of 17EE-GSH conjugates from the incubation mixtures indicated that P450s 2B1 and 2B6 generated different reactive 17EE intermediates that were responsible for the inactivation and protein modification or the formation of GSH conjugates by these two enzymes.  相似文献   

19.
The P450 type cytochromes are responsible for the metabolism of a wide variety of xenobiotics and endogenous compounds. Although P450-catalyzed reactions are generally thought to lead to detoxication of xenobiotics, the reactions can also produce reactive intermediates that can react with cellular macromolecules leading to toxicity or that can react with the P450s that form them leading to irreversible (i.e., mechanism-based) inactivation. This perspective describes the fundamentals of mechanism-based inactivation as it pertains to P450 enzymes. The experimental approaches used to characterize mechanism-based inactivators are discussed, and the criteria required for a compound to be classified as a mechanism-based inactivator are outlined. The kinetic scheme for mechanism-based inactivation and the calculation of the relevant kinetic constants that describe a particular inactivation event are presented. The structural aspects and important functional groups of several classes of molecules that have been found to impart mechanism-based inactivation upon metabolism by P450s such as acetylenes, thiol-containing compounds that include isothiocyanates, thiazolidinediones, and thiophenes, arylamines, quinones, furanocoumarins, and cyclic tertiary amines are described. Emphasis throughout this perspective is placed on more recent findings with human P450s where the site of modification, whether it be the apoprotein or the heme moiety, and, at least in part, the identity of the reactive intermediate responsible for the loss in P450 activity are known or inferred. Recent advances in trapping procedures as well as new methods for identification of reactive intermediates are presented. A variety of clinically important drugs that act as mechanism-based inactivators of P450s are discussed. The irreversible inactivation of human P450s by these drugs has the potential for causing serious drug-drug interactions that may have severe toxicological effects. The clinical significance of inactivating human P450s for improving drug efficacy as well as drug safety is discussed along with the potential for exploiting mechanism-based inactivators of P450s for therapeutic benefits.  相似文献   

20.
On the basis of animal studies, the chemopreventive activity of isothiocyanates has been linked to their ability to modulate carcinogen-metabolising enzyme systems, including cytochrome P450. However, the potential of isothiocyanates to influence these enzyme systems in human liver has not been investigated. We have evaluated the modulation of cytochrome P450 expression in two human liver samples by erucin and sulforaphane, in comparison to rat, following the incubation of precision-cut human and rat liver slices with the two isothiocyanates. Both compounds failed to influence cytochrome P450 activity, as exemplified by the dealkylations of methoxy-, ethoxy- and pentoxyresorufin, and benzyloxyquinoline, in either human or rat liver. Impairment of activity was, however, observed in some activities at high concentrations (50microM), which was attributed to toxicity. At the apoprotein level, however, both compounds markedly elevated CYP1A2/1B1 levels in rat liver, but in human liver only a modest increase was evident, and only in one of the livers. CYP3A2 apoprotein levels were modestly elevated in rat liver by both isothiocyanates both of which, however, failed to influence CYP3A4 expression in human liver. Neither isothiocyanate, in either rat or human liver, modulated CYP2B apoprotein levels. It may be inferred that (a) human and rat liver differ in their response to erucin and sulforaphane, (b) erucin and sulforaphane, despite being small molecular weight aliphatic compounds, up-regulate the CYP1 family but no increase in activity is observed as a result of mechanism-based inhibition, and (c) the chemopreventive effect of isothiocyanates, at dietary levels of intake, is unlikely to be due to inhibition of the cytochrome P450-mediated bioactivation of carcinogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号