首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Vaccine》2020,38(50):7905-7915
Hemagglutinin, the major surface protein of influenza viruses, was recombinantly expressed in eukaryotic cells as a monomer instead of its native trimer, and was only immunogenic when administered with an adjuvant [Pion et al. 2014]. In order to multimerize this antigen to increase its immunogenicity, a cysteine-rich peptide sequence found at the extreme C-terminus of lamprey variable lymphocyte receptor (VLR)-B antibodies was fused to various recombinant hemagglutinin (rHA) proteins from A and B influenza virus strains. The rHA-Lamp fusion (rHA fused to the lamprey sequence) protein was expressed in Leishmania tarentolae and Chinese hamster ovary (CHO) cells and shown to produce several multimeric forms. The multimers produced were very stable and more immunogenic in mice than monomeric rHA. The lamprey VLR-B sequence was also used to multimerize the neuraminidase (NA) of influenza viruses expressed in CHO cells. For some viral strains, the NA was expressed as a tetramer like the native viral NA form. In addition, the lamprey VLR-B sequence was fused with two surface antigens of Shigella flexneri 2a, the invasion plasmid antigen D and a double mutated soluble form of the membrane expression of the invasion plasmid antigen H namely MxiH. The fusion proteins were expressed in Escherichia coli to produce the respective multimer protein forms. The resulting proteins had similar multimeric forms as rHA-Lamp protein and were more immunogenic in mice than the monomer forms. In conclusion, the VLR-B sequence can be used to increase the immunogenicity of recombinant viral and bacterial antigens, thus negating the need for adjuvants.  相似文献   

2.
《Vaccine》2020,38(8):2016-2025
Studies in cattle show CD8 cytotoxic T cells (CTL), with the ability to kill intracellular bacteria, develop following stimulation of monocyte-depleted peripheral blood mononuclear cells (mdPBMC) with antigen presenting cells (APC, i.e. conventional dendritic cells [cDC] and monocyte-derived DC [MoDC]) pulsed with MMP, a membrane protein from Mycobacterium avium subsp. paratuberculosis (Map) encoded by MAP2121c. CTL activity was diminished if CD4 T cells were depleted from mdPBMC before antigen (Ag) presentation by APC, suggesting simultaneous cognate recognition of MMP epitopes presented by MHC I and MHC II molecules to CD4 and CD8 T cells is essential for development of CTL activity. To explore this possibility, studies were conducted with mdPBMC cultures in the presence of monoclonal antibodies (mAbs) specific for MHC class I and MHC class II molecules. The CTL response of mdPBMC to MMP-pulsed APC was completely blocked in the presence of mAbs to both MHC I and II molecules and also blocked in the presence of mAbs to either MHC I or MHC II alone. The results demonstrate simultaneous cognate recognition of Ag by CD4 and CD8 T cells is essential for delivery of CD4 T cell help to CD8 T cells to elicit development of CTL.  相似文献   

3.
《Vaccine》2021,39(22):2976-2982
In the activation of cell-mediated adaptive immune responses that play major roles in the elimination of virus-infected or tumor cells, it is important that dendritic cells present antigen peptides on major histocompatibility complex (MHC) class I molecules and activate pathogen-specific cytotoxic T lymphocytes (CTL). As exogenous peptide antigens are generally presented on MHC class II but not class I, the development of a method for exogenous antigen delivery that facilitates MHC class I presentation is necessary for a potentially effective vaccine that is expected to provoke cell-mediated adaptive immune responses. Here, we developed extracellular vesicles that incorporate antigenic proteins by utilizing endosomal sorting complexes required for transport (ESCRT)-mediated vesicle formation pathway. Furthermore, we proved that these vesicles could deliver their contents to the cytoplasm of dendritic cells and activate antigen-specific CTLs. These technologies could be applied to the development of novel CTL-inducing peptide vaccines.  相似文献   

4.
《Vaccine》2023,41(17):2793-2803
Protein subunit vaccines have been widely used to combat infectious diseases, including the current COVID-19 pandemic. Adjuvants play the key role in shaping the quality and magnitude of the immune response to protein and inactivated vaccines. We previously developed a protein subunit COVID-19 vaccine, termed ZF2001, based on an aluminium hydroxide-adjuvanted tandem-repeat dimeric receptor-binding domain (RBD) of the viral spike (S) protein. Here, we described the use of a squalene-based oil-in-water adjuvant, Sepivac SWE™ (abbreviated to SWE), to further improve the immunogenicity of this RBD-dimer-based subunit vaccines. Compared with ZF2001, SWE adjuvant enhanced the antibody and CD4+ T-cell responses in mice with at least 10 fold of dose sparing compared with ZF2001 adjuvanted with aluminium hydroxide. SWE-adjuvanted vaccine protected mice against SARS-CoV-2 challenge. To ensure adequate protection against the currently circulating Omicron variant, we evaluated this adjuvant in combination with Delta-Omicron chimeric RBD-dimer. SWE significantly increased antibody responses compared with aluminium hydroxide adjuvant and afforded greater neutralization breadth. These data highlight the advantage of emulsion-based adjuvants to elevate the protective immune response of protein subunit COVID-19 vaccines.  相似文献   

5.
6.
《Vaccine》2022,40(12):1837-1845
In the past decades, fowl adenovirus (FAdV)-related diseases became an increasing concern for the poultry industry worldwide. Various immunization strategies against FAdVs have been experimentally investigated, with a particular focus on subunit vaccines against hepatitis-hydropericardium syndrome (HHS), caused by FAdV serotype 4, and inclusion body hepatitis (IBH), caused by serotypes 2, 8a, 8b and 11. In this study, we extended our innovative concept of recombinant chimeric fiber proteins to design a novel chimera combining epitopes from two distinct serotypes, FAdV-4 and -11, and we investigated its efficacy to simultaneously protect chickens against HHS and IBH. Specific pathogen-free chickens were vaccinated with the novel recombinant chimeric fiber and subsequently challenged with either a HHS- or IBH-causing strain. Vaccinated/challenged birds exhibited a reduction of clinical signs, limited hepatomegaly and lower levels of AST compared to the respective challenge controls. Furthermore, the vaccine prevented atrophy of HHS-affected lymphoid organs, such as thymus and bursa of Fabricius, and viral load in the target organs was significantly reduced. Clinical protection was associated with high levels of pre-challenge antibodies measured on ELISA plates coated with the vaccination antigen. Interestingly, the development of neutralizing antibodies was limited against FAdV-11 and absent against FAdV-4, indicating that protection granted by such an antigen may be linked to different immunization pathways. In conclusion, we proved that the concept of chimeric fiber vaccines can be extended across viral species boundaries and represents the first single-component FAdV subunit vaccine providing comprehensive protection against different FAdV-associated diseases.  相似文献   

7.
《Vaccine》2021,39(11):1583-1592
Targeted delivery of antigen to antigen-presenting cells (APCs) enhances antigen presentation and thus, is a potent strategy for making more efficacious vaccines. This can be achieved by use of antibodies with specificity for endocytic surface molecules expressed on the APC. We aimed to compare two different antibody-antigen fusion modes in their ability to induce T-cell responses; first, exchange of immunoglobulin (Ig) constant domain loops with a T-cell epitope (Troybody), and second, fusion of T-cell epitope or whole antigen to the antibody C-terminus. Although both strategies are well-established, they have not previously been compared using the same system. We found that both antibody-antigen fusion modes led to presentation of the T-cell epitope. The strength of the T-cell responses varied, however, with the most efficient Troybody inducing CD4 T-cell proliferation and cytokine secretion at 10–100-fold lower concentration than the antibodies carrying antigen fused to the C-terminus, both in vitro and after intravenous injection in mice. Furthermore, we exchanged this loop with an MHCI-restricted T-cell epitope, and the resulting antibody enabled efficient cross-presentation to CD8 T cells in vivo. Targeting of antigen to APCs by use of such antibody-antigen fusions is thus an attractive vaccination strategy for increased activation of both CD4 and CD8 peptide-specific T cells.  相似文献   

8.
《Vaccine》2019,37(35):4947-4955
A major obstacle to obtaining relevant results in cancer vaccination has been the lack of identification of immunogenic antigens. Dendritic cell (DC)-based cancer vaccines used preventively may afford protection against tumor inoculation, but the effect of antigen choice on anti-tumor protection is not clear. When using irradiated syngeneic tumor cells to load DCs, tumor self-antigens are provided, including tumor-associated antigens (TAAs) and neoantigens generated by tumor mutations. On the other hand, allogeneic tumor cells could only supply shared TAAs. To assess the advantages of each source in protective vaccination, we analyzed in C57BL/6 mice the effect of loading DCs with irradiated syngeneic B16-F1 or allogeneic Cloudman melanoma cells; both cell lines were characterized by whole exome sequencing and RNAseq. Tumor cell components from the two irradiated cell lines were efficiently internalized by DCs, and transported to MHC-class II positive tubulovesicular compartments (MIICs). DCs loaded with allogeneic irradiated Cloudman cells (DC-ApoNecALLO) induced a partially effective anti-melanoma protection, although Cloudman and B16-F1 cells share the expression of melanocyte differentiation antigens (MDAs), cancer-testis antigens (CTAs) and other TAAs. DCs loaded with syngeneic B16-F1 cells (DC-ApoNecSYN) established a more potent and long-lasting protection and induced a humoral anti-B16F1 response, thus suggesting that neoepitopes are needed for inducing long-lasting protection.  相似文献   

9.
《Vaccine》2022,40(32):4522-4530
The COVID-19 pandemic has spurred an unprecedented movement to develop safe and effective vaccines against the SARS-CoV-2 virus to immunize the global population. The first set of vaccine candidates that received emergency use authorization targeted the spike (S) glycoprotein of the SARS-CoV-2 virus that enables virus entry into cells via the receptor binding domain (RBD). Recently, multiple variants of SARS-CoV-2 have emerged with mutations in S protein and the ability to evade neutralizing antibodies in vaccinated individuals. We have developed a dual RBD and nucleocapsid (N) subunit protein vaccine candidate named RelCoVax® through heterologous expression in mammalian cells (RBD) and E. coli (N). The RelCoVax® formulation containing a combination of aluminum hydroxide (alum) and a synthetic CpG oligonucleotide as adjuvants elicited high antibody titers against RBD and N proteins in mice after a prime and boost dose regimen administered 2 weeks apart. The vaccine also stimulated cellular immune responses with a potential Th1 bias as evidenced by increased IFN-γ release by splenocytes from immunized mice upon antigen exposure particularly N protein. Finally, the serum of mice immunized with RelCoVax® demonstrated the ability to neutralize two different SARS-CoV-2 viral strains in vitro including the Delta strain that has become dominant in many regions of the world and can evade vaccine induced neutralizing antibodies. These results warrant further evaluation of RelCoVax® through advanced studies and contribute towards enhancing our understanding of multicomponent subunit vaccine candidates against SARS-CoV-2.  相似文献   

10.
《Vaccine》2020,38(15):3105-3120
There are currently about 257 million people suffering from chronic HBV infection worldwide. In many cases, an insufficient T cell response is causative for establishment of a chronic infection. To ensure a robust cellular immune response and induction of neutralizing antibodies a novel vaccine platform based on modified cell–permeable HBV capsids was utilized. Cell permeability was achieved by fusion of the membrane–permeable TLM-peptide to HBV core monomers, assembling the capsids. Insertion of a Strep-tagIII into the spike tip domain that protrudes from the capsid surface enables flexible loading with antigens that are fused to streptavidin. In this study, HBV surface antigen-derived PreS1PreS2 domain, fused to monomeric streptavidin, served as cargo antigen. Binding between antigen and capsids was characterized by surface plasmon resonance spectroscopy, electron microscopy and density gradient centrifugation. Confocal immunofluorescence microscopy and in vivo imaging of immunized mice demonstrated membrane permeability of cargo-loaded carriers and spread of antigen over the whole organism. Immunization experiments of mice revealed a robust induction of a specific cellular immune response, leading to destruction of HBV-positive cells and induction of HBV-specific neutralizing antibodies. Membrane permeability of these carriers allows needle-free application of antigen-loaded capsids as evidenced by induction of an HBV-specific CTL response and HBV-specific B cell response after oral or transdermal vaccination.These data indicate that cell–permeable antigen carriers, based on HBV capsids and loaded with HBV antigen, have the capacity to induce a cellular and a neutralizing humoral immune response. In addition, cell permeability of the vaccine platform enables antigen transfer across several cell layers, that could allow oral or transdermal immunization.  相似文献   

11.
《Vaccine》2022,40(14):2233-2239
A reference standard is needed for quality control of protein subunit SARS-CoV-2 vaccines to meet urgent domestic needs. The Chinese National Institutes for Food and Drug Control (NIFDC) launched a project to establish the first reference material for the protein subunit SARS-CoV-2 vaccine to be used for calibration of antigen testing. The potency and stability of the national candidate standard (CS) were determined by collaborative calibration, and accelerated and freeze–thaw degradation studies. Moreover, a suitability study of the CS was performed. Eight laboratories in mainland China were asked to detect antigen content of CS using a common validated enzyme-linked immunosorbent assay (ELISA) kit established by NIFDC and in-house kits in the collaborative study. Six laboratories returned valid results, which established that the antigen content of the CS was 876,938 YU/mL, with good agreement across laboratories. In the suitability study, the CS exhibited excellent parallelism and a linear relationship with four samples produced by different expression systems and target proteins. In addition, good stability in the accelerated and freeze–thaw degradation study was observed. In conclusion, the CS was approved by the Biological Product Reference Standards Sub-Committee of the National Drug Reference Standards Committee as the first Chinese national standard for determining antigen content of protein subunit SARS-CoV-2 vaccines, with an assigned antigen content of 877,000 U/mL (Lot. 300050–202101). This standard will contribute to a standardized assessment of protein subunit SARS-CoV-2 vaccine in China and may provide experience for developing reference materials for antigen content detection of SARS-CoV-2 vaccine in other countries.  相似文献   

12.
《Vaccine》2020,38(50):7998-8009
Cholera remains an important global health problem with up to 4 million cases and 140,000 deaths annually. Oral cholera vaccines (OCVs) are now a cornerstone of the WHOs “Ending Cholera – A Global Roadmap to 2030” global program for the eventual elimination of cholera. There are currently three WHO prequalified OCVs available, Dukoral®, Shanchol® and Euvichol-Plus®. These vaccines are effective but due to a multiple strain composition and two different methods of inactivation, are complex and costly to manufacture. We describe here the characterization and industrial scale development of Hillchol®; a novel, likely affordable single-component OCV for low and middle-income countries. Hillchol® consists of formalin-inactivated bacteria of a stable recombinant Vibrio cholerae O1 El Tor Hikojima serotype strain expressing approximately 50% each of Ogawa and Inaba O1 LPS antigens. The novel OCV can be manufactured on an industrial scale at a low cost. Hillchol® was well tolerated in animal toxicology studies and shown to have non-inferior oral immunogenicity in mice for both intestinal-mucosal and serological immune responses when compared with a WHO-prequalified OCV. The optimized production of this single component OCV will reduce cost of OCV production and thus substantially increase vaccine availability. Based on these results, Hillchol® has been produced at a GMP facility and used successfully for clinical phase I/II studies.  相似文献   

13.
《Vaccine》2022,40(23):3182-3192
COVID-19 presents an ongoing global health crisis. Protein-based COVID-19 vaccines that are well-tolerated, safe, highly-protective and convenient to manufacture remain of major interest. We therefore sought to compare the immunogenicity and protective efficacy of a number of recombinant SARS-CoV-2 spike protein candidates expressed in insect cells. By comparison to a full length (FL) spike protein detergent-extracted nanoparticle antigen, the soluble secreted spike protein extracellular domain (ECD) generated higher protein yields per liter of culture and when formulated with either Alum-CpG55.2 or Advax-CpG55.2 combination adjuvants elicited robust antigen-specific humoral and cellular immunity in mice. In hamsters, the spike ECD when formulated with either adjuvant induced high serum neutralizing antibody titers even after a single dose. When challenged with the homologous SARS-CoV-2 virus, hamsters immunized with the adjuvanted spike ECD exhibited reduced viral load in day 1–3 oropharyngeal swabs and day 3 nasal turbinate tissue and had no recoverable infectious virus in day 3 lung tissue. The reduction in lung viral load correlated with less weight loss and lower lung pathology scores. The formulations of spike ECD with Alum-CpG55.2 or Advax-CpG55.2 were protective even after just a single dose, although the 2-dose regimen performed better overall and required only half the total amount of antigen. Pre-challenge serum neutralizing antibody levels showed a strong correlation with lung protection, with a weaker correlation seen with nasal or oropharyngeal protection. This suggests that serum neutralizing antibody levels may correlate more closely with systemic, rather than mucosal, protection. The spike protein ECD with Advax-CpG55.2 formulation (Covax-19® vaccine) was selected for human clinical development.  相似文献   

14.
《Vaccine》2021,39(52):7526-7530
Carriers that augment delivery, immunogenicity or both are crucial in the development of vaccines especially component vaccines as components of pathogens are often poorly immunogenic. Cholesteryl pullulan (CHP) that forms nano-sized hydrogel (nanogel) and encapsulates proteins was shown to be useful in the delivery of vaccines. Here we demonstrate that subcutaneous immunization of mice with bovine serum albumin (BSA) chemically conjugated to NH2-CHP nanogel induces strong antibody production. This augmented antibody production requires covalent conjugation between BSA and CHP, but does not require nanogel formation. Conjugation of NH2-CHP nanogel induces persistence of BSA in dendritic cells (DCs) in vivo. As resistance to lysosomal degradation was previously shown to augment antigen presentation by DCs, conjugation of antigens with CHP nanogel may enhance antibody production to antigens by delaying lysosomal degradation. Therefore, delayed degradation of antigens by covalent conjugation with nanoparticles may be a good strategy for the development of effective vaccines.  相似文献   

15.
《Vaccine》2021,39(46):6805-6812
Adjuvants are essential for ensuring the efficacy of modern vaccines. Considering frequent local and systemic adverse reactions, research into the development of safer and more effective adjuvants is being actively conducted. In recent years, the novel concept of laser vaccine adjuvants, which use the physical energy of light, has been developed. For long, light has been known to affect the physiological functions in living organisms. Since the development of lasers as stable light sources, laser adjuvants have evolved explosively in multiple ways over recent decades. Future laser adjuvants would have the potential not only to enhance the efficacy of conventional vaccine preparations but also to salvage candidate vaccines abandoned during development because of insufficient immunogenicity or owing to their inability to be combined with conventional adjuvants. Furthermore, the safety and efficacy of non-invasive laser adjuvants make them advantageous for vaccine dose sparing, which would be favorable for the timely and equitable global distribution of vaccines. In this review, we first describe the basics of light–tissue interactions, and then summarize the classification of lasers, the history of laser adjuvants, and the mechanisms by which different lasers elicit an immune response.  相似文献   

16.
《Vaccine》2019,37(29):3902-3910
The identification of adjuvants that promote lasting antigen-specific immunity and augment vaccine efficacy are integral to the development of new protein-based vaccines. The Ebola virus-like particle (VLP) vaccine expressing Ebola virus glycoprotein (GP) and matrix protein (VP40) was used in this study to evaluate the ability of TLR4 agonist glucopyranosyl lipid adjuvant (GLA) formulated in a stable emulsion (SE) to enhance immunogenicity and promote durable protection against mouse-adapted Ebola virus (ma-EBOV). Antibody responses and Ebola-specific T cell responses were evaluated post vaccination. Survival analysis after lethal ma-EBOV challenge was performed 4 weeks and 22 weeks following final vaccination. GLA-SE enhanced EBOV-specific immunity and resulted in long-term protection against challenge with ma-EBOV infection in a mouse model. Specifically, GLA-SE elicited Th1-skewed antibodies and promoted the generation of EBOV GP-specific polyfunctional T cells. These results provide further support for the utility of TLR4 activating GLA-SE-adjuvanted vaccines.  相似文献   

17.
《Vaccine》2022,40(6):934-944
Respiratory Syncytial Virus (RSV) remains a leading cause of severe respiratory disease for which no licensed vaccine is available. We have previously described the derivation of an RSV Fusion protein (F) stabilized in its prefusion conformation (preF) as vaccine immunogen and demonstrated superior immunogenicity in naive mice of preF versus wild type RSV F protein, both as protein and when expressed from an Ad26 vaccine vector. Here we address the question if there are qualitative differences between the two vaccine platforms for induction of protective immunity. In naïve mice, both Ad26.RSV.preF and preF protein induced humoral responses, whereas cellular responses were only elicited by Ad26.RSV.preF. In RSV pre-exposed mice, a single dose of either vaccine induced cellular responses and strong humoral responses. Ad26-induced RSV-specific cellular immune responses were detected systemically and locally in the lungs. Both vaccines showed protective efficacy in the cotton rat model, but Ad26.RSV.preF conferred protection at lower virus neutralizing titers in comparison to RSV preF protein. Factors that may contribute to the protective capacity of Ad26.RSV.preF elicited immunity are the induced IgG2a antibodies that are able to engage Fcγ receptors mediating Antibody Dependent Cellular Cytotoxicity (ADCC), and the induction of systemic and lung resident RSV specific CD8 + T cells. These data demonstrate qualitative improvement of immune responses elicited by an adenoviral vector based vaccine encoding the RSV preF antigen compared to the subunit vaccine in small animal models which may inform RSV vaccine development.  相似文献   

18.
《Vaccine》2020,38(18):3455-3463
Zika virus (ZIKV) reemergence poses a significant health threat especially due to its risks to fetal development, necessitating safe and effective vaccines that can protect pregnant women. Zika envelope domain III (ZE3) has been identified as a safe and effective vaccine candidate, however it is poorly immunogenic. We previously showed that plant-made recombinant immune complex (RIC) vaccines are a robust platform to improve the immunogenicity of weak antigens. In this study, we altered the antigen fusion site on the RIC platform to accommodate N-terminal fusion to the IgG heavy chain (N-RIC), and thus a wider range of antigens, with a resulting 40% improvement in RIC expression over the normal C-terminal fusion (C-RIC). Both types of RICs containing ZE3 were efficiently assembled in plants and purified to >95% homogeneity with a simple one-step purification. Both ZE3 RICs strongly bound complement receptor C1q and elicited strong ZE3-specific antibody titers that correlated with ZIKV neutralization. When either N-RIC or C-RIC was codelivered with plant-produced hepatitis B core (HBc) virus-like particles (VLP) displaying ZE3, the combination elicited 5-fold greater antibody titers (>1,000,000) and more strongly neutralized ZIKV than either RICs or VLPs alone, after only two doses without adjuvant. These findings demonstrate that antigens that require a free N-terminus for optimal antigen display can now be used with the RIC system, and that plant-made RICs and VLPs are highly effective vaccines targeting ZE3. Thus, the RIC platform can be more generally applied to a wider variety of antigens.  相似文献   

19.
《Vaccine》2019,37(42):6232-6239
Clostridium perfringens is a major cause of food poisoning worldwide, with its enterotoxin (CPE) being the major virulence factor. The C-terminus of CPE (C-CPE) is non-toxic and is the part of the toxin that binds to epithelial cells via the claudins in tight junctions; however, C-CPE has low antigenicity. To address this issue, we have used protein engineering technology to augment the antigenicity of C-CPE and have developed a C-CPE-based vaccine against C. perfringens-mediated food poisoning. Moreover, C-CPE has properties that make it potentially useful for the development of vaccines against other bacterial toxins that cause food poisoning. For example, we hypothesized that the ability of C-CPE to bind to claudins could be harnessed to deliver vaccine antigens directly to mucosa-associated lymphoid tissues, and we successfully developed a nasally administered C-CPE-based vaccine delivery system that promotes antigen-specific mucosal and systemic immune responses. In addition, our group has revealed the roles that the nasal mucus plays in lowering the efficacy of C-CPE-based nasal vaccines. Here, we review recent advances in the development of C-CPE-based vaccines against the major bacterial toxins that cause food poisoning and discuss our C-CPE-based nasal vaccine delivery system.  相似文献   

20.
《Vaccine》2019,37(35):4963-4974
Vaccination is the most efficient strategy to protect from infectious diseases and the induction of a protective immune response not only depends on the nature of the antigen, but is also influenced by the vaccination strategy and the co-administration of adjuvants. Therefore, the precise monitoring of adjuvant candidates and their immune modulatory properties is a crucial step in vaccine development. Here, one central aspect is the induction of appropriate humoral and cellular effector mechanisms.In our study we performed a direct comparison of two promising candidates in adjuvant development, the STING activator bis-(3,5)-cyclic dimeric adenosine monophosphate (c-di-AMP) and the Toll-like receptor ligand formulation poly(I:C)/CpG. These were evaluated in C57BL/6 mice using the model antigen ovalbumin (OVA) in subcutaneous vaccination with soluble protein as well as in a dendritic cell (DC) targeting approach (αDEC-OVA). Strikingly, c-di-AMP as compared to poly(I:C)/CpG resulted in significantly higher antigen-specific IgG antibody levels when used in immunization with soluble OVA as well as in antigen targeting to DC. In vaccination with soluble OVA, c-di-AMP induced a significantly stronger CTL, Th1 and IFNγ-producing CD8+ memory T cell response than poly(I:C)/CpG. The response was CTL and Th1 cell dominated, a profile shared by both adjuvants. In the context of targeting OVA to DC, c-di-AMP induced significantly increased Th1 and Th2 cell responses as compared to poly(I:C)/CpG. Interestingly, the Th1 response dominated the overall T cell response only when c-di-AMP was used, indicating a distinct modulatory property of c-di-AMP when the DC targeting immunization approach was exploited.Taken together, we describe superior properties of c-di-AMP as compared to poly(I:C)/CpG in subcutaneous vaccination with soluble antigen as well as antigen targeting to DC. This indicates exceptionally effective adjuvant properties for c-di-AMP and provides compelling evidence of its potential for further adjuvant development, especially also when using DC targeting approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号