首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Vaccine》2019,37(23):3113-3122
Non-typeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat) are frequent pathogens in acute exacerbations of COPD. We assessed the safety, reactogenicity and immunogenicity of different investigational vaccine formulations containing surface proteins of NTHi (PD and PE-PilA) and Mcat (UspA2) in adults with smoking history ≥10 pack-years, to immunologically represent the COPD population.Participants received two doses 60 days apart in a randomised, observer-blind, placebo-controlled study (NCT02547974). In step 1, 30 healthy adults aged 18–40 years were randomised (1:1) to receive a non-adjuvanted formulation (10-10-PLAIN) or placebo. In step 2, 90 smokers/ex-smokers aged 50–70 years randomly (1:1:1) received an AS01-adjuvanted formulation containing either 10 µg of each antigen (10-10-AS01) or 10 µg of each NTHi antigen and 3.3 µg of Mcat antigen (10-3-AS01), or placebo.Incidences of solicited local adverse events (AEs) tended to be highest in the AS01-adjuvanted vaccine groups. Most solicited AEs had mild/moderate intensity. No vaccine-related serious AEs were reported. The 10-3-AS01 formulation induced the best humoral immune response against the NTHi antigens. Responses against the Mcat antigen were similar across groups, with waning immunogenicity after 30 days post-dose 2.The investigational NTHi-Mcat vaccine had an acceptable safety and reactogenicity profile and good immunogenicity in older adults with a smoking history.  相似文献   

2.
Meier PS  Troller R  Grivea IN  Syrogiannopoulos GA  Aebi C 《Vaccine》2002,20(13-14):1754-1760
UspA1 and UspA2 of Moraxella catarrhalis are vaccine candidates. The aims of this study were to determine: (1) the frequencies of occurrence and (2) the degrees of conservation of two surface-exposed epitopes of the uspA1 and uspA2 genes and their respective gene products in 108 nasopharyngeal isolates from young children. The uspA1 and uspA2 genes were detected in 107 (99%) and 108 (100%) isolates, respectively. Twenty-three of 108 uspA2 genes (21%) were identified as the variant gene uspA2H. One-hundred and five isolates (97%) expressed the mAb17C7-reactive epitope shared by UspA1 and UspA2, and 103 isolates (95%) reacted with the UspA1-specific mAb24B5. The only isolate which lacked a uspA1 gene demonstrated reduced adherence to HEp-2 cells and complement sensitivity. The data indicate that both uspA genes and the expression of at least two surface-exposed epitopes are virtually ubiquitous in isolates from a population at risk for otitis media. A vaccine capable of inducing a bactericidal immune response against the mAb17C7- and/or mAb24B5-reactive epitopes appears promising.  相似文献   

3.
4.
Neisseria meningitidis (Nm) serogroups B, C and Y are the major causes of meningococcal diseases in the United States. NmB accounts for ~1/3 of the disease but no licensed vaccine is yet available. Two candidate vaccines are being developed specifically to target NmB, but may also provide protection against other serogroups. To assess the potential impact of these vaccines on NmB and other serogroups causing disease in the US, we determined the prevalence, genetic diversity and epidemiological characteristics of three candidate antigen genes in Nm isolates collected through Active Bacterial Core surveillance (ABCs), a population-based active surveillance program. fHbp was detected in all NmB, NmY and NmW135 isolates. Eleven NmC isolates contain fHbp with a single base-pair deletion creating a frame shift in the C-terminal region. Among NmB, 59% were FHbp subfamily/variant B/v1 and 41% A/v2-3. Among NmC and NmY, 39% and 3% were B/v1, respectively. nadA was detected in 39% of NmB, 61% of NmC and 4% of NmY. Among isolates tested, nhbA was present in all NmB and 96% of non-B. For the subset of strains sequenced for NadA and NhbA, pairwise identity was greater than 93% and 78%, respectively. The proportion of FHbp subfamily/variant was different between ABCs site and year, but no linear temporal trend was observed. Although assessment of the vaccine coverage also requires understanding of the antigen expression and the ability to induce bactericidal activity, our finding that all isolates contain one or more antigen genes suggests these candidate vaccines may protect against multiple Nm serogroups.  相似文献   

5.
An outer membrane protein from Moraxella catarrhalis with a mass of 74-kDa was isolated and evaluated as a vaccine candidate. The 74-kDa protein binds transferrin, and appears to be related to the other proteins from the organism that are reported to bind transferrin. The 74-kDa protein possessed conserved epitopes exposed on the bacterial surface. This is based on the reactivity with whole bacterial cells as well as complement dependent bactericidal activity of sera from mice immunized with the isolated proteins from the O35E and TTA24 isolates. However, there was divergence in the degree of antibody cross-reactivity with the protein from one strain to another. This serotypic divergence was reflected in both the complement-dependent bactericidal activities of the antibodies elicited in mice and the capacity of immune mice to clear the bacteria in a murine pulmonary model. Antibodies affinity purified from human plasma lacked bactericidal activity even though they were reactive with all the tested isolates. The 74-kDa protein appears to be a good vaccine candidate, but more studies are needed to understand its antigenic variability and whether antibodies toward it are protective.  相似文献   

6.
Koeberling O  Welsch JA  Granoff DM 《Vaccine》2007,25(10):1912-1920
A broadly protective vaccine against meningococcal group B disease is not available. We previously reported that an outer membrane vesicle (OMV) vaccine containing over-expressed genome-derived antigen (GNA) 1870 elicited broader protective antibody responses than recombinant GNA1870 or conventional OMV vaccines prepared from a strain that naturally expresses low amounts of GNA1870. Certain wildtype strains such as H44/76 naturally express larger amounts of GNA1870 and, potentially, could be used to prepare an improved OMV vaccine without genetic over-expression of the antigen. We transformed H44/76 with a shuttle vector to over-express variant 1 (v.1) GNA1870 and compared the immunogenicity in mice of OMV vaccines prepared from wildtype H44/76 (v.1), the mutant, and a recombinant v.1 GNA1870 vaccine. Mice immunized with OMV with over-expressed GNA1870 developed broader serum bactericidal and/or greater C3 deposition activity on the surface of encapsulated strains of N. meningitidis than control mice immunized with the OMV vaccine prepared from the wildtype strain, or the rGNA1870 vaccine. When a panel of group B strains from patients in California was tested, sera from mice immunized with the OMV vaccine containing over-expressed GNA1870 were bactericidal against 100% of the v.1 strains. In contrast, only 20% of isolates that expressed subvariants of the v.1 GNA1870 protein were susceptible to bactericidal activity of antibodies elicited by the rGNA1870 or conventional OMV vaccines. Thus, even a modest increase in GNA1870 expression in a strain that naturally is a high producer of GNA1870 results in an OMV vaccine that elicits broader protection against meningococcal disease.  相似文献   

7.
Factor H binding protein (fHbp), one of the main antigens of new vaccines against serogroup B meningococcus, varies in amino acid sequence and level of expression in different clinical isolates. To evaluate the contribution of amino acid sequence variability to vaccine coverage, we constructed a strain that is susceptible to bactericidal killing only by anti-fHbp antibodies and engineered it to express equal levels of 10 different fHbp sub-variants from a constitutive promoter. Testing of these isogenic strains showed that sera from mice or adult volunteers vaccinated with fHbp variant 1.1 were bactericidal against all sub-variants 1 sequences, however the titer against the most distant sequences were several times lower. Sera from vaccinated infants were more susceptible to amino acid variations and they had lower or no bactericidal activity against the distant sub-variants 1 sequences in comparison with sera from adults given the same vaccines. The low coverage provided by fHbp could be overcome using a multicomponent vaccine. We conclude that fHbp is a very important antigen that induces bactericidal antibodies in animals, adults and infants. However, given its high variability of sequence and expression level, it is unlikely that fHbp alone can provide good protection in infants against the distant amino acid sequence variants and therefore multicomponent vaccines inducing protective immunity also against other antigens are more likely to induce a broad protective immunity in all age groups.  相似文献   

8.
Factor H binding proteins (fHBP), are bacterial surface proteins currently undergoing human clinical trials as candidate serogroup B Neisseria meningitidis (MnB) vaccines. fHBP protein sequences segregate into two distinct subfamilies, designated A and B. Here, we report the specificity and vaccine potential of mono- or bivalent fHBP-containing vaccines. A bivalent fHBP vaccine composed of a member of each subfamily elicited substantially broader bactericidal activity against MnB strains expressing heterologous fHBP than did either of the monovalent vaccines. Bivalent rabbit immune sera tested in serum bactericidal antibody assays (SBAs) against a diverse panel of MnB clinical isolates killed 87 of the 100 isolates. Bivalent human immune sera killed 36 of 45 MnB isolates tested in SBAs. Factors such as fHBP protein variant, PorA subtype, or MLST were not predictive of whether the MnB strain could be killed by rabbit or human immune sera. Instead, the best predictor for killing in the SBA was the level of in vitro surface expression of fHBP. The bivalent fHBP vaccine candidate induced immune sera that killed MnB isolates representing the major MLST complexes, prevalent PorA subtypes, and fHBP variants that span the breadth of the fHBP phylogenetic tree. Importantly, epidemiologically prevalent fHBP variants from both subfamilies were killed.  相似文献   

9.
Vu DM  Wong TT  Granoff DM 《Vaccine》2011,29(10):1968-1973
A meningococcal group B vaccine containing multiple protein antigens including factor H binding protein (fHbp) and Neisserial heparin binding antigen (NHba) is in clinical development. The ability of antibodies against individual antigens to interact and augment protective immunity is unknown. We assayed human complement-mediated bactericidal activity (SBA) in stored sera from six immunized adults before and after depletion of antibodies to fHbp and/or NHba. All six subjects developed ≥4-fold increases in SBA titer against a test strain with fHbp in the variant 1 group with an amino acid sequence that matched the vaccine antigen (GMT <1:4 baseline, to 1:139 after 3 doses of vaccine). By adsorption 88 to >95% of the SBA was directed against fHbp. Four subjects developed ≥4-fold increases in SBA titer against a test strain with a heterologous fHbp variant 2 antigen and a homologous NHba amino acid sequence that matched the vaccine antigen (GMT <1:4 baseline, to 1:45). SBA was directed primarily against NHba in one subject, against fHbp in a second, while depletion of either anti-NHba or anti-fHbp antibody removed the majority of SBA in sera from two subjects. In all four subjects, depletion of both anti-fHbp and anti-NHba antibodies removed more SBA than depletion of either antibody individually. Mixing a mouse non-bactericidal anti-fHbp variant 1 antiserum with a mouse anti-NHba antiserum also augmented the anti-NHba SBA titer against this test strain. For meningococcal vaccines that target relatively sparsely exposed antigens such fHbp or NHba, non-bactericidal antibodies against individual antigens can cooperate and elicit SBA.  相似文献   

10.
In this study, we evaluated the immunogenicity and protective efficacy of a candidate attenuated H5N1 pre-pandemic influenza vaccine of clade 2.3.4, rgAnhui, which was reverse genetically generated from highly virulent A/Anhui/01/2005 (H5N1) wild-type virus. When a low-dose antigen (0.3 μg HA) vaccine was combined with aluminum hydroxide adjuvant, virus neutralization and anti-HA IgG antibodies induced in the sera of vaccinated mice showed similar levels as those in mice vaccinated with non-adjuvanted high-dose antigen (3 μg HA) vaccine. Serum antibodies had broad reactivity against highly pathogenic H5N1 viruses of both homologous and heterologous clades. All mice vaccinated with adjuvanted and non-adjuvanted rgAnhui vaccines at low and high antigen doses survived, without any significant weight loss, lethal challenge infection with homologous clade 2.3.4 viruses, including antigenic variant virus and heterologous clade 2.1.3. Mice vaccinated with low-dose antigen without adjuvant, however, exhibited 20% and 60% survival rates against clade 1 and clade 2.2 viruses, respectively; but, addition of adjuvant improved these rates to 80% and 100%, respectively. The data strongly suggest that aluminum hydroxide-adjuvanted rgAnhui vaccine can elicit broad cross-reactive and protective immunities against homologous and heterologous clades, and that the rgAnhui vaccine is a useful pre-pandemic H5N1 vaccine.  相似文献   

11.
McMichael JC 《Vaccine》2000,19(Z1):S101-S107
Vaccine development for Moraxella catarrhalis is in the antigen identification stage. M. catarrhalis does not appear to synthesize secreted antigens such as exotoxins, nor does it appear to possess a carbohydrate capsule. Modified forms of these antigens are usually good vaccine components. There is some interest in whole bacterial cells and membrane fractions, but the search has largely focused on purified outer surface antigens. All of the present antigens have been selected based on the response seen in animals, although the antibody response seen in people exposed to the bacterium provides some guidance. The antibody response provides information related to the cross-strain preservation of epitopes and whether they are surface exposed. Antigens that elicit antibodies that have complement dependent bactericidal capacity, opsonophagocytic activity or interfere with one of the antigen's known functions such as adhesion or nutrient acquisition are particularly valued. In addition to examining the antibody response, some antigens have been evaluated in a murine pulmonary clearance model. Using these assays and model, several vaccine candidates have been identified. The antigens may be roughly classified by the function they serve the bacterium. One set appears to promote adhesion to host tissues and includes the hemagglutinins, ubiquitous surface protein A1 (UspA1), and possibly the CD protein. A second set is involved in nutrient acquisition. This set includes the lactoferrin binding protein A (LbpA) and lactoferrin binding protein B (LbpB), the transferrin binding protein A (TbpA) and transferrin binding protein B (TbpB), the CD and E porins, and the Catarrhalis outer membrane protein B (CopB). A third set is comprised of antigens involved in virulence and it includes lipooligosaccharide (LOS) and the ubiquitous surface protein A2 (UspA2). Antigens of unknown function, such as the 200K protein, may also be vaccine candidates. The antigens that are most suitable will be determined in clinical studies that are only beginning now.  相似文献   

12.
《Vaccine》2016,34(33):3855-3861
Moraxella catarrhalis causes otitis media in children and respiratory tract infections in adults with chronic obstructive pulmonary disease (COPD). A vaccine to prevent M. catarrhalis infections would have an enormous impact globally in preventing morbidity caused by M. catarrhalis in these populations. Using a genome mining approach we have identified a sulfate binding protein, CysP, of an ATP binding cassette (ABC) transporter system as a novel candidate vaccine antigen. CysP expresses epitopes on the bacterial surface and is highly conserved among strains. Immunization with CysP induces potentially protective immune responses in a murine pulmonary clearance model. In view of these features that indicate CysP is a promising vaccine antigen, we conducted further studies to elucidate its function. These studies demonstrated that CysP binds sulfate and thiosulfate ions, plays a nutritional role for the organism and functions in intracellular survival of M. catarrhalis in human respiratory epithelial cells. The observations that CysP has features of a vaccine antigen and also plays an important role in growth and survival of the organism indicate that CysP is an excellent candidate vaccine antigen to prevent M. catarrhalis otitis media and infections in adults with COPD.  相似文献   

13.
《Vaccine》2020,38(13):2841-2848
Transmission-blocking vaccine (TBV) is a promising strategy to interfere with the transmission of malaria. To date, only limited TBV candidate antigens have been identified for Plasmodium vivax. HAP2 is a gamete membrane fusion protein, with homology to the class II viral fusion proteins. Herein we reported the characterization of the PvHAP2 for its potential as a TBV candidate for P. vivax. The HAP2/GCS1 domain of PvHAP2 was expressed in the baculovirus expression system and the recombinant protein was used to raise antibodies in rabbits. Indirect immunofluorescence assays showed that anti-PvHAP2 antibodies reacted only with the male gametocytes on blood smears. Direct membrane feeding assays were conducted using four field P. vivax isolates in Anopheles dirus. At a mean infection intensity of 72.4, 70.7, 51.3, and 15.6 oocysts/midgut with the control antibodies, anti-PvHAP2 antibodies significantly reduced the midgut oocyst intensity by 40.3, 44.4, 61.9, and 89.7%. Whereas the anti-PvHAP2 antibodies were not effective in reducing the infection prevalence at higher parasite exposure (51.3–72.4 oocysts/midgut in the control group), the anti-PvHAP2 antibodies reduced infection prevalence by 50% at a low challenge (15.6 oocysts/midgut). Multiple sequence alignment showed 100% identity among these Thai P. vivax isolates, suggesting that polymorphism may not be an impediment for the utilization of PvHAP2 as a TBV antigen. In conclusion, our results suggest that PvHAP2 could serve as a TBV candidate for P. vivax, and further optimization and evaluation are warranted.  相似文献   

14.
《Vaccine》2022,40(45):6520-6527
Moraxella catarrhalis is an important and common respiratory pathogen that can cause Otitis Media, Community Acquired Pneumonia, and has been associated with an increased risk of exacerbations in chronic obstructive pulmonary disease in adults, leading to morbidity and mortality. Its ubiquitous surface protein A2 (UspA2) has been shown to interact with host structures and extracellular matrix proteins, suggesting a role at an early stage of infection and a contribution to bacterial serum resistance. The UspA proteins are homo-trimeric autotransporters that appear as a lollipop-shaped structure in electron micrographs. They are composed of an N-terminal head with adhesive properties, followed by a stalk, which ends by an amphipathic helix and a C-terminal membrane domain. The three family members UspA1, UspA2 and UspA2H, present different amino acid signatures both at the head and membrane-spanning regions. By combining electron microscopy, hydrogen deuterium exchange mass spectrometry and protein modeling, we identified a shared and repeated epitope recognized by FHUSPA2/10, a potent cross-bactericidal monoclonal antibody raised by UspA2 and deduced key amino acids involved in the binding. The finding strengthens the potential of UspA2 to be incorporated in a vaccine formulation against M. catarrhalis.  相似文献   

15.
《Vaccine》2018,36(45):6867-6874
MenB-FHbp (Trumenba®; bivalent rLP2086) is a meningococcal serogroup B vaccine containing 2 variants of the recombinant lipidated factor H binding protein (FHbp) antigen. The expression of FHbp, an outer membrane protein, is not restricted to serogroup B strains of Neisseria meningitidis (MenB). This study investigated whether antibodies elicited by MenB-FHbp vaccination also protect against non-MenB strains. Immunological responses were assessed in serum bactericidal assays using human complement (hSBAs) with non-MenB disease-causing test strains from Europe, Africa, and the United States. Importantly, FHbp variant distribution varies among meningococcal serogroups; therefore, strains that code for serogroup-specific prevalent variants (ie, representative of the 2 antigenically distinct FHbp subfamilies, designated subfamily A and subfamily B) and with moderate levels of FHbp surface expression were selected for testing by hSBA. After 2 or 3 doses of MenB-FHbp, 53% to 100% of individuals had bactericidal responses (hSBA titers ≥ 1:8) against meningococcal serogroup C, W, Y, and X strains, and 20% to 28% had bactericidal responses against serogroup A strains; in fact, these bactericidal responses elicited by MenB-FHbp antibodies against non-MenB strains, including strains associated with emerging disease, were greater than the serological correlate of protection for meningococcal disease (ie, hSBA titers ≥ 1:4). This is in comparison to a quadrivalent polysaccharide conjugate vaccine, MCV4 (Menactra®, targeting meningococcal serogroups A, C, W, and Y), which elicited bactericidal responses of 90% to 97% against the serogroup A, C, W, and Y strains and had no activity against serogroup X. Together, these results provide clinical evidence that MenB-FHbp may protect against meningococcal disease regardless of serogroup.  相似文献   

16.
Kats LM  Wang L  Murhandarwati EE  Mitri K  Black CG  Coppel RL 《Vaccine》2008,26(26):3261-3267
The rhoptry associated membrane antigen (RAMA) of Plasmodium falciparum has been proposed as a potential candidate for inclusion in a multivalent subunit vaccine against malaria. Previous studies have found that the RAMA gene is refractory to genetic deletion in vitro and is conserved in a range of clinical isolates. Importantly, two independent studies demonstrated that antibodies against the C-terminal region of RAMA are associated with immunity in endemic populations of both Asia and Africa. However, there is presently no direct evidence that anti-RAMA immune responses have a demonstrable anti-parasitic effect either in vitro or in vivo. In this study we used an in vitro invasion inhibition assay and the Plasmodium yoelii mouse model of infection to evaluate the potential of RAMA as a vaccine candidate. Our results demonstrate that anti-PfRAMA antibodies have only a weak inhibitory effect on P. falciparum invasion in vitro. Immunisation with recombinant PyRAMA protein did not protect mice against a lethal P. yoelii infection and did not boost the level of protection induced by a known protective antigen, merozoite surface protein 4/5. Taken together, these data do not support RAMA as a priority vaccine candidate.  相似文献   

17.
Giles BM  Ross TM 《Vaccine》2011,29(16):3043-3054
Pandemic outbreaks of influenza are caused by the emergence of a pathogenic and transmissible virus to which the human population is immunologically naïve. Recent outbreaks of highly pathogenic avian influenza (HPAI) of the H5N1 subtype are of particular concern because of the high mortality rate (60% case fatality rate) and novel subtype. In order to develop a vaccine that elicits broadly reactive antibody responses against emerging H5N1 isolates, we utilized a novel antigen design technique termed computationally optimized broadly reactive antigen (COBRA). The COBRA HA sequence was based upon HA amino acid sequences from clade 2 H5N1 human infections and the expressed protein retained the ability to bind the receptor, as well as mediate particle fusion. Non-infectious recombinant VLP vaccines using the COBRA HA were purified from a mammalian expression system. Mice and ferrets vaccinated with COBRA HA H5N1 VLPs had protective levels of HAI antibodies to a representative isolates from each subclade of clade 2. Furthermore, VLP vaccinated animals were completely protected from a lethal challenge of the clade 2.2 H5N1 virus A/Whooper Swan/Mongolia/244/2005. This is the first report describing the use of COBRA-based antigen design. The COBRA HA H5N1 VLP vaccine elicited broadly reactive antibodies and is an effective influenza vaccine against HPAI virus.  相似文献   

18.
《Vaccine》2021,39(11):1621-1630
Invasive meningococcal disease (IMD) is associated with high case fatality rates and long-term sequelae among survivors. Meningococci belonging to six serogroups (A, B, C, W, X, and Y) cause nearly all IMD worldwide, with serogroup B meningococci (MenB) the predominant cause in many European countries, including Greece (~80% of all IMD). In the absence of protein-conjugate polysaccharide MenB vaccines, two protein-based vaccines are available to prevent MenB IMD in Greece: 4CMenB (Bexsero™, GlaxoSmithKline), available since 2014; and MenB-FHbp, (Trumenba™, Pfizer), since 2018. This study investigated the potential coverage of MenB vaccines in Greece using 107 MenB specimens, collected from 2010 to 2017 (66 IMD isolates and 41 clinical samples identified solely by non-culture PCR), alongside 6 MenB isolates from a carriage study conducted during 2017–2018. All isolates were characterized by multilocus sequence typing (MLST), PorA, and FetA antigen typing. Whole Genome Sequencing (WGS) was performed on 66 isolates to define the sequences of vaccine components factor H-binding protein (fHbp), Neisserial Heparin Binding Antigen (NHBA), and Neisseria adhesin A (NadA). The expression of fHbp was investigated with flow cytometric meningococcal antigen surface expression (MEASURE) assay. The fHbp gene was present in-frame in all isolates tested by WGS and in 41 MenB clinical samples. All three variant families of fHbp peptides were present, with subfamily B peptides (variant 1) occurring in 69.2% and subfamily A in 30.8% of the samples respectively. Sixty three of 66 (95.5%) MenB isolates expressed sufficient fHbp to be susceptible to bactericidal killing by MenB-fHbp induced antibodies, highlighting its potential to protect against most IMD in Greece.  相似文献   

19.
Mawas F  Ho MM  Huskisson R  Saydam M  Corbel MJ 《Vaccine》2007,25(25):4801-4808
The physico-chemical characteristics and immunogenicity of a candidate vaccine against otitis media, prepared from recombinant lipidated outer membrane proteins (rLP4 and rLP6) from non-typeable Haemophilus influenzae (NTHi) and of the ubiquitous cell surface protein UspA2 from Moraxella catarrhalis, were evaluated. Optical spectroscopy, size exclusion chromatography and gel electrophoresis were used to characterise the purified protein components and assess their purity and molecular sizes. The results showed that the three proteins were highly purified. Possible dimers in rLP4, dimers and multimers in rLP6 and UspA2 were detected. Small amounts of rLP4 and rLP6 dimers and most of UspA2 complexes remained tightly bound even after SDS treatment under reducing conditions. Immunogenicity studies showed that all proteins induced substantial antibody responses in mice immunised with AlPO4-adsorbed rLP4, rLP6 or UspA2 or a combination of these proteins. However, combination of these proteins resulted in a reduced response to rLP4 and rLP6, but not to UspA2, suggesting interference between these proteins which should be taken into consideration during the development and evaluation of this vaccine.  相似文献   

20.
Three influenza A (H3N2) reassortant whole virus vaccine strains with differing antibody-inducing capacities in hamsters were investigated morphologically and antigenically. Although initial measurements of virion circumference, from electron micrographs of vaccine preparations, suggested a relationship of small virion size with low immunogenicity, subsequent immunization with, and morphological investigation of, vaccine virions separated on sucrose gradients, failed to obtain populations whose antibody-inducing capacity clearly correlated with constituent virion density, size, morphology or integrity. However, antigenic investigation using single radial haemolysis (SRH) and monoclonal antibodies revealed significant differences in antigenic specificity between the strains. Furthermore, a series of H3N2 isolates, derived using standard reassortment procedures, also showed differences in antigenic specificity in their haemagglutination-inhibition (HI) reactions with monoclonal antibodies after five passages in allantois-on-shell cultures. Variation between these isolates and their A/Victoria parent virus could be detected using SRH and hamster sera raised against each isolate. These results demonstrate variation between candidate influenza A virus vaccine strains, all possessing the same surface (H3N2) glycoproteins, expressed as a consequence of the reassortant system used for their production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号