首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Vaccine》2022,40(12):1837-1845
In the past decades, fowl adenovirus (FAdV)-related diseases became an increasing concern for the poultry industry worldwide. Various immunization strategies against FAdVs have been experimentally investigated, with a particular focus on subunit vaccines against hepatitis-hydropericardium syndrome (HHS), caused by FAdV serotype 4, and inclusion body hepatitis (IBH), caused by serotypes 2, 8a, 8b and 11. In this study, we extended our innovative concept of recombinant chimeric fiber proteins to design a novel chimera combining epitopes from two distinct serotypes, FAdV-4 and -11, and we investigated its efficacy to simultaneously protect chickens against HHS and IBH. Specific pathogen-free chickens were vaccinated with the novel recombinant chimeric fiber and subsequently challenged with either a HHS- or IBH-causing strain. Vaccinated/challenged birds exhibited a reduction of clinical signs, limited hepatomegaly and lower levels of AST compared to the respective challenge controls. Furthermore, the vaccine prevented atrophy of HHS-affected lymphoid organs, such as thymus and bursa of Fabricius, and viral load in the target organs was significantly reduced. Clinical protection was associated with high levels of pre-challenge antibodies measured on ELISA plates coated with the vaccination antigen. Interestingly, the development of neutralizing antibodies was limited against FAdV-11 and absent against FAdV-4, indicating that protection granted by such an antigen may be linked to different immunization pathways. In conclusion, we proved that the concept of chimeric fiber vaccines can be extended across viral species boundaries and represents the first single-component FAdV subunit vaccine providing comprehensive protection against different FAdV-associated diseases.  相似文献   

2.
《Vaccine》2020,38(2):143-149
Recently, outbreaks of adenoviral gizzard erosion (AGE) have been documented in pullets and layers housed free range and in enriched cage systems characterized by increased mortality and a negative impact on egg production. In the present study the pathogenicity of a fowl adenovirus serotype 1 (FAdV-1) field strain as well as the aetiological role of a FAdV-8a strain, both isolated from AGE affected pullets, were investigated in vivo in 20-week-old specific-pathogen-free (SPF) layer-type chickens. Furthermore, the efficacy of a single (week 17) and double (week 14 and 17) application of a live vaccine consisting of an apathogenic FAdV-1 (CELO strain) against challenge with virulent FAdV-1 was investigated.For the first time, AGE was successfully reproduced in adult birds after oral infection of 20-week-old SPF birds with a virulent FAdV-1 field isolate, characterized by pathological changes of the gizzard from 7 days post challenge onwards. In addition, a negative impact of the FAdV-1 infection on the development of the reproductive tract was observed. Thus, confirming the pathogenicity and aetiological role of FAdV-1 in the development of AGE and economic losses due to AGE in layers. In contrast, no pathological changes were observed in birds infected with FAdV-8a.Independent of a single or double application of the live FAdV-1 vaccine strain CELO, no gross pathological changes were observed in gizzards post challenge with the virulent FAdV-1, indicating that complete protection of layers against horizontal induction of AGE was achieved. Nonetheless, virulent FAdV-1 was detected in cloacal swabs and gizzards in both vaccinated groups post challenge determined by the application of an amplification refractory mutation system quantitative PCR used to differentiate between vaccine and challenge strains.  相似文献   

3.
《Vaccine》2021,39(48):6990-7000
The genus flavivirus of the Flaviridae family includes several human pathogens, like dengue, Zika, Japanese encephalitis, and yellow fever virus. These viruses continue to be a significant threat to human health. Vaccination remains the most useful approach to reduce the impact of flavivirus fever. However, currently available vaccines can induce severe side effects or have low effectiveness. An alternative is the use of recombinant vaccines, of which virus-like particles (VLP) and single-round infectious particles (SRIP) are of especial interest. VLP consist of the virus structural proteins produced in a heterologous system that self-assemble in a structure almost identical to the native virus. They are highly immunogenic and have been effective vaccines for other viruses for over 30 years. SRIP are promising vaccine candidates, as they induce both cellular and humoral responses, as viral proteins are expressed. Here, the state of the art to produce both types of particles and their use as vaccines against flaviviruses are discussed. We summarize the different approaches used for the design and production of flavivirus VLP and SRIP, the evidence for their safety and efficacy, and the main challenges for their use as commercial vaccines.  相似文献   

4.
《Vaccine》2019,37(29):3902-3910
The identification of adjuvants that promote lasting antigen-specific immunity and augment vaccine efficacy are integral to the development of new protein-based vaccines. The Ebola virus-like particle (VLP) vaccine expressing Ebola virus glycoprotein (GP) and matrix protein (VP40) was used in this study to evaluate the ability of TLR4 agonist glucopyranosyl lipid adjuvant (GLA) formulated in a stable emulsion (SE) to enhance immunogenicity and promote durable protection against mouse-adapted Ebola virus (ma-EBOV). Antibody responses and Ebola-specific T cell responses were evaluated post vaccination. Survival analysis after lethal ma-EBOV challenge was performed 4 weeks and 22 weeks following final vaccination. GLA-SE enhanced EBOV-specific immunity and resulted in long-term protection against challenge with ma-EBOV infection in a mouse model. Specifically, GLA-SE elicited Th1-skewed antibodies and promoted the generation of EBOV GP-specific polyfunctional T cells. These results provide further support for the utility of TLR4 activating GLA-SE-adjuvanted vaccines.  相似文献   

5.
《Vaccine》2020,38(27):4346-4354
Vivax malaria is a major cause of morbidity and mortality worldwide, with several million clinical cases per year and 2.5 billion at risk of infection. A vaccine is urgently needed but the most advanced malaria vaccine, VMP001, confers only very low levels of protection against vivax malaria challenge in humans. VMP001 is based on the circumsporozoite protein (CSP) of Plasmodium vivax. Here a virus-like particle, Qβ, is used as a platform to generate very high levels of antibody against peptides from PvCSP in mice, in order to answer questions important to further development of P. vivax CSP (PvCSP) vaccines. Minimal peptides from the VK210 and VK247 allelic variants of PvCSP are found to be highly protective as Qβ-peptide vaccines, using transgenic P. berghei parasites expressing the homologous PvCSP allelic variant. A target of neutralising antibodies within the nonamer unit repeat of VK210, AGDR, is found, as a Qβ-peptide vaccine, to provide partial protection against malaria challenge, and enhances protective efficacy when combined with full-length PvCSP vaccination. A truncated form of PvCSP, missing the N-terminal domain, is found to confer much higher levels of protective efficacy than full-length PvCSP. Peptides derived from highly conserved areas of PvCSP, RI and RII, are found not to confer protective efficacy as Qβ-peptide vaccines.  相似文献   

6.
《Vaccine》2022,40(7):977-987
Noroviruses (NoV) are the leading cause of epidemic acute gastroenteritis in humans worldwide. A safe and effective vaccine that prevents NoV infection or minimizes NoV disease burden is needed, especially for children and the elderly who are particularly susceptible to NoV disease. A plant-based expression system (magnICON®) was used to manufacture two different virus-like particle (VLP) immunogens derived from human NoV genogroups I and II, genotype 4 (GI.4 and GII.4), which were subsequently blended 1:1 (w/w) into a bivalent vaccine composition (rNV-2v). Here, we report on the safety and immunogenicity of rNV-2v from one pilot and two GLP-compliant toxicity studies in New Zealand White rabbits administered the vaccine subcutaneously (SC) or intramuscularly (IM). Strong genogroup-specific immune responses were induced by vaccination without adjuvant at various doses (200 to 400 μg VLP/administration) and administration schedules (Days 1 and 7; or Days 1, 15 and 29). The results showed sporadic local irritation at the injection site, which resolved over time, and was non-adverse and consistent with expected reactogenicity. There were no signs of systemic toxicity related to vaccine administration relative to vehicle-treated controls with respect to clinical chemistry, haematology, organ weights, macroscopic examinations, or histopathology. In a 3-administration regimen (n + 1 the clinical regimen), the NOAEL for rNV-2v via the SC or IM route was initially determined to be 200 μg. An improved GI.4 VLP variant mixed 1:1 (w/w) with the wild-type GII.4 VLP was subsequently evaluated via the IM route at a higher dose in the same 3-administration model, and the NOAEL was raised to 300 µg. Serology performed in samples of both toxicity studies showed significant and substantial anti-VLP-specific antibody titers for rNV-2v vaccines administered via the IM or SC route, as well as relevant NoV blocking antibody responses. These results support initiation of clinical development of the plant-made NoV vaccine.  相似文献   

7.
《Vaccine》2019,37(42):6221-6231
Foot-and-mouth disease (FMD) is a highly contagious viral infection of cloven hooved animals that continues to cause economic disruption in both endemic countries or when introduced into a formally FMD free country. Vaccines that protect against clinical disease and virus shedding are critical to control FMD. The replication deficient human adenovirus serotype 5 (Ad5) vaccine vector expressing empty FMD virus (FMDV) capsid, AdtFMD, is a promising new vaccine platform. With no shedding or spreading of viral vector detected in field trials, this vaccine is very safe to manufacture, as there is no requirement for high containment faciitites. Here, we describe three studies assessing the proportion of animals protected from clinical vesicular disease (foot lesions) following live-FMDV challenge by intradermolingual inoculation at 6 or 9 months following a single vaccination with the commercial AdtFMD vaccine, provisionally licensed for cattle in the United States. Further, we tested the effect of vaccination route (transdermal, intramuscular, subcutaneous) on clinical outcome and humoral immunity. Results demonstrate that a single dose vaccination in cattle with the commercial vaccine vector expressing capsid proteins of the FMDV strain A24 Cruzeiro (Adt.A24), induced protection against clinical FMD at 6 months (100% transdermal, 80% intramuscular, and 60% subcutaneous) that waned by 9 months post-vaccination (33% transdermal and 20% intramuscular). Post-vaccination serum from immunized cattle (all studies) generally contained FMDV specific neutralizing antibodies by day 14. Anti-FMDV antibody secreting cells are detected in peripheral blood early following vaccination, but are absent after 28 days post-vaccination. Thus, the decay in antibody mediated immunity over time is likely a function of FMDV-specific antibody half-life. These data reveal the short time span of anti-FMDV antibody secreting cells (ASCs) and important performance characteristics of needle-free vaccination with a recombinant vectored subunit vaccine for FMDV.  相似文献   

8.
《Vaccine》2022,40(6):934-944
Respiratory Syncytial Virus (RSV) remains a leading cause of severe respiratory disease for which no licensed vaccine is available. We have previously described the derivation of an RSV Fusion protein (F) stabilized in its prefusion conformation (preF) as vaccine immunogen and demonstrated superior immunogenicity in naive mice of preF versus wild type RSV F protein, both as protein and when expressed from an Ad26 vaccine vector. Here we address the question if there are qualitative differences between the two vaccine platforms for induction of protective immunity. In naïve mice, both Ad26.RSV.preF and preF protein induced humoral responses, whereas cellular responses were only elicited by Ad26.RSV.preF. In RSV pre-exposed mice, a single dose of either vaccine induced cellular responses and strong humoral responses. Ad26-induced RSV-specific cellular immune responses were detected systemically and locally in the lungs. Both vaccines showed protective efficacy in the cotton rat model, but Ad26.RSV.preF conferred protection at lower virus neutralizing titers in comparison to RSV preF protein. Factors that may contribute to the protective capacity of Ad26.RSV.preF elicited immunity are the induced IgG2a antibodies that are able to engage Fcγ receptors mediating Antibody Dependent Cellular Cytotoxicity (ADCC), and the induction of systemic and lung resident RSV specific CD8 + T cells. These data demonstrate qualitative improvement of immune responses elicited by an adenoviral vector based vaccine encoding the RSV preF antigen compared to the subunit vaccine in small animal models which may inform RSV vaccine development.  相似文献   

9.
10.
《Vaccine》2022,40(31):4270-4280
Despite the development of prophylactic anti-malarial drugs and practices to prevent infection, malaria remains a health concern. Preclinical testing of novel malaria vaccine strategies achieved through rational antigen selection and novel particle-based delivery platforms is yielding encouraging results. One such platform, self-assembling virus-like particles (VLP) is safer than attenuated live viruses, and has been approved as a vaccination tool by the FDA. We explore the use of Norovirus sub-viral particles lacking the natural shell (S) domain forming the interior shell but that retain the protruding (P) structures of the native virus as a vaccine vector. Epitope selection and their surface display has the potential to focus antigen specific immune responses to crucial epitopes. Recombinant P-particles displaying epitopes from two malaria antigens, Plasmodium falciparum (Pf) CelTOS and Plasmodium falciparum (Pf) CSP, were evaluated for immunogenicity and their ability to confer protection in a murine challenge model. Immune responses induced in mice resulted either in sterile protection (displaying PfCelTOS epitopes) or in antibodies with functional activity against sporozoites (displaying PfCSP epitopes) in an in vitro liver-stage development assay (ILSDA). These results are encouraging and support further evaluation of this platform as a vaccine delivery system.  相似文献   

11.
《Vaccine》2021,39(40):5780-5786
Elevated triglycerides (TGs) are an important risk factor for the development of coronary heart disease (CHD) and in acute pancreatitis. Angiopoietin-like proteins 3 (ANGPTL3) and 4 (ANGPTL4) are critical regulators of TG metabolism that function by inhibiting the activity of lipoprotein lipase (LPL), which is responsible for hydrolyzing triglycerides in lipoproteins into free fatty acids. Interestingly, individuals with loss-of-function mutations in ANGPTL3 and ANGPTL4 have low plasma TG levels, have a reduced risk of CHD, and are otherwise healthy. Consequently, interventions targeting ANGPTL3 and ANGPTL4 have emerged as promising new approaches for reducing elevated TGs. Here, we developed virus-like particle (VLP) based vaccines that target the LPL binding domains of ANGPTL3 and ANGPTL4. ANGPTL3 VLPs and ANGPTL4 VLPs are highly immunogenic in mice and vaccination with ANGPTL3 VLPs, but not ANGPTL4 VLPs, was associated with reduced steady state levels of TGs. Immunization with ANGPTL3 VLPs rapidly cleared circulating TG levels following an oil gavage challenge and enhanced plasma LPL activity. These data indicate that targeting ANGPTL3 by active vaccination is a potential alternative to other ANGPTL3-inhibiting therapies.  相似文献   

12.
13.
《Vaccine》2023,41(10):1735-1742
In 2019, there were about 100,000 kidney transplants globally, with more than a quarter of them performed in the United States. Unfortunately, some engrafted organs are lost to polyomavirus-associated nephropathy (PyVAN) caused by BK and JC viruses (BKPyV and JCPyV). Both viruses cause brain disease and possibly bladder cancer in immunosuppressed individuals. Transplant patients are routinely monitored for BKPyV viremia, which is an accepted hallmark of nascent nephropathy. If viremia is detected, a reduction in immunosuppressive therapy is standard care, but the intervention comes with increased risk of immune rejection of the engrafted organ. Recent reports have suggested that transplant recipients with high levels of polyomavirus-neutralizing antibodies are protected against PyVAN. Virus-like particle (VLP) vaccines, similar to approved human papillomavirus vaccines, have an excellent safety record and are known to induce high levels of neutralizing antibodies and long-lasting protection from infection. In this study, we demonstrate that VLPs representing BKPyV genotypes I, II, and IV, as well as JCPyV genotype 2 produced in insect cells elicit robust antibody titers. In rhesus macaques, all monkeys developed neutralizing antibody titers above a previously proposed protective threshold of 10,000. A second inoculation, administered 19 weeks after priming, boosted titers to a plateau of 25,000 that was maintained for almost two years. No vaccine-related adverse events were observed in any macaques. A multivalent BK/JC VLP immunogen did not show inferiority compared to the single-genotype VLP immunogens. Considering these encouraging results, we believe a clinical trial administering the multivalent VLP vaccine in patients waiting to receive a kidney transplant is warranted to evaluate its ability to reduce or eliminate PyVAN.  相似文献   

14.
《Vaccine》2019,37(26):3400-3408
In the past when large investments have been made in tackling narrow scientific challenges, the enormous expansion in our knowledge in one small area has had a spill-over effect on research and treatment of other diseases. The large investment in HIV vaccine development in recent years has the potential for such an effect on vaccine development for other diseases. HIV vaccine developers have experienced repeated failure using the standard approaches to vaccine development. This has forced them to consider immune responses in greater depth and detail. It has led to a recognition of the importance of epitopic specificity in both antibody and T cell responses. Also, it has led to an understanding of the importance of affinity maturation in antibody responses and the quality of T cell responses in T cell-mediated immunity. It has advanced the development of many novel vaccine vectors and vehicles that are now available for use in other vaccines. Further, it has focused attention on the impact of research funding mechanisms and community engagement on vaccine development. These developments and considerations have implications for vaccinology more generally. Some suggestions are made for investigators working on other “hard-to-develop” vaccines.  相似文献   

15.
《Vaccine》2021,39(33):4573-4576
Many Chinese breeding pigs are repeatedly vaccinated against classical swine fever virus (CSFV) and porcine epidemic diarrhea virus (PEDV), which cause fatal, highly contagious diseases. To reduce their high frequency vaccination-induced immune stress, we constructed a combined vaccine based on the E2 protein of CSFV and the S1 spike protein subunit of PEDV (named E2-S1). In mice, the E2-S1 vaccine elicited higher neutralizing antibody titers and IgG1/IgG2a ratios against CSFV and PEDV than those induced by individual E2 or S1 vaccines. Moreover, it elicited high IL-4 expression, but no IFN-γ expression. The results suggest that good compatibility exists between E2 and S1 antigens, and the E2-S1 vaccine can elicit a strong Th2-type cell-mediated humoral immune response. The E2-S1 recombinant fusion protein provides a novel vaccine candidate against both CSFV and PEDV, laying the foundation for future combination vaccines against swine diseases.  相似文献   

16.
The circumsporozoite protein (CSP) is the main surface antigen of malaria sporozoites, a prime vaccine target, and is known to have polymorphisms in the C-terminal region. Vaccines using a single allele may have lower efficacy against genotypic variants. Recent studies have found evidence suggesting the efficacy of the CSP-based RTS,S malaria vaccine may be limited against P. falciparum CSP alleles that diverge from the 3D7 vaccine allele, particularly in this polymorphic C-terminal region. In order to assess the breadth of the RTS,S-induced antibody responses against CSP C-terminal antigenic variants, we used a novel multiplex assay to measure reactivity of serum samples from a recent RTS,S study against C-terminal peptides from 3D7 and seven additional CSP alleles that broadly represent the genetic diversity found in circulating P. falciparum field isolates. We found that responses to the variants showed, on average, a ~ 30-fold reduction in reactivity relative to the vaccine-matched 3D7 allele. The extent of this reduction, ranging from 21 to 69-fold, correlated with the number of polymorphisms between the variants and 3D7. We calculated antibody breadth of each sample as the median relative reactivity to the seven CSP variants compared to 3D7. Surprisingly, protection from 3D7 challenge in the RTS,S study was associated with higher C-terminal antibody breadth. These findings suggest CSP C-terminal-specific avidity or fine-specificity may play a role in RTS,S-mediated protection and that breadth of C-terminal CSP-specific antibody responses may be a marker of protection.  相似文献   

17.
《Vaccine》2019,37(31):4302-4309
Influenza A virus (IAV) vaccines in pigs generally provide homosubtypic protection but fail to prevent heterologous infections. In this pilot study, the efficacy of an intradermal pDNA vaccine composed of conserved SLA class I and class II T cell epitopes (EPITOPE) against a homosubtypic challenge was compared to an intramuscular commercial inactivated whole virus vaccine (INACT) and a heterologous prime boost approach using both vaccines. Thirty-nine IAV-free, 3-week-old pigs were randomly assigned to one of five groups including NEG-CONTROL (unvaccinated, sham-challenged), INACT-INACT-IAV (vaccinated with FluSure XP® at 4 and 7 weeks, pH1N1 challenged), EPITOPE-INACT-IAV (vaccinated with PigMatrix EDV at 4 and FluSure XP® at 7 weeks, pH1N1 challenged), EPITOPE-EPITOPE-IAV (vaccinated with PigMatrix EDV at 4 and 7 weeks, pH1N1 challenged), and a POS-CONTROL group (unvaccinated, pH1N1 challenged). The challenge was done at 9 weeks of age and pigs were necropsied at day post challenge (dpc) 5. At the time of challenge, all INACT-INACT-IAV pigs, and by dpc 5 all EPITOPE-INACT-IAV pigs were IAV seropositive. IFNγ secreting cells, recognizing vaccine epitope-specific peptides and pH1N1 challenge virus were highest in the EPITOPE-INACT-IAV pigs at challenge. Macroscopic lung lesion scores were reduced in all EPITOPE-INACT-IAV pigs while INACT-INACT-IAV pigs exhibited a bimodal distribution of low and high scores akin to naïve challenged animals. No IAV antigen in lung tissues was detected at necropsy in the EPITOPE-INACT-IAV group, which was similar to naïve unchallenged pigs and different from all other challenged groups. Results suggest that the heterologous prime boost approach using an epitope-driven DNA vaccine followed by an inactivated vaccine was effective against a homosubtypic challenge, and further exploration of this vaccine approach as a practical control measure against heterosubtypic IAV infections is warranted.  相似文献   

18.
《Vaccine》2021,39(13):1870-1876
Mumps is a contagious disease caused by the mumps virus. It can be prevented using mumps vaccines, administered as a measles-mumps-rubella (MMR) vaccine. For first and second dose immunization, children aged 12–15 months and 4–6 years have been administered this vaccine since 1997 in Korea. Nevertheless, mumps outbreaks still occur in vaccinated populations worldwide. Hence, immunity against these diseases may be attenuated, or there are antigenic differences between currently available vaccine strains and circulating wild-type viruses. After the introduction of national immunization programs in Korea, mumps cases became sporadic. Viral genotypes F, H, and I have emerged since 1998 whereas the vaccine strains belong to genotype A. Here, we compared the amino acid sequences of the haemagglutinin-neuraminidase (HN) gene from wild-type viruses and the mumps vaccine and measured the cross-neutralization titers between them. We selected the F, H, and I wild-type mumps strains circulating in Korea from 1998 to 2016 and analyzed changes in the amino acid sequence of the protein encoded by the HN gene. We measured mumps virus-specific IgG and rapid focus reduction neutralization test (FRNT) titers in Korean isolates and sera obtained from 50 children aged 1–2 years who had been administered a single dose of MMR vaccine. Analysis of the HN protein sequences disclosed no changes in the glycosylation sites but did reveal 4–5 differences between the Korean isolates and the genotype A vaccine strain in terms of the neutralizing epitope sites on their HN proteins. Post-vaccination FRNT titers were significantly lower against genotypes F, H, and I than they were against genotype A. This finding highlights the possibility of a recurrence of mumps outbreaks in vaccinated populations depending on the degree of genetic conservation of the HN gene. Further research into this issue is needed to prevent the resurgence of mumps.  相似文献   

19.
《Vaccine》2019,37(51):7482-7492
BackgroundNative American populations experience a substantial burden of pneumococcal disease despite use of highly effective pneumococcal conjugate vaccines (PCVs). Protein-based pneumococcal vaccines may extend protection beyond the serotype-specific protection elicited by PCVs.MethodsIn this phase IIb, double-blind, controlled trial, 6–12 weeks-old Native American infants randomized 1:1, received either a protein-based pneumococcal vaccine (dPly/PhtD) containing pneumolysin toxoid (dPly, 10 µg) and pneumococcal histidine triad protein D (PhtD, 10 µg) or placebo, administered along with 13-valent PCV (PCV13) at ages 2, 4, 6 and 12–15 months. Other pediatric vaccines were given per the routine immunization schedule. We assessed vaccine efficacy (VE) against acute otitis media (AOM) and acute lower respiratory tract infection (ALRI) endpoints. Immunogenicity, reactogenicity and unsolicited adverse events were assessed in a sub-cohort and serious adverse events were assessed in all children.Results1803 infants were randomized (900 dPly/PhtD; 903 Control). VE against all episodes of American Academy of Pediatrics (AAP)-defined AOM was 3.8% (95% confidence interval: −11.4, 16.9). Point estimates of VE against other AOM outcomes ranged between 2.9% (−9.5, 14.0) and 5.2% (−8.0, 16.8). Point estimates of VE against ALRI outcomes ranged between −4.4% (−39.2, 21.8) and 2.0% (−18.3, 18.8). Point estimates of VE tended to be higher against first than all episodes but the confidence intervals included zero. dPly/PhtD vaccine was immunogenic and had an acceptable reactogenicity and safety profile after primary and booster vaccination in Native American infants.ConclusionsThe dPly/PhtD vaccine was immunogenic and well tolerated, however, incremental efficacy in preventing AAP-AOM over PCV13 was not demonstrated.Clinical trials registrationNCT01545375 (www.clinicaltrials.gov)  相似文献   

20.
《Vaccine》2023,41(38):5507-5517
Vaccines for avian influenza (AI) can protect poultry against disease, mortality, and virus transmission. Numerous factors, including: vaccine platform, immunogenicity, and relatedness to the field strain, are known to be important to achieving optimal AI vaccine efficacy. To better understand how these factors contribute to vaccine protection, a systematic meta-analysis was conducted to evaluate efficacy data for vaccines in chickens challenged with highly pathogenic (HP) AI. Data from a total of 120 individual trials from 25 publications were selected and evaluated. Two vaccine criteria were evaluated for their effects on two metrics of protection. The vaccine criteria were: 1) the relatedness of the vaccine antigen and challenge strain in the hemagglutinin 1 domain (HA1) protein sequence; 2) vaccine-induced antibody titers to the challenge virus (VIAC). The metrics of protection were: A) survival of vaccinated chickens vs unvaccinated controls; and B) reduction in oral virus-shedding by vaccinated vs unvaccinated controls 2–4 days post challenge. Three vaccine platforms were evaluated: oil-adjuvanted inactivated whole AI virus, recombinant herpes virus of turkeys (rHVT) vectored, and a non-replicating alpha-virus vectored RNA particle (RP) vaccine. Higher VIAC correlated with greater reduction of virus-shed and vaccine efficacy by all vaccine platforms. Both higher HA1 relatedness and higher VIAC using challenge virus as antigen correlated with better survival by inactivated vaccines and rHVT-vectored vaccines. However, rHVT-vectored and RP based vaccines were more tolerant of variation in the HA1; the relatedness of the HA1 of the vaccine and challenge virus did not significantly correlate with survival with rHVT-vectored vaccines. Protection was achieved with the lowest aa similarity for which there was data, 90–93 % for rHVT vaccines and 88 % for the RP vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号