首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The following three diagnostic algorithms were evaluated in comparison with the Illumigene assay as a stand-alone test for Clostridium difficile detection: glutamate dehydrogenase antigen screen (GDH) followed by toxin A/B antigen testing (Tox A/B) with the cell cytotoxicity assay for discordant specimens (algorithm 1), GDH followed by the Illumigene (algorithm 2), and GDH followed by Tox A/B with the Illumigene for discordant specimens (algorithm 3). A total of 428 stool specimens submitted to three clinical microbiology laboratories in Manitoba, Canada, for C. difficile detection between June 2011 and April 2012 were included in the study. The prevalence of C. difficile in the stool specimens was 14.7% (63/428) based on toxigenic culture (microbiologic reference standard). The sensitivity and specificity of the Illumigene for C. difficile detection were 73.0% and 99.7%, respectively. The corresponding sensitivities and specificities were 65.1% and 100.0% for algorithm 1, 68.3% and 100.0% for algorithm 2, and 69.8% and 100.0% for algorithm 3. Using algorithm 1, a cell cytotoxicity assay was required for toxin detection in 37% of positive tests, prolonging turnaround time. However, the predictive value of a positive test based on a clinical reference standard (all tests positive or cytotoxigenic culture positive and clinical disease on chart review) was slightly higher with algorithm 1 than with the Illumigene assay as a stand-alone test or as part of an algorithm (algorithms 2 and 3). Based on a reduction in turnaround time, simplicity, and acceptable sensitivity and specificity, we recommend algorithm 2 (screening with the GDH antigen test and confirmatory testing with the Illumigene).  相似文献   

2.
We compared two multistep diagnostic algorithms based on C. Diff Quik Chek Complete and, as confirmatory tests, GenomEra C. difficile and Xpert C. difficile. The sensitivity, specificity, positive predictive value, and negative predictive value were 87.2%, 99.7%, 97.1%, and 98.3%, respectively, for the GenomEra-based algorithm and 89.7%, 99.4%, 95.5%, and 98.6%, respectively, for the Xpert-based algorithm. GenomEra represents an alternative to Xpert as a confirmatory test of a multistep algorithm for Clostridium difficile infection (CDI) diagnosis.  相似文献   

3.
Simplexa Clostridium difficile universal direct PCR, a real-time PCR assay for the detection of the C. difficile toxin B (tcdB) gene using the 3M integrated cycler, was compared with a two-step algorithm which includes the C. Diff Chek-60 glutamate dehydrogenase (GDH) antigen assay followed by cytotoxin neutralization. Three hundred forty-two liquid or semisolid stools submitted for diagnostic C. difficile testing, 171 GDH antigen positive and 171 GDH antigen negative, were selected for the study. All samples were tested by the C. Diff Chek-60 GDH antigen assay, cytotoxin neutralization, and Simplexa direct PCR. Of 171 GDH-positive samples, 4 were excluded (from patients on therapy or from whom duplicate samples were obtained) and 88 were determined to be true positives for toxigenic C. difficile. Of the 88, 67 (76.1%) were positive by the two-step method and 86 (97.7%) were positive by PCR. Seventy-nine were positive by the GDH antigen assay only. Of 171 GDH antigen-negative samples, none were positive by PCR. One antigen-negative sample positive by the cytotoxin assay only was deemed a false positive based on chart review. Simplexa C. difficile universal direct PCR was significantly more sensitive for detecting toxigenic C. difficile bacteria than cytotoxin neutralization (P = 0.0002). However, most PCR-positive/cytotoxin-negative patients did not have clear C. difficile disease. The estimated cost avoidance provided by a more rapid molecular diagnosis was outweighed by the cost of isolating and treating PCR-positive/cytotoxin-negative patients. The costs, clinical consequences, and impact on nosocomial transmission of treating and/or isolating patients positive for toxigenic C. difficile by PCR but negative for in vivo toxin production merit further study.  相似文献   

4.
Clostridium difficile is the most important cause of nosocomial diarrhea. Several laboratory techniques are available to detect C. difficile toxins or the genes that encode them in fecal samples. We evaluated the Xpert C. difficile and Xpert C. difficile/Epi (Cepheid, CA) that detect the toxin B gene (tcdB) and tcdB, cdt, and a deletion in tcdC associated with the 027/NAP1/BI strain, respectively, by real-time PCR, and the Illumigene C. difficile (Meridian Bioscience, Inc.) that detects the toxin A gene (tcdA) by loop-mediated isothermal amplification in stool specimens. Toxigenic culture was used as the reference method for discrepant stool specimens. Two hundred prospective and fifty retrospective diarrheal stool specimens were tested simultaneously by the cell cytotoxin neutralization assay (CCNA) and the Xpert C. difficile, Xpert C. difficile/Epi, and Illumigene C. difficile assays. Of the 200 prospective stools tested, 10.5% (n = 23) were determined to be positive by CCNA, 17.5% (n = 35) were determined to be positive by Illumigene C. difficile, and 21.5% (n = 43) were determined to be positive by Xpert C. difficile and Xpert C. difficile/Epi. Of the 50 retrospective stools, previously determined to be positive by CCNA, 94% (n = 47) were determined to be positive by Illumigene C. difficile and 100% (n = 50) were determined to be positive by Xpert C. difficile and Xpert C. difficile/Epi. Of the 11 discrepant results (i.e., negative by Illumigene C. difficile but positive by Xpert C. difficile and Xpert C. difficile/Epi), all were determined to be positive by the toxigenic culture. A total of 21% of the isolates were presumptively identified by the Xpert C. difficile/Epi as the 027/NAP1/BI strain. The Xpert C. difficile and Xpert C. difficile/Epi assays were the most sensitive, rapid, and easy-to use assays for the detection of toxigenic C. difficile in stool specimens.  相似文献   

5.
6.
7.
8.
9.
Clostridium difficile PCR ribotype 033 (RT033) is found in the gastrointestinal tracts of production animals and, occasionally, humans. The illumigene C. difficile assay (Meridian Bioscience, Inc.) failed to detect any of 52 C. difficile RT033 isolates, while all strains signaled positive for the binary toxin genes but were reported as negative for C. difficile by the Xpert C. difficile/Epi assay (Cepheid).  相似文献   

10.
Safdar N  Craig WA 《The New England journal of medicine》2011,364(19):1875; author reply 1875-1875; author reply 1876
  相似文献   

11.
We compared the performance characteristics of the Simplexa universal direct (Focus Diagnostics, Cypress, CA) and BD GeneOhm (BD Diagnostics/GeneOhm Sciences, San Diego, CA) tests for detection of toxigenic Clostridium difficile in 459 stool samples (9.4% positive). The observed agreement for the results of the two tests with 452 samples with valid test results was 98.2% (kappa, 0.9; P value of 0.73 by the McNemar test). When samples with discordant or invalid results were retested, the agreement increased to 100%.  相似文献   

12.
13.
Recently developed ultrasensitive and quantitative methods for detection of Clostridium difficile toxins provide new tools for diagnosis and, potentially, for management of C. difficile infection (CDI). Compared to methods that detect toxigenic organism, ultrasensitive toxin detection may allow diagnosis of CDI with increased clinical specificity, without sacrificing clinical sensitivity; measurement of toxin levels may also provide information relevant to disease prognosis. This minireview provides an overview of these new toxin detection technologies and considers what these new tools might add to the field.  相似文献   

14.
Enzyme immunoassays (EIA) to detect glutamate dehydrogenase or toxins A (TcdA) and B (TcdB), a cytotoxicity assay, and bacteriologic culture have disadvantages when applied individually to diagnosis of Clostridium difficile infections. Stool specimens (n = 1,596) were subjected to toxin detection via an enzyme-linked fluorescent immunoassay (ELFA; Vidas CDAB assay) and bacteriologic culture for toxigenic C. difficile in a three-step algorithm with additional toxigenic culture. Isolates (n = 163) from ELFA-negative stool specimens were examined via ELFA for toxin production. We amplified tcdA and tcdB from C. difficile isolates and tcdB from stool specimens that were ELFA positive or equivocal and culture negative, and we compared the results to those obtained with the three-step algorithm. More than 26% of stool specimens (419/1,596) were culture positive, yielding 248 isolates (59.2%) with both toxin genes (tcdA- and tcdB-positive isolates), 88 isolates (21.0%) with either tcdA or tcdB, and 83 (19.8%) that had no toxin genes (tcdA- and tcdB-negative isolates). Among 49 (culture-negative/ELFA-positive or -equivocal) stool specimens, 53.1% (26/49) represented tcdB-positive isolates. Therefore, the total number of PCR-positive cases was 362, and 27.1% (98/362) of these were detected through toxigenic culture. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 63.3%, 96.7%, 90.5%, and 92.4% (ELFA alone); 92.8%, 93.3%, 80.2%, and 97.8% (culture); and 70.7%, 91.4%, 95.5%, and 100% (three-step algorithm ELFA and bacterial culture with toxigenic culture), respectively, with culture and PCR for tcdA and tcdB as the standards. Thus, sensitivity and specificity were highest using culture and ELFA, respectively, but we recommend the three-step algorithm comprising EIA to detect both toxins and toxigenic culture for C. difficile as a practical method for achieving better PPV and NPV.Clostridium difficile is an important nosocomial pathogen, causing antimicrobial-associated diarrhea and pseudomembranous colitis. Toxins A (TcdA) and B (TcdB) mediate the pathogenesis of C. difficile infection (CDI), and toxin detection is an important part of diagnosis. A cytotoxicity neutralization assay (CNA) is the reference method for toxin detection, but it is expensive and time-consuming and requires tissue culture facilities (34, 35). Most laboratories now use a commercial enzyme immunoassay (EIA) to detect TcdA and/or TcdB, with the benefits of rapid turnaround time and ease of use (3, 21, 22, 23, 26, 27, 33, 35). The putative >90% sensitivity of toxin EIAs is not often realized in practice, but EIA is the only toxin detection method available to many routine medical laboratories. The demand for EIA kits detecting both TcdA and TcdB has increased due to increased worldwide prevalence of TcdA-negative, TcdB-positive (TcdA− TcdB+) strains (1, 12, 24, 29, 32).A two-step algorithm, based upon EIA-based detection of species-specific antigen glutamate dehydrogenase (GDH-Ag) and toxin detection via CNA, was suggested to have improved sensitivity and specificity in the detection of toxigenic C. difficile (34). However, the GDH-Ag assay detects both nontoxigenic and toxigenic strains, and the aforementioned shortcomings of the CNA assay make it unavailable to many routine laboratories.Bacteriologic culture can be time-consuming, but it is more straightforward and sensitive than CNA for the detection of toxigenic C. difficile. Furthermore, it provides isolates for characterization, yielding information about CDI epidemiology and antimicrobial susceptibility (11, 28, 36). We evaluated the combination of bacteriologic culture and EIA-based detection of TcdA and TcdB as a new strategy for diagnosis of CDI, especially in areas where TcdA− TcdB+ strains are prevalent.  相似文献   

15.
In a large prospective comparison, the illumigene test detected Clostridium difficile in 98% of toxin-positive and 58% of toxin-negative samples confirmed positive by other methods. The Xpert was uniformly sensitive. Most samples with discrepant results had C. difficile concentrations below the illumigene limit of detection. The significance of low-level C. difficile detection needs investigation.  相似文献   

16.
The performances of the AmpliVue, BD Max, and illumigene group B Streptococcus (GBS) nucleic acid amplification tests (NAATs) were compared to that of enriched culture for detection of GBS in antenatal screening specimens. Two hundred specimens were tested simultaneously with the NAATs, following 18 to 24 h of Lim broth enrichment; 15% of specimens were culture positive for GBS, whereas 31.5% were positive by at least one NAAT. All three NAATs were more sensitive (sensitivity, 90.9 to 100%) than culture (sensitivity, 53.6%).  相似文献   

17.
We evaluated the fully automated molecular BD MAX Cdiff assay (BD Diagnostics) and the Xpert C. difficile test (Cepheid) for rapid detection of Clostridium difficile infection. Culture was done on chromogenic agar followed by matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry identification and toxin detection. Repeat testing was required for 1.8% and 6.0% of the BD MAX and Xpert tests, respectively. Sensitivities, specificities, positive predictive values (PPV), and negative predictive values (NPV) were 90.5%, 97.9%, 89.3%, and 98.1%, respectively, for BD MAX and 97.3%, 97.9%, 90.0%, and 99.5%, respectively, for Xpert.  相似文献   

18.
The antitoxins currently used for the detection of Clostridium difficile by counterimmunoelectrophoresis react with other C. difficile antigens in addition to the toxins produced by the bacterium.  相似文献   

19.
Our laboratory has developed testing methods that use real-time PCR and pyrosequencing analysis to enable the rapid identification of potential hypervirulent Clostridium difficile strains. We describe a real-time PCR assay that detects four C. difficile genes encoding toxins A (tcdA) and B (tcdB) and the binary toxin genes (cdtA and cdtB), as well as a pyrosequencing assay that detects common deletions in the tcdC gene in less than 4 h. A subset of historical and recent C. difficile isolates (n = 31) was also analyzed by pulsed-field gel electrophoresis to determine the circulating North American pulsed-field (NAP) types that have been isolated in New York State. Thirteen different NAP types were found among the 31 isolates tested, 13 of which were NAP type 1 strains. To further assess the best approach to utilizing our conventional and molecular methods, we studied the populations of C. difficile in patient stool specimens (n = 23). Our results indicated that 13% of individual stool specimens had heterogeneous populations of C. difficile when we compared the molecular characterization results for multiple bacterial isolates (n = 10). Direct molecular analysis of stool specimens gave results that correlated well with the results obtained with cultured stool specimens; the direct molecular analysis was rapid, informative, and less costly than the testing of multiple patient stool isolates.Clostridium difficile is one of the leading causes of infectious antibiotic-associated diarrhea and pseudomembranous colitis worldwide (2, 16). This is illustrated by the increased incidence and severity of C. difficile infection, suggesting the emergence of a new hypervirulent strain (5, 13-15, 17, 25, 32).While TcdB, a cytotoxin, is the known established virulence factor of C. difficile, toxin A (TcdA), a cytotoxic enterotoxin, works synergistically with TcdB, causing damage to the intestinal mucosa in cases of C. difficile infection (17). The genes that encode these toxins are located on the pathogenicity locus of C. difficile (4, 10, 24). Additionally, several deletions in the tcdC gene, a putative negative regulator of the expression of the toxin A (tcdA) and the toxin B (tcdB) genes, have been identified, and these deletions result in higher levels of cytotoxin expression (11). Furthermore, research has shown that some C. difficile strains produce another toxin, known as the binary toxin (19, 22, 28). The genes that encode this toxin, cdtA and cdtB, together produce an actin-specific ADP-ribosyltransferase that induces damage to the actin skeleton, leading to cytopathic effects in cell lines (1). It has been suggested that the binary toxin genes and deletions in the tcdC gene are potential virulence factors in the recent emerging hypervirulent strain (22, 29).The “gold standard” for the detection of C. difficile toxin production is a cytotoxin assay with stool specimens or isolates from anaerobic culture. The cytotoxin assay is difficult to perform and time-consuming, and it is often less sensitive than molecular assays (20, 23, 26). Enzyme immunoassays (EIAs) are used most often, and recent reports suggest that manufacturers have improved the performance of EIA kits since their introduction; however, the disadvantages of EIAs include the lower levels of sensitivity and specificity compared to those of the gold standard methods. More importantly, culture is not specific for the identification of toxigenic strains. The laboratory at the Wadsworth Center has developed a multiplex real-time PCR assay and a tcdC gene pyrosequencing assay that rapidly identify potential virulence factors of C. difficile strains and that can be used to directly test patient stool specimens for C. difficile.(Part of this report was presented at the 107th American Society for Microbiology General Meeting in 2007 [Toronto, Canada].)  相似文献   

20.

SUMMARY

Clostridium difficile is a formidable nosocomial and community-acquired pathogen, causing clinical presentations ranging from asymptomatic colonization to self-limiting diarrhea to toxic megacolon and fulminant colitis. Since the early 2000s, the incidence of C. difficile disease has increased dramatically, and this is thought to be due to the emergence of new strain types. For many years, the mainstay of C. difficile disease diagnosis was enzyme immunoassays for detection of the C. difficile toxin(s), although it is now generally accepted that these assays lack sensitivity. A number of molecular assays are commercially available for the detection of C. difficile. This review covers the history and biology of C. difficile and provides an in-depth discussion of the laboratory methods used for the diagnosis of C. difficile infection (CDI). In addition, strain typing methods for C. difficile and the evolving epidemiology of colonization and infection with this organism are discussed. Finally, considerations for diagnosing C. difficile disease in special patient populations, such as children, oncology patients, transplant patients, and patients with inflammatory bowel disease, are described. As detection of C. difficile in clinical specimens does not always equate with disease, the diagnosis of C. difficile infection continues to be a challenge for both laboratories and clinicians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号