首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
Activated c-Ha-ras protooncogenes have recently been identified in the DNA of some spontaneous hepatic tumors found in 2-year-old B6C3 F1 mice. Activation of c-Ha-ras has now been demonstrated in DNA from well-differentiated hepatomas initiated by a single dose of carcinogen given to male B6C3 F1 mice at 12 days of age. DNA from each of 25 hepatomas, induced by N-hydroxy-2-acetylaminofluorene, vinyl carbamate, or 1'-hydroxy-2',3'-dehydroestragole, containing transforming activity in the NIH 3T3 transfection assay. Southern analysis of NIH 3T3 cells transformed by DNA from 24 of these hepatomas revealed amplified and/or rear-ranged restriction fragments homologous to a Ha-ras probe. The other tumor contained an activated Ki-ras gene. Immunoprecipitation and NaDodSO4/PAGE analysis of p21 ras proteins in NIH 3T3 transformants derived from a majority of the hepatomas suggested that the activating mutations were localized in the 61st codon of the c-Ha-ras gene. Creation of a new Xba I restriction site by an AT----TA transversion at the second position of codon 61 was detected in DNA from primary tumors and NIH 3T3 cells transformed by DNA from 6 of 7 vinyl carbamate- and 5 of 10 1'-hydroxy-2',3'-dehydroestragole-induced hepatomas. Selective oligonucleotide hybridization demonstrated a CG----AT transversion at the first position of the 61st codon in NIH 3T3 transformants derived from 7 of 7 N-hydroxy-2-acetylaminofluorene-induced hepatomas. By the same criterion, an AT----GC transition at the second position of codon 61 was the activating mutation in 1 of 7 vinyl carbamate- and 5 of 10 1'-hydroxy-2',3'-dehydroestragole-induced tumors. Thus, c-Ha-ras activation is apparently an early event in B6C3 F1 mouse hepatocarcinogenesis that results directly from reaction of ultimate chemical carcinogens with this gene in vivo.  相似文献   

2.
Mutations in ras oncogenes were detected in cultured cells of mouse skin tumors induced by near-UV irradiation. DNA extracted from the UV-induced tumor cells was transfected to golden hamster embryo cells, and focus-forming ability was confirmed in 22 of 26 cell strains, 15 of which had the repetitive mouse sequence. Mouse ras genes were detected in 10 of these 22 cell strains. Point mutations in the ras genes were at Ha-ras codon 13 (GGC-->GTC in two strains, GGC-->AGC in one strain), Ki-ras codon 61 (CAA-->GAA in two strains), and N-ras codon 61 (CAA-->CAT in two strains, CAA-->AAA in two strains). In one tumor cell strain no base change was directed. Most mutations occurred at dipyrimidine sites. Pyrimidine dimers or pyrimidine(6-4)pyrimidone photoproducts are the likely cause of the skin cancers. The base change occurred preferentially at G.C base pairs, and transversions predominated.  相似文献   

3.
Research conducted by this laboratory over the past decade has demonstrated the high susceptibility of the fetus to lung tumor formation following in utero exposure of the resistant C57BL/6 and DBA/2N strains of mice to 3-methylcholanthrene (MC). In this review, we describe our more recent studies on the effects of MC and cotreatment with the lung tumor promoter, butylated hydroxytoluene (BHT), on lung tumor formation in the intermediately susceptible BALB/c strain of mice, and the determination of the potential carcinogenicity of the heterocyclic amine, 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) in resistant mouse strains. BALB/c mice showed a similar incidence of lung tumors, both in terms of percentage of mice with tumors and number of tumors per mouse, as found in the resistant [D2 x B6D2F1]F2 mice. Ki-ras point mutations were found in 56% (20/36) of BALB/c lung lesions compared with an incidence of 79% in [D2 x B6D2F1]F2 mice. BALB/c lung lesions demonstrated a similar association of Ki-ras mutations with tumor stage. Interestingly, a strain-dependent difference was observed in the mutational spectrum, where 62% and 38% of the lesions in BALB/c mice exhibited G-->C and G-->T transversions, respectively, in contrast with the 16% and 84% incidences observed in [D2 x B6D2F1]F2 mice. BHT had no statistically significant effect on tumor incidence, multiplicity, or Ki-ras mutational spectrum in BALB/c mice treated in utero with MC, although a trend toward increased tumor multiplicity was observed. Finally, experiments initiated to assess the transplacental carcinogenicity of IQ in D2B6F1 mice demonstrated that 1 year after birth, no macroscopically or microscopically visible liver, lung, or colon tumors were found in the transplacentally treated offspring, nor was induction of Cyp1a1, Cyp1b1, or glutathione S-transferases (GSTs) in fetal lung and liver tissues observed. This implies that at least under these experimental conditions, IQ may not be an important transplacental carcinogen. Overall, these data demonstrate that mutagenic damage to Ki-ras is a critical early event mediating murine lung tumorigenesis in both sensitive and resistant strains. Strain-dependent differences in the Ki-ras mutational spectrum may be associated with their differential susceptibility to lung tumor initiation.  相似文献   

4.
Hormonal and genetic factors strongly influence the susceptibility of inbred mice to hepatocarcinogenesis. Female C57BR/cdJ (BR) mice are extremely susceptible to liver tumor induction relative to other strains because they are genetically insensitive to the inhibition of hepatocarcinogenesis by ovarian hormones. To determine the genetic basis for the sensitivity of BR mice relative to resistant C57BL/6J (B6) mice, we treated 12-day-old B6BRF1 x B6 and B6BRF1 x B6BRF1 (F2) animals with N,N-diethylnitrosamine (0.1 micromol/g of body weight) and enumerated liver tumors at 32 weeks of age in males and at 50 weeks in females. Genomic DNA samples from backcross and F2 mice were analyzed for 70 informative simple sequence length polymorphism markers. Genetic markers on chromosome 17 (D17Mit21) and chromosome 1 (D1Mit33) cosegregated with high tumor multiplicity in both sexes. Together, these loci [designated Hcf1 and Hcf2 (Hepatocarcinogenesis in females), respectively] account for virtually all of the difference in sensitivity between BR and B6 mice. The Hcf1 locus accounts for a majority of the higher susceptibility of BR mice of both sexes. Backcross female mice heterozygous at both loci (33 +/- 23 tumors per mouse) and at Hcf1 only (17 +/- 18) were 15- and 8-fold more sensitive, respectively, than mice homozygous for the B6 alleles at Hcf1 and Hcf2 (2.2 +/- 3.9). In backcross male mice, the double heterozygotes (35 +/- 22) and Hcf1 heterozygotes (28 +/- 12) were 5.4- and 4.3-fold more sensitive than mice homozygous for B6 alleles at both loci (6.5 +/- 5.4).  相似文献   

5.
Mallory bodies (MBs) were induced in hepatic tumors by administration for up to 85 weeks of a diet containing 10 ppm dieldrin to 50 C3H/He and 62 C57BL/6J x C3H/He B6C3F1 male mice. MBs were seen in 15 of 28 (54%) mice which developed benign hepatic tumors and 33 of 45 (73%) mice with hepatocellular carcinoma, but in only 3 of 39 (8%) mice without hepatic tumors. In mice with tumors, the MBs were predominantly confined to tumor tissue and persisted in a carcinoma transplanted into a nude mouse. MBs were not observed, however, in hepatic tumors of 67 C57BL/6J, 49 C3H/He, or 81 B6C3F1 mice given 12 micrograms diethylnitrosamine i.p. on Days 0, 3, 9, and 15. Thirty-one of 195 control mice of all three strains had hepatic tumors. Only one of the controls had a tumor with an MB, and no MBs were seen in nontumor-bearing livers of controls animals. These observations, coupled with the results of a previous study in which MBs were observed in hepatocytes of dieldrin-treated C57BL/6J mice, indicate that mice treated with dieldrin are a reliable animal model for the study of MBs.  相似文献   

6.
DNA from human hepatocellular carcinomas (HCC) were analysed for the presence of mutations in codons 12 and 61 of the K-ras, H-ras and N-ras genes. The relevant ras sequences were amplified in vitro using the polymerase chain reaction and point mutations detected by selective hybridisation using mutation-specific synthetic oligonucleotides. In one of the 19 HCCs a mutation in codon 61 of the K-ras gene was detected, whilst in 3/19 HCCs a mutation was found in codon 61 of the N-ras gene. The mutations were all heterozygous A-T transversions and were found in HCCs arising in patients with underlying cirrhosis. In two of these patients where the corresponding normal tissue was available only the wild-type ras gene was detected, indicating that oncogenic activation of the ras gene was a consequence of somatic mutation. In another patient the same mutation in codon 61 of the N-ras gene was found in cirrhotic liver tissue and in all four patients the same mutation was also detected in formalin-fixed, paraffin-embedded liver biopsy HCC tissue obtained at diagnosis. These results indicate that mutational activation of the ras genes at codon 61 is an infrequent but possibly early event in the development of HCC in Britain.  相似文献   

7.
Hemochromatosis and Wilson disease (WD), characterized by the excess hepatic deposition of iron and copper, respectively, produce oxidative stress and increase the risk of liver cancer. Because the frequency of p53 mutated alleles in nontumorous human tissue may be a biomarker of oxyradical damage and identify individuals at increased cancer risk, we have determined the frequency of p53 mutated alleles in nontumorous liver tissue from WD and hemochromatosis patients. When compared with the liver samples from normal controls, higher frequencies of G:C to T:A transversions at codon 249 (P < 0.001) and C:G to A:T transversions and C:G to T:A transitions at codon 250 (P < 0.001 and P < 0.005) were found in liver tissue from WD cases, and a higher frequency of G:C to T:A transversions at codon 249 (P < 0.05) also was found in liver tissue from hemochromatosis cases. Sixty percent of the WD and 28% of hemochromatosis cases also showed a higher expression of inducible nitric oxide synthase in the liver, which suggests nitric oxide as a source of increased oxidative stress. A high level of etheno-DNA adducts, formed from oxyradical-induced lipid peroxidation, in liver from WD and hemochromatosis patients has been reported previously. Therefore, we exposed a wild-type p53 TK-6 lymphoblastoid cell line to 4-hydroxynonenal, an unsaturated aldehyde involved in lipid peroxidation, and observed an increase in G to T transversions at p53 codon 249 (AGG to AGT). These results are consistent with the hypothesis that the generation of oxygen/nitrogen species and unsaturated aldehydes from iron and copper overload in hemochromatosis and WD causes mutations in the p53 tumor suppressor gene.  相似文献   

8.
BACKGROUND: A large body of evidence suggests that the interoceptive cue associated with ethanol intoxication is complex and dependent on a number of environmental and biological factors. Despite the fact that mice have been widely used to study genetic influences on sensitivity to various actions of ethanol, few studies have used mice to examine sensitivity to the discriminative stimulus effects of ethanol. The purpose of this study was to compare sensitivity to the discriminative stimulus effects of ethanol in two inbred mouse strains, namely C57BL/6J and C3H/He mice. METHODS: Adult male C57BL/6J and C3H/He mice were trained to discriminate between ethanol and saline using a two-lever food reinforcement operant procedure. Once criterion discrimination performance was achieved, dose-response functions were determined from generalization tests. Additional experiments were conducted to determine whether differences in discrimination performance were related to differential blood/brain ethanol levels in the two mouse strains. RESULTS: A greater proportion of C57BL/6J mice acquired the discrimination and required fewer trials to achieve criterion performance compared with C3H/He mice with a 1.0 g/kg ethanol training dose. This deficit in acquisition was overcome when the training dose was increased to 2.0 g/kg for C3H/He mice. In a second experiment, a 1.5 g/kg training dose of ethanol was used for both strains. Again, a greater proportion of C57BL/6J mice acquired the discrimination and required fewer training trials to achieve criterion performance compared with C3H/He mice. Blood ethanol levels did not differ between the strains after administration of the 1.5 g/kg training dose. However, blood and brain ethanol levels did differ between the strains after doses of ethanol were administered that produced equivalent discrimination performance. CONCLUSIONS: Results indicate that ethanol discrimination was more readily acquired and maintained in C57BL/6J mice than C3H/He mice. Ethanol dose-response functions generated from generalization tests also clearly demonstrated greater sensitivity to the discriminative stimulus properties of ethanol in C57BL/6J mice compared with the C3H/He strain. This differential sensitivity to the interoceptive cue produced by ethanol does not seem to be related to learning or pharmacokinetic differences between the two inbred strains.  相似文献   

9.
Mouse skin tumors contain activated c-H-ras oncogenes, often caused by point mutations at codons 12 and 13 in exon 1 and codons 59 and 61 in exon 2. Mutagenesis by the noncoding apurinic sites can produce G-->T and A-->T transversions by DNA misreplication with more frequent insertion of deoxyadenosine opposite the apurinic site. Papillomas were induced in mouse skin by several aromatic hydrocarbons, and mutations in the c-H-ras gene were determined to elucidate the relationship among DNA adducts, apurinic sites, and ras oncogene mutations. Dibenzo[a,l]pyrene (DB[a,l]P), DB[a,l]P-11,12-dihydrodiol, anti-DB[a,l]P-11,12-diol-13,14-epoxide, DB[a,l]P-8,9-dihydrodiol, 7,12-dimethylbenz[a]anthracene (DMBA), and 1,2,3,4-tetrahydro-DMBA consistently induced a CAA-->CTA mutation in codon 61 of the c-H-ras oncogene. Benzo[a]pyrene induced a GGC-->GTC mutation in codon 13 in 54% of tumors and a CAA-->CTA mutation in codon 61 in 15%. The pattern of mutations induced by each hydrocarbon correlated with its profile of DNA adducts. For example, both DB[a,l]P and DMBA primarily form DNA adducts at the N-3 and/or N-7 of deoxyadenosine that are lost from the DNA by depurination, generating apurinic sites. Thus, these results support the hypothesis that misreplication of unrepaired apurinic sites generated by loss of hydrocarbon-DNA adducts is responsible for transforming mutations leading to papillomas in mouse skin.  相似文献   

10.
The strain A mouse has a high incidence of spontaneous lung tumors and is susceptible to lung tumor induction by chemical carcinogens. By utilizing transfection assay, Southern blot analysis, and DNA amplification techniques, we have detected an activated Ki-ras gene in the DNAs of both spontaneously occurring and chemically induced lung tumors of strain A mice. The point mutations in the spontaneous lung tumors were in both codon 12 (60%) and codon 61 (30%). In contrast, 100% of the mutations in the Ki-ras gene detected in methylnitrosourea-induced lung tumors and 93% of the mutations in the Ki-ras genes detected in benzo[a]pyrene-induced lung tumors were in codon 12, whereas 90% of the mutations in the Ki-ras genes detected in ethyl carbamate-induced lung tumors were in codon 61. The selectivity of mutations in the Ki-ras oncogene observed in chemically induced tumors, as compared to spontaneous tumors, suggests that these chemicals directly induce point mutations in the Ki-ras protooncogene. These data indicate that the strain A mouse lung tumor model is a very sensitive system to detect the ability of chemicals to activate the Ki-ras protooncogene in lung tissue.  相似文献   

11.
Inbred strains of A/J, BALB/c, C3H/He, C57BL/6 and DBA/2 mice were inoculated with the M variant of encephalomyocarditis virus having a titer of 100 TCID50/0.1 ml. Myocardial lesions were seen in 73 of 150 BALB/c mice (48.7%), 160 of 259 C3H/He mice (61.8%) and 115 of 174 DBA/2 mice (66.1%). No pathologic findings were noted in A/J and C57BL/6 mice. In C3H/He and DBA/2 mice, dilatation and hypertrophy of the heart accompanying myocardial lesions persisted up to the 8th month after virus inoculation. The present study revealed that myocardial lesions similar to those in congestive (dilated) cardiomyopathy persisted for a long period after viral infection.  相似文献   

12.
Livers of a natural population of winter flounder from a contaminated site in Boston Harbor were examined for the presence of oncogenes by transfection of DNA into NIH 3T3 mouse fibroblasts. Tissues analyzed contained histopathologic lesions including abnormal vacuolation, biliary proliferation, and, in many cases, hepatocellular and cholangiocellular carcinomas. Fibroblasts transfected with liver DNA samples from 7 of 13 diseased animals were effective in the induction of subcutaneous sarcomas in nude mice. Further analysis revealed the presence of flounder c-Ki-ras oncogenes in all 10 nude mouse subcutaneous tumors analyzed. Direct DNA sequencing and allele-specific oligonucleotide hybridization following amplification of the tumor DNA by the polymerase chain reaction showed mutations in the 12th codon in this gene. Analysis of DNA from all nude mouse tumors as well as the livers from which they were derived showed mutations at this codon. The mutations comprised G.C----A.T or G.C----T.A base changes resulting in substitution of serine, valine, or cysteine for glycine. Liver DNA samples from five histologically normal livers of animals from a less polluted site were ineffective in the transfection assay and showed only wild-type DNA sequences (GGT) at the 12th codon of c-Ki-ras. The prevalence of mutations in this gene region was associated with the presence of liver lesions and could signify DNA damage resulting from environmental chemical exposure.  相似文献   

13.
Mice deficient for connexin32 (Cx32), the major gap junction forming protein in liver, are highly susceptible to hepatocarcinogenesis. Because the Cx32 gene is located on the X-chromosome, heterozygous females show mosaicism with respect to Cx32 expression; this enables their use in studying the effect of Cx32-deficiency in a mixed Cx32-plus/Cx32-minus environment in vivo. Female C3H/He mice (Cx32(+/+)) were crossed with Cx32-deficient C57BL/129Sv males (Cx32(Y/-)) to yield F1 females heterozygous with respect to Cx32 (Cx32(+/-)). Patches of hepatocytes were observed in normal liver that either expressed Cx32 or failed to express the protein. The mean fraction of Cx32-negative tissue in liver was about 60% and did not change significantly with age of mice. Neoplastic liver lesions, induced in weanling mice, were identified in serial liver sections by their deficiency in glucose-6-phosphatase staining. Parallel sections were used for immunohistochemical demonstration of Cx32 protein. Smaller lesions were either homogenously Cx32-negative or showed unchanged to slightly elevated levels of Cx32 protein. There were no major differences in number and size distribution between lesions of these 2 phenotypes. In addition, larger lesions were mostly Cx32-negative but often contained embedded patches of Cx32-positive cells. Staining for the proliferation-associated nuclear antigen Ki-67 did not reveal significant differences between Cx32-negative and Cx32-positive hepatocytes in Cx32-mosaic tumors. This suggests that expression of Cx32 within a subpopulation of tumor cells does not negatively regulate their growth nor does it seem to affect the proliferation of their directly neighboring Cx32-negative counterparts.  相似文献   

14.
The p190 protein (also called MSA1 or MSP1) of the asexual blood stage forms of Plasmodium falciparum, a human malaria vaccine candidate, shows polymorphism between different isolates. Mice were immunized with p190–3, a recombinant protein which contains mostly conserved sequences derived from the p190 protein of the K1 parasite isolate. Proliferative T-cell responses of lymph node cells from immunized mice were assessed by stimulation in vitro with p190–3 or preparations of parasitized red blood cells (PRBC) containing the native protein. The p190–3-specific T cells from C57BL/6 mice consistently responded to some P. falciparum isolates, representing either the K1 or MAD20 serotype of p190, but not to other P. falciparum strains or to rodent malaria parasite-infected red blood cells. p190–3-specific T-cell responses from other mouse strains (BALB/c, C3H/He) did not distinguish between P. falciparum isolates. The polymorphic epitopes which were preferentially recognized by T cells from C57BL/6 mice were identified.  相似文献   

15.
The genome of the BALB/c mouse strain provides alleles that dominantly inhibit hepatocellular tumor development in F1 crosses with the highly hepatocarcinogenesis-susceptible C3H/He strain. Genome-wide linkage analysis using a 1536-single-nucleotide polymorphism array in a (C3H/He x BALB/c)F2 intercross population treated with urethane to induce hepatocellular tumor development revealed a locus with a major role in the resistance to hepatocarcinogenesis. This locus, designated hepatocarcinogen resistance 3 (Hpcr3) and mapping to central chromosome 15, showed a linkage at LOD score = 16.52 and accounted for 40% of the phenotypical variance. The BALB/c-derived allele at Hpcr3 reduced tumor-occupied area of the liver up to 25-fold, in a semidominant way. Additional minor loci were mapped to chromosomes 1, 10, and 18. A gene expression profile of normal adult mouse liver showed a significant association with susceptibility of BALB/c, C3H/He, and F1 mice to hepatocarcinogenesis and identified the genes expressed in the Hpcr3 locus region; moreover, this analysis implicated the E2F1 pathway in the modulation of the phenotype susceptibility to hepatocarcinogenesis. CONCLUSION: These findings, indicating the complex genetics of dominant resistance to hepatocarcinogenesis, represent a step toward the identification of the genes underlying this phenotype.  相似文献   

16.
A number of mouse skin tumors initiated by the carcinogens N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), methylnitrosourea (MNU), 3-methylcholanthrene (MCA), and 7,12-dimethylbenz[a]anthracene (DMBA) have been shown to contain activated Ha-ras genes. In each case, the point mutations responsible for activation have been characterized. Results presented demonstrate the carcinogen-specific nature of these ras mutations. For each initiating agent, a distinct spectrum of mutations is observed. Most importantly, the distribution of ras gene mutations is found to differ between benign papillomas and carcinomas, suggesting that molecular events occurring at the time of initiation influence the probability with which papillomas progress to malignancy. This study provides molecular evidence in support of the existence of subsets of papillomas with differing progression frequencies. Thus, the alkylating agents MNNG and MNU induced exclusively G ---- A transitions at codon 12, with this mutation being found predominantly in papillomas. MCA initiation produced both codon 13 G ---- T and codon 61 A ---- T transversions in papillomas; only the G ---- T mutation, however, was found in carcinomas. These findings provide strong evidence that the mutational activation of Ha-ras occurs as a result of the initiation process and that the nature of the initiating event can affect the probability of progression to malignancy.  相似文献   

17.
In vitro modification of plasmids containing the human c-Ha-ras1 protooncogene (HRAS1) with the ultimate carcinogens N-acetoxy-2-acetylaminofluorene and r-7, t-8-dihydroxy-t-9, 10-epoxy-7,8,9,10-tetrahydrobenzo[alpha]pyrene (anti-BPDE) generated a transforming oncogene when the modified DNA was transfected into NIH 3T3 cells. The protooncogene was also activated by heating the plasmid at 70 degrees C, pH 4, to generate apurinic/apyrimidinic sites in the DNA. DNA isolated from transformed foci was analyzed by hybridization with 20-mer oligonucleotides designed to detect single point mutations within two regions of the gene commonly found to be mutated in tumor DNA. Of 23 transformants studied, 7 contained a mutation in the region of the 12th codon, whereas the remaining 16 were mutated in the 61st codon. Of the codon-61 mutants, 6 were mutated at the first base position (C X G), 5 at the second (A X T), and 5 at the third (G X C). The point mutations induced by anti-BPDE were predominantly G X C----T X A and A X T----T X A base substitutions, whereas four N-acetoxy-2-acetylaminofluorene-induced mutations were all G X C----T X A, and a single depurination-induced activation that was analyzed contained an A X T----T X A transversion. Together, these methods provide a useful means of determining point mutations produced by DNA-damaging agents in mammalian cells.  相似文献   

18.
M D Reuber 《Digestion》1977,16(4):308-316
The maximal tolerated dose of chlorobenzilate was given by continuous oral administration, starting at the age of 7 days, to both sexes of two hybrid strains of mice-(C57BL/6 X C3HAnf)F1 and (C57BL/6 X AKR)F1. There was an increased incidence of tumors in one or more organs in male mice of both strains and female mice of the (C57BL/6 X C3HAnf)F1 strain. Male mice of both strains developed significantly elevated incidences of carcinomas of the liver. Female (C57BL/6 X C3HAnf)F1 strain mice had a significantly increased incidence of hyperplasia and carcinomas of the forestomach.  相似文献   

19.
The principal objective of this study was to establish whether mice can convert melatonin to 6-sulphatoxymelatonin (aMT6s). Precision-cut liver slices from C3H/He, C57BL/6, and BALB/c mice were incubated with melatonin, and the concentration of aMT6s in the culture media was determined using a sensitive and specific radioimmunoassay procedure. All three strains of mice generated aMT6s in a time-dependent manner; no significant strain differences were observed. When samples of the media were treated with sulphatase prior to analysis, aMT6s was not detectable. In contrast, similar treatment with beta-glucuronidase had no effect. 6-Sulphatoxymelatonin was present in the urine of both control and melatonin-treated C3H/He and C57BL6 mice. Treatment with melatonin led to a dramatic rise in the urinary levels of aMT6s in both mouse strains. Pre-treatment of the urines with sulphatase, but not beta-glucuronidase, markedly decreased the levels of aMT6s. Finally, in both strains urinary excretion of aMT6s displayed diurnal rhythmicity, peak excretion occurring during the dark hours. It may be inferred that: (a) mice can convert melatonin to aMT6s, both in vivo and in vitro, and (b) mice generate aMT6s in a rhythmic manner. Finally, the present studies confirm that determination of aMT6s rhythms in mice could provide an alternative, non-invasive, approach for assessing circadian clock function.  相似文献   

20.
Disrupted-In-Schizophrenia (DISC1) is a leading candidate schizophrenia susceptibility gene. Here, we describe a deletion variant in mDisc1 specific to the 129S6/SvEv strain that introduces a termination codon at exon 7, abolishes production of the full-length protein, and impairs working memory performance when transferred to the C57BL/6J genetic background. Our findings provide insights into how DISC1 variation contributes to schizophrenia susceptibility in humans and the behavioral divergence between 129S6/SvEv and C57BL/6J mouse strains and have implications for modeling psychiatric diseases in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号