首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type VI secretion systems (T6SSs) have been identified recently in several Gram-negative organisms and have been shown to be associated with virulence in some bacterial pathogens. A T6SS of Yersinia pestis CO92 (locus YPO0499–YPO0516) was deleted followed by investigation of the phenotype of this mutation. We observed that this T6SS locus of Y. pestis was preferentially expressed at 26 °C in comparison to 37 °C suggesting a possible role in the flea cycle. However, we found that the deletion of T6SS locus YPO0499–YPO0516 in Y. pestis CO92 had no effect on the ability of this strain to infect the oriental rat flea, Xenopsylla cheopis. Nevertheless, this mutant displayed increased intracellular numbers in macrophage-like J774.A1 cells after 20 h post-infection for bacterial cells pre-grown at 26 °C indicating that expression of this T6SS locus limited intracellular replication in macrophages. In addition, deletion of the YPO0499–YPO0516 locus reduced the uptake by macrophages of the Y. pestis mutant pre-grown at 37 °C, suggesting that this T6SS locus has phagocytosis-promoting activity. Further study of the virulence of the T6SS mutant in murine bubonic and inhalation plague models revealed no attenuation in comparison with the parental CO92 strain.  相似文献   

2.
The plague bacterium Yersinia pestis has a number of well-described strategies to protect itself from both host cells and soluble factors. In an effort to identify additional anti-host factors, we employed a transposon site hybridization (TraSH)-based approach to screen 105Y. pestis mutants in an in vitro infection system. In addition to loci encoding various components of the well-characterized type III secretion system (T3SS), our screen unambiguously identified ompA as a pro-survival gene. We go on to show that an engineered Y. pestis ΔompA strain, as well as a ΔompA strain of the closely related pathogen Yersinia pseudotuberculosis, have fully functioning T3SSs but are specifically defective in surviving within macrophages. Additionally, the Y. pestis ΔompA strain was out competed by the wild-type strain in a mouse co-infection assay. Unlike in other bacterial pathogens in which OmpA can promote adherence, invasion, or serum resistance, the OmpA of Y. pestis is restricted to enhancing intracellular survival. Our data show that OmpA of the pathogenic Yersinia is a virulence factor on par with the T3SS.  相似文献   

3.
Plague is one of the most dangerous diseases and is caused by Yersinia pestis. Effective vaccine development requires understanding of immune protective mechanisms against the bacterium in humans. In this study, the humoral and memory cellular immune responses in plague patients (n = 65) recovered from Y. pestis infection during the past 16 years were investigated using a protein microarray and an enzyme-linked immunosorbent spot assay (ELISpot). The seroprevalence to the F1 antigen in all recovered patients is 78.5%. In patients infected more than a decade ago, the antibody-positive rate still remains 69.5%. There is no difference in the antibody presence between gender, age, and infected years, but it seems to be associated with the F1 antibody titers during infection (r = 0.821; P < 0.05). Except F1 antibody, the antibodies against LcrV and YopD were detected in most of the patients, suggesting they could be the potential diagnostic markers for detecting the infection of F1-negative strains. Regarding cellular immunity, the cell number producing gamma interferon (IFN-γ), stimulated by F1 and LcrV, respectively, in vitro to the peripheral blood mononuclear cells of 7 plague patients and 4 negative controls, showed no significant difference, indicating F1 and LcrV are not dominant T cell antigens against plague for a longer time in humans. Our findings have direct implications for the future design and development of effective vaccines against Y. pestis infection and the development of new target-based diagnostics.  相似文献   

4.
Plague is an acute infection caused by the Gram-negative bacterium Yersinia pestis. Antibodies that are protective against plague target LcrV, an essential virulence protein and component of a type III secretion system of Y. pestis. Secreted LcrV localizes to the tips of type III needles on the bacterial surface, and its function is necessary for the translocation of Yersinia outer proteins (Yops) into the cytosol of host cells infected by Y. pestis. Translocated Yops counteract macrophage functions, for example, by inhibiting phagocytosis (YopE) or inducing cytotoxicity (YopJ). Although LcrV is the best-characterized protective antigen of Y. pestis, the mechanism of protection by anti-LcrV antibodies is not fully understood. Antibodies bind to LcrV at needle tips, neutralize Yop translocation, and promote opsonophagocytosis of Y. pestis by macrophages in vitro. However, it is not clear if anti-LcrV antibodies neutralize Yop translocation directly or if they do so indirectly, by promoting opsonophagocytosis. To determine if the protective IgG1 monoclonal antibody (MAb) 7.3 is directly neutralizing, an IgG2a subclass variant, a deglycosylated variant, F(ab′)2, and Fab were tested for the ability to inhibit the translocation of Yops into Y. pestis-infected macrophages in vitro. Macrophage cytotoxicity and cellular fractionation assays show that the Fc of MAb 7.3 is not required for the neutralization of YopJ or YopE translocation. In addition, the use of Fc receptor-deficient macrophages, and the use of cytochalasin D to inhibit actin polymerization, confirmed that opsonophagocytosis is not required for MAb 7.3 to neutralize translocation. These data indicate that the binding of the variable region of MAb 7.3 to LcrV is sufficient to directly neutralize Yop translocation.  相似文献   

5.
Here, we constructed a Yersinia pseudotuberculosis mutant strain with arabinose-dependent regulated and delayed shutoff of crp expression (araC PBAD crp) and replacement of the msbB gene with the Escherichia coli msbB gene to attenuate it. Then, we inserted the asd mutation into this construction to form χ10057 [Δasd-206 ΔmsbB868::PmsbB msbB(EC) ΔPcrp21::TT araC PBAD crp] for use with a balanced-lethal Asd-positive (Asd+) plasmid to facilitate antigen synthesis. A hybrid protein composed of YopE (amino acids [aa]1 to 138) fused with full-length LcrV (YopENt138-LcrV) was synthesized in χ10057 harboring an Asd+ plasmid (pYA5199, yopENt138-lcrV) and could be secreted through a type III secretion system (T3SS) in vitro and in vivo. Animal studies indicated that mice orally immunized with χ10057(pYA5199) developed titers of IgG response to whole-cell lysates of Y. pestis (YpL) and subunit LcrV similar to those seen with χ10057(pYA3332) (χ10057 plus an empty plasmid). However, only immunization of mice with χ10057(pYA5199) resulted in a significant secretory IgA response to LcrV. χ10057(pYA5199) induced a higher level of protection (80% survival) against intranasal (i.n.) challenge with ∼240 median lethal doses (LD50) (2.4 × 104 CFU) of Y. pestis KIM6+(pCD1Ap) than χ10057(pYA3332) (40% survival). Splenocytes from mice vaccinated with χ10057(pYA5199) produced significant levels of gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin-17 (IL-17) after restimulation with LcrV and YpL antigens. Our results suggest that it is possible to use an attenuated Y. pseudotuberculosis strain delivering the LcrV antigen via the T3SS as a potential vaccine candidate against pneumonic plague.  相似文献   

6.
Yersinia pestis carries homologues of the toxin complex (Tc) family proteins, which were first identified in other Gram-negative bacteria as having potent insecticidal activity. The Y. pestis Tc proteins are neither toxic to fleas nor essential for survival of the bacterium in the flea, even though tc gene expression is highly upregulated and much more of the Tc proteins YitA and YipA are produced in the flea than when Y. pestis is grown in vitro. We show that Tc+ and Tc Y. pestis strains are transmitted equivalently from coinfected fleas, further demonstrating that the Tc proteins have no discernible role, either positive or negative, in transmission by the flea vector. Tc proteins did, however, confer Y. pestis with increased resistance to killing by polymorphonuclear leukocytes (PMNs). Resistance to killing was not the result of decreased PMN viability or increased intracellular survival but instead correlated with a Tc protein-dependent resistance to phagocytosis that was independent of the type III secretion system (T3SS). Correspondingly, we did not detect T3SS-dependent secretion of the native Tc proteins YitA and YipA or the translocation of YitA– or YipA–β-lactamase fusion proteins into CHO-K1 (CHO) cells or human PMNs. Thus, although highly produced by Y. pestis within the flea and related to insecticidal toxins, the Tc proteins do not affect interaction with the flea or transmission. Rather, the Y. pestis Tc proteins inhibit phagocytosis by mouse PMNs, independent of the T3SS, and may be important for subverting the mammalian innate immune response immediately following transmission from the flea.  相似文献   

7.
Plague caused by Yersinia pestis manifests itself in bubonic, septicemic, and pneumonic forms. Although the U.S. Food and Drug Administration recently approved levofloxacin, there is no approved human vaccine against plague. The capsular antigen F1 and the low-calcium-response V antigen (LcrV) of Y. pestis represent excellent vaccine candidates; however, the inability of the immune responses to F1 and LcrV to provide protection against Y. pestis F1 strains or those which harbor variants of LcrV is a significant concern. Here, we show that the passive transfer of hyperimmune sera from rats infected with the plague bacterium and rescued by levofloxacin protected naive animals against pneumonic plague. Furthermore, 10 to 12 protein bands from wild-type (WT) Y. pestis CO92 reacted with the aforementioned hyperimmune sera upon Western blot analysis. Based on mass spectrometric analysis, four of these proteins were identified as attachment invasion locus (Ail/OmpX), plasminogen-activating protease (Pla), outer membrane protein A (OmpA), and F1. The genes encoding these proteins were cloned, and the recombinant proteins purified from Escherichia coli for immunization purposes before challenging mice and rats with either the F1 mutant or WT CO92 in bubonic and pneumonic plague models. Although antibodies to Ail and OmpA protected mice against bubonic plague when challenged with the F1 CO92 strain, Pla antibodies were protective against pneumonic plague. In the rat model, antibodies to Ail provided protection only against pneumonic plague after WT CO92 challenge. Together, the addition of Y. pestis outer membrane proteins to a new-generation recombinant vaccine could provide protection against a wide variety of Y. pestis strains.  相似文献   

8.
To help design needed new vaccines for pneumonic plague, we targeted the Yersinia pestis LcrV protein directly to CD8α+ DEC‐205+ or CD8α? DCIR2+ DC along with a clinically feasible adjuvant, poly IC. By studying Y. pestis in mice, we could evaluate the capacity of this targeting approach to protect against a human pathogen. The DEC‐targeted LcrV induced polarized Th1 immunity, whereas DCIR2‐targeted LcrV induced fewer CD4+ T cells secreting IFN‐γ, but higher IL‐4, IL‐5, IL‐10, and IL‐13 production. DCIR‐2 targeting elicited higher anti‐LcrV Ab titers than DEC targeting, which were comparable to a protein vaccine given in alhydrogel adjuvant, but the latter did not induce detectable T‐cell immunity. When DEC‐ and DCIR2‐targeted and F1‐V+ alhydrogel‐vaccinated mice were challenged 6 wk after vaccination with the virulent CO92 Y. pestis, the protection level and Ab titers induced by DCIR2 targeting were similar to those induced by F1‐V protein with alhydrogel vaccination. Therefore, LcrV targeting to DC elicits combined humoral and cellular immunity, and for the first time with this approach, also induces protection in a mouse model for a human pathogen.  相似文献   

9.
A balanced-lethal plasmid expression system that switches from low-copy-number to runaway-like high-copy-number replication (pYA4534) was constructed for the regulated delayed in vivo synthesis of heterologous antigens by vaccine strains. This is an antibiotic resistance-free maintenance system containing the asdA gene (essential for peptidoglycan synthesis) as a selectable marker to complement the lethal chromosomal ΔasdA allele in live recombinant attenuated Salmonella vaccines (RASVs) such as Salmonella enterica serovar Typhimurium strain χ9447. pYA4534 harbors two origins of replication, pSC101 and pUC (low and high copy numbers, respectively). The pUC replication origin is controlled by a genetic switch formed by the operator/promoter of the P22 cro gene (O/Pcro) (PR), which is negatively regulated by an arabinose-inducible P22 c2 gene located on both the plasmid and the chromosome (araC PBAD c2). The absence of arabinose, which is unavailable in vivo, triggers replication to a high-copy-number plasmid state. To validate these vector attributes, the Yersinia pestis virulence antigen LcrV was used to develop a vaccine against plague. An lcrV sequence encoding amino acids 131 to 326 (LcrV196) was optimized for expression in Salmonella, flanked with nucleotide sequences encoding the signal peptide (SS) and the carboxy-terminal domain (CT) of β-lactamase, and cloned into pYA4534 under the control of the Ptrc promoter to generate plasmid pYA4535. Our results indicate that the live Salmonella vaccine strain χ9447 harboring pYA4535 efficiently stimulated a mixed Th1/Th2 immune response that protected mice against lethal challenge with Y. pestis strain CO92 introduced through either the intranasal or subcutaneous route.Live, attenuated bacteria have been developed to generate safe and immunogenic vaccine strains (50). Attenuated Salmonella enterica has been used as both a homologous vaccine and a delivery system for recombinant heterologous antigens from bacterial, parasitic, viral, and tumor sources (8, 40). The oral administration of Salmonella allows the infection of Peyer''s patches via the M cells and colonization of the mesenteric lymph nodes, liver, and spleen, generating a range of humoral and cellular immune responses against Salmonella and the heterologous antigens (8) at local and distal sites such as the mucosa. Because most systems for the expression of heterologous antigenic proteins in Salmonella use plasmids, several approaches have been developed for the antibiotic-free maintenance of plasmid vectors (29, 48). However, a number of factors may affect the immune response to protective antigens, such as the ability of the vaccine strain to invade and colonize the host and the stability of the plasmid expression system. High levels of bacterial protein synthesis specified by multiple-copy plasmids often result in either the rapid loss of the foreign plasmid or a reduction in bacterial growth and the ability to colonize lymphoid tissues due to the demand of the extrametabolic burden. Both of these factors result in a reduction of immunogenicity. The insertion of genes into the bacterial chromosome by homologous recombination can achieve a high degree of stability, but this approach sometimes limits the level of protein synthesis due to the single gene copy and, thus, may lessen the production of a protective immune response with the live vaccine (29).To overcome some of these problems, we have constructed a balanced-lethal vaccine vector with its copy number regulated by arabinose (pYA4534) that switches to runaway-like high-copy-number replication regulating the delivery and dosage of heterologous antigens. In previous work, the switch from a low to a high copy number of the plasmid was mediated by a temperature change from 30°C to higher than 35°C and is called uncontrolled replication or runaway replication of the plasmid in Escherichia coli (62).Yersinia pestis is a Gram-negative bacterium that causes plague in humans and is transmitted from rodents to humans by fleas (26, 51). Y. pestis infections present three different clinical forms: bubonic, pneumonic, or septicemic (59). Widespread aerosol dissemination of the bacterium combined with high mortality rates make Y. pestis a deadly pathogen (31). LcrV is a multifunctional protein that forms part of a type III secretion system (T3SS) encoded on Y. pestis 70-kb virulence plasmid pCD1 (16, 52). LcrV along with LcrG helps regulate the expression of Yersinia outer proteins (YOPs) that are injected into the cytosol of the host cell, where they interfere with the cellular signaling involved in phagocytosis and inhibit proinflammatory cytokine production (28, 43, 47). Experimental evidence indicates that antibody responses to LcrV offer protection against plague. Thus, the passive transfer of LcrV monoclonal antibodies (MAbs) or polyclonal-specific serum to LcrV protects animals against bubonic and pneumonic plague (25, 46). Antibodies against LcrV apparently block the translocation of effector YOPs, allowing the phagocytosis of Y. pestis bacilli by macrophages, but the exact mechanism of this protection remains to be determined (19).In addition to the direct role of LcrV in the formation of the T3SS needle, LcrV has an immunomodulatory function mediated by interleukin-10 (IL-10) induction, which blocks the host protective inflammatory responses and suppresses the proinflammatory cytokines (7). Partial deletions of LcrV and the use of synthetic peptides allowed the identification of two LcrV regions involved in the production of IL-10, which are located from amino acid residues 37 to 57 and from amino acid residues 271 to 285 (34, 49). The induction of IL-10 by LcrV is through the interaction of Toll-like receptor 2 (TLR-2) as well as TLR-6 and cluster of differentiation 14 (CD14) (1, 15, 58). Immunization with full-length LcrV elicited protective immunity (41), but truncated LcrV forms were also able to elicit an immune response that was protective against a lethal challenge with Y. pestis. These variants included rV10 (lacking amino acid residues 271 to 300) (49), the major protective LcrV region (amino acid residues 135 to 275) (25), LcrV196 (amino acid residues 131 to 326) (5), and a small fragment of LcrV (amino acids 135 to 262) (64).In this work, we describe the construction of pYA4534, a balanced-lethal plasmid expression system containing an arabinose-regulated genetic switch to shift to runaway-like high-copy-number replication in vivo for the regulated delayed dosage of heterologous antigens. The derivative pYA4535, encoding the T2SS β-lactamase N- and C-terminal domains for the export of the lcrV196-encoded fused antigen, was used to transform S. enterica serovar Typhimurium strain χ9447, a new generation of live recombinant attenuated Salmonella vaccines (RASVs) that is phenotypically similar to the wild type at the time of oral vaccination but displays a regulated delayed in vivo attenuation (14), a regulated delayed in vivo synthesis of recombinant antigen (66), and regulated delayed in vivo lysis to release a bolus of protective antigen and confers complete biological containment (35) after host tissue colonization. These RASV strains are able to colonize and persist in the lymphoid tissue without causing disease symptoms, giving an advantageous alternative when carrying heterologous antigens that induce higher protective mucosal and systemic immunity responses. The immune responses of mice immunized orally with this live RASV strain synthesizing an optimized LcrV protein were evaluated for protection against a lethal challenge with virulent Y. pestis CO92 (4). Thus, we offer an alternative for the development of vaccines against clinical forms of plague.  相似文献   

10.
The human pathogen enterohemorrhagic Escherichia coli (EHEC) O157:H7 colonizes the rectoanal junction (RAJ) in cattle, its natural reservoir. Colonization at the RAJ poses a serious risk for fecal shedding and contamination of the environment. We previously demonstrated that EHEC senses acyl-homoserine lactones (AHLs) produced by the microbiota in the rumen to activate the gad acid resistance genes necessary for survival through the acidic stomachs in cattle and to repress the locus of enterocyte effacement (LEE) genes important for colonization of the RAJ, but unnecessary in the rumen. Devoid of AHLs, the RAJ is the prominent site of colonization of EHEC in cattle. To determine if the presence of AHLs in the RAJ could repress colonization at this site, we engineered EHEC to express the Yersinia enterocolitica AHL synthase gene yenI, which constitutively produces AHLs, to mimic a constant exposure of AHLs in the environment. The yenI+ EHEC produces oxo-C6-homoserine lactone (oxo-C6-HSL) and had a significant reduction in LEE expression, effector protein secretion, and attaching and effacing (A/E) lesion formation in vitro compared to the wild type (WT). The yenI+ EHEC also activated expression of the gad genes. To assess whether AHL production, which decreases LEE expression, would decrease RAJ colonization by EHEC, cattle were challenged at the RAJ with WT or yenI+ EHEC. Although the yenI+ EHEC colonized the RAJ with efficiency equal to that of the WT, there was a trend for the cattle to shed the WT strain longer than the yenI+ EHEC.  相似文献   

11.
12.
In the United States, there is currently a major gap in the diagnostic capabilities with regard to plague. To address this, we developed an antigen capture assay using an essential virulence factor secreted by Yersinia spp., LcrV, as the target antigen. We generated anti-LcrV monoclonal antibodies (MAbs) and screened them for the ability to bind bacterially secreted native Yersinia pestis LcrV. Anti-LcrV MAb 19.31 was used as a capture antibody, and biotinylated MAb 40.1 was used for detection. The detection limit of this highly sensitive Yersinia LcrV capture enzyme-linked immunosorbent assay is 0.1 ng/ml. The assay detected LcrV from human sputum and blood samples treated with concentrations as low as 0.5 ng/ml of bacterially secreted native Y. pestis LcrV. This assay could be used as a tool to help confirm the diagnosis of plague in patients presenting with pneumonia.  相似文献   

13.
Autoagglutination (AA) is a protective phenotypic trait facilitating survival of bacteria in hostile environments and in the host during infection. Autoagglutination factors (AFs) that possess self-associating ability are currently characterized in many Gram-negative bacteria, but Yersinia pestis AFs are still a matter of debate. Previously, we have shown that AF of Hms strain Y. pestis EV76 is a complex of the 17,485-kDa protein and a low-molecular-weight component with siderophore activity. Here, we identified the protein moiety of AF and examined its role in AA of Hms+ and HmsY. pestis strains. Using MALDI-TOF MS of trypsin-hydrolyzed AF, we unambiguously identified the protein as YPO0502, which belongs to a family of Hcp-proteins forming pilus-like structures of the type six secretion system (T6SS). To address the role of YPO0502 in AA, we cloned ypo0502 in E. coli, overexpressed it in Y. pestis and constructed its knock-out mutant in Y. pestis. However, all these approaches failed: YPO0502 was not secreted in E. coli, formed inclusion bodies when overexpressed in Y. pestis, and could probably be compensated by other Hcp-like proteins in Y. pestis. In contrast, downregulation of ypo0502 expression by its antisense RNA supported the contribution of YPO0502 in AA of Hms+ and HmsY. pestis strains. The results of the present study indicate that the Hcp-like component of T6SS encoded by ypo502 is involved in Y. pestis AA and suggest that at least one (ypo0499-0516) of the 6 T6SS clusters of Y. pestis is involved in bacterial interaction.  相似文献   

14.
Legume-nodulating rhizobia use N-acyl homoserine lactones (AHLs) to regulate several physiological traits related to the symbiotic plant–microbe interaction. In this work, we show that Sinorhizobium fredii SMH12, Rhizobium etli ISP42 and Rhizobium sullae IS123, three rhizobial strains with different nodulation ranges, produced a similar pattern of AHL molecules, sharing, in all cases, production of N-octanoyl homoserine lactone and its 3-oxo and/or 3-hydroxy derivatives. Interestingly, production of AHLs was enhanced when these three rhizobia were grown in the presence of their respective nod-gene-inducing flavonoid, while a new molecule, C14-HSL, was produced by S. fredii SMH12 upon genistein induction. In addition, expression of AHL synthesis genes traI from S. fredii SMH12 and cinI and raiI from R. etli ISP42 increased when induced with flavonoids, as demonstrated by qRT-PCR analysis.  相似文献   

15.
Acyl homoserine lactones (AHLs) are intercellular signaling molecules used in quorum sensing by Gram‐negative bacteria. We studied the early effects on the rat airway of in vivo intratracheal administration of AHLs (i.e., P. aeruginosa and B. cepacia) to test the hypothesis that AHLs also act on the airway cells, modifying secretory mechanisms which are important in mucosal defense. One hour after treatment, N‐butyryl‐homoserine lactone (C4‐HL) had caused dilated extracellular spaces, loss of cilia, reduction of secretory material, and the presence of prenecrotic elements in the epithelium, while N‐octanoyl‐homoserine lactone (C8‐HL) caused a mild lesion in the epithelium. After treatment with either C4‐ or C8‐HL, reduced immunoreactivity was found using CC10 antibody. At ultrastructural examination, dilatation of the mitochondria was evident in ciliate and secretory cells, while solitary chemosensory cells appeared better preserved, showing aspects of nucleocytoplasmic activation. Using microarray analysis, we found down‐regulation of early gene Fos and Egr1 in all AHL‐treated specimens. In vivo pharmacological magnetic resonance imaging after C4‐ or C8‐HL treatment showed a slight increase in tracheal secretion at a first evaluation 5 min after administration, with no increase in the following minutes. In conclusion, AHLs induce an early mucosal response, and the chondriomas of ciliate and secretory cells are the main cytological target of AHL action. Our results show that AHL action is not limited to activation of conspecific bacteria, but also modifies innate airway defense mechanisms. Anat Rec, 292:439–448, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
ATP and UTP have been proposed for use as therapeutic treatment of the abnormal ion transport in the airway epithelium in cystic fibrosis (CF), the most characteristic feature of which is permanent infection by Pseudomonas aeruginosa. As for diverse gram-negative bacteria, this pathogenic bacterium accumulates diffusible N-acylhomoserine lactone (AHL) signal molecules, and when a threshold concentration is reached, virulence factor genes are activated. Human submucosal tracheal gland serous (HTGS) cells are believed to play a major role in the physiopathology of CF. Since ATP and UTP stimulate CF epithelial cells through P2Y receptors, we sought to determine whether CF HTGS cells are capable of responding to the AHLs N-butanoyl-L-homoserine lactone (BHL), N-hexanoyl-L-homoserine lactone (HHL), N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL), and N-(3-oxohexanoyl)-L-homoserine lactone (OHHL), with special reference to P2Y receptors. All AHLs inhibited ATP- and UTP-induced secretion by CF HTGS cells. The 50% inhibitory concentrations were as high as 10 and 5 microM for BHL and HHL, respectively, but were only 0.3 and 0.4 pM for OdDHL and OHHL, respectively. Furthermore, all AHLs down-regulated the expression of the P2Y2 and P2Y4 receptors. Ibuprofen and nordihydroguaiaretic acid were able to prevent AHL inhibition of the responses to nucleotides, but neither dexamethasone nor indomethacin was able to do this. These data indicate that AHLs may alter responsiveness to ATP and UTP by CF HTGS cells and suggest that, in addition to ATP and/or UTP analogues, ibuprofen may be of use for a combinational pharmacological therapy for CF.  相似文献   

17.
《Mucosal immunology》2010,3(2):159-171
Safe and effective immunization of newborns and infants can significantly reduce childhood mortality, yet conventional vaccines have been largely unsuccessful in stimulating the neonatal immune system. We explored the capacity of a novel mucosal antigen delivery system consisting of non-living, non-genetically modified Lactococcus lactis particles, designated as Gram-positive enhancer matrix (GEM), to induce immune responses in the neonatal setting. Yersinia pestis LcrV, used as model protective antigen, was displayed on the GEM particles. Newborn mice immunized intranasally with GEM-LcrV developed LcrV-specific antibodies, Th1-type cell-mediated immunity, and were protected against lethal Y. pestis (plague) infection. The GEM particles activated and enhanced the maturation of neonatal dendritic cells (DCs) both in vivo and in vitro. These DCs showed increased capacities for secretion of proinflammatory and Th1-cell polarizing cytokines, antigen presentation and stimulation of CD4+ and CD8+ T cells. These data show that mucosal immunization with L. lactis GEM particles carrying vaccine antigens represents a promising approach to prevent infectious diseases early in life.  相似文献   

18.
In gram-negative bacterial pathogens, such as Pseudomonas aeruginosa and Yersinia pseudotuberculosis, cell-to-cell communication via the N-acylhomoserine lactone (AHL) signal molecules is involved in the cell population density-dependent control of genes associated with virulence. This phenomenon, termed quorum sensing, relies upon the accumulation of AHLs to a threshold concentration at which target structural genes are activated. By using biosensors capable of detecting a range of AHLs we observed that, in cultures of Y. pseudotuberculosis and P. aeruginosa, AHLs accumulate during the exponential phase but largely disappear during the stationary phase. When added to late-stationary-phase, cell-free culture supernatants of the respective pathogen, the major P. aeruginosa [N-butanoylhomoserine lactone (C4-HSL) and N-(3-oxododecanoyl)homoserine lactone (3-oxo-C12-HSL)] and Y. pseudotuberculosis [N-(3-oxohexanoyl)homoserine lactone (3-oxo-C6-HSL) and N-hexanoylhomoserine lactone (C6-HSL)] AHLs were inactivated. Short-acyl-chain compounds (e.g., C4-HSL) were turned over more extensively than long-chain molecules (e.g., 3-oxo-C12-HSL). Little AHL inactivation occurred with cell extracts, and no evidence for inactivation by specific enzymes was apparent. This AHL turnover was discovered to be due to pH-dependent lactonolysis. By acidifying the growth media to pH 2.0, lactonolysis could be reversed. By using carbon-13 nuclear magnetic resonance spectroscopy, we found that the ring opening of homoserine lactone (HSL), N-propionyl HSL (C3-HSL), and C4-HSL increased as pH increased but diminished as the N-acyl chain was lengthened. At low pH levels, the lactone rings closed but not via a simple reversal of the ring opening reaction mechanism. Ring opening of C4-HSL, C6-HSL, 3-oxo-C6-HSL, and N-octanoylhomoserine lactone (C8-HSL), as determined by the reduction of pH in aqueous solutions with time, was also less rapid for AHLs with more electron-donating longer side chains. Raising the temperature from 22 to 37 degrees C increased the rate of ring opening. Taken together, these data show that (i) to be functional under physiological conditions in mammalian tissue fluids, AHLs require an N-acyl side chain of at least four carbons in length and (ii) that the longer the acyl side chain the more stable the AHL signal molecule.  相似文献   

19.
20.
《Research in microbiology》2016,167(5):380-392
Many bacterial species communicate using a complex system known as quorum sensing (QS) in which gene expression is controlled in response to cell density. In this study an N-acylhomoserine lactone (AHL) synthase (Rru_A3396) knockout mutant (M68) of Rhodospirillum rubrum S1H (WT) was constructed and characterized phenotypically under light anaerobic conditions. Results showed that R. rubrum WT produces unsubstituted, 3-OH and 3-oxo-substituted AHLs with acyl chains ranging from 4 to 14 carbons, with 3-OH-C8 being the most abundant. Growth, pigment content and swimming motility were found to be under the control of this LuxI-type QS system. In addition, cultivation in a low shear environment put forward the aggregative phenotype of M68 and linked biofilm formation to QS in R. rubrum S1H. Interestingly, QS-mutant M68 continued to produce decreased levels of 3-OH-C8-HSL, probably due to the presence of an extra HdtS-type AHL synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号