共查询到20条相似文献,搜索用时 0 毫秒
1.
Di(2-ethylhexyl)phthalate (DEHP) metabolites in human urine and serum after a single oral dose of deuterium-labelled DEHP 总被引:7,自引:0,他引:7
Human metabolism of di(2-ethylhexyl)phthalate (DEHP) was studied after a single oral dose of 48.1 mg to a male volunteer. To avoid interference by background exposure the D4-ring-labelled DEHP analogue was dosed. Excretion of three metabolites, mono(2-ethyl-5-hydroxyhexyl)phthalate (5OH-MEHP), mono(2-ethyl-5-oxohexyl)phthalate (5oxo-MEHP) and mono(2-ethylhexyl)phthalate (MEHP), was monitored for 44 h in urine and for 8 h in serum. Peak concentrations of all metabolites were found in serum after 2 h and in urine after 2 h (MEHP) and after 4 h (5OH-MEHP and 5oxo-MEHP). While the major metabolite in serum was MEHP, the major metabolite in urine was 5OH-MEHP, followed by 5oxo-MEHP and MEHP. Excretion in urine followed a multi-phase elimination model. After an absorption and distribution phase of 4 to 8 h, half-life times of excretion in the first elimination phase were approximately 2 h with slightly higher half-life times for 5OH- and 5oxo-MEHP. Half-life times in the second phase—beginning 14 to 18 h post dose—were 5 h for MEHP and 10 h for 5OH-MEHP and 5oxo-MEHP. In the time window 36 to 44 h, no decrease in excreted concentrations of 5OH- and 5oxo-MEHP was observed. In the first elimination phase (8 to 14 h post dose), mean excretion ratios of MEHP to 5oxo-MEHP and MEHP to 5OH-MEHP were 1 to 1.8 and 1 to 3.1. In the second elimination phase up to 24 h post dose mean excretion ratios of MEHP to 5oxo-MEHP to 5OH-MEHP were 1 to 5.0 to 9.3. The excretion ratio of 5OH-MEHP to 5oxo-MEHP remained constant through time at 1.7 in the mean. After 44 h, 47% of the DEHP dose was excreted in urine, comprising MEHP (7.3%), 5OH-MEHP (24.7%) and 5oxo-MEHP (14.9%). 相似文献
2.
Koch HM Bolt HM Preuss R Eckstein R Weisbach V Angerer J 《Archives of toxicology》2005,79(12):689-693
In this study we investigated human metabolism and excretion of DEHP after intravenous exposure. For this purpose we determined
the five major DEHP metabolites in urine samples of a volunteer before and after a platelet donation (dual-needle technique).
Plateletpheresis procedures are known to cause a significant DEHP exposure. We observed a sharp increase in urinary DEHP metabolite
concentrations after the procedure. Maximum concentrations of 5OH-MEHP, 5oxo-MEHP, 5cx-MEPP and MEHP observed 4 h after the
procedure were 822, 729, 577 and 388 μg/l respectively. 2cx-MMHP was excreted at highest concentrations after 8 h (201 μg/l).
Due to longer elimination half-times, 5cx-MEPP and 2cx-MMHP were the major metabolites excreted in urine 24 h after the exposure.
The 24-h-cumulative excretion of 363 μg 5cx-MEPP, 353 μg 5OH-MEHP, 309 μg 5oxo-MEHP, 178 μg MEHP and 133 μg 2cx-MMHP indicates
an absolute exposure of our volunteer of about 2.6 mg DEHP. Related to the body weight this equals a dose of 31.6 μg/kg body
weight/day. This indicates that current risk or preventive limit values for DEHP such as the RfD of the US EPA (20 μg/kg/day)
and the TDI of the European Union (20–48 μg/kg/day) can be exceeded on the day of the plateletpheresis. The amount of the
dose excreted in urine, distribution of the metabolites in urine and all other elimination characteristics after intravenous
DEHP exposure are comparable to oral exposure. There are no indications that toxicokinetic behaviour and the toxicity of DEHP
are fundamentally different after the two routes of exposure. Therefore, toxicological endpoints observed for DEHP after oral
application should also be considered relevant for medical procedures causing intravenous DEHP exposure, like apheresis procedures.
Especially women in their reproductive age need to be protected from DEHP exposures exceeding the above mentioned preventive
limit values. 相似文献
3.
Winfried Kessler Wanwiwa NumtipWolfgang Völkel Elcim SeckinGyörgy A. Csanády Christian PützDominik Klein Hermann FrommeJohannes G. Filser 《Toxicology and applied pharmacology》2012,264(2):284-291
The plasticizer di(2-ethylhexyl) phthalate (DEHP) is suspected to induce antiandrogenic effects in men via its metabolite mono(2-ethylhexyl) phthalate (MEHP). However, there is only little information on the kinetic behavior of DEHP and its metabolites in humans. The toxikokinetics of DEHP was investigated in four male volunteers (28-61 y) who ingested a single dose (645 ± 20 μg/kg body weight) of ring-deuterated DEHP (DEHP-D4). Concentrations of DEHP-D4, of free ring-deuterated MEHP (MEHP-D4), and the sum of free and glucuronidated MEHP-D4 were measured in blood for up to 24 h; amounts of the monoesters MEHP-D4, ring-deuterated mono(2-ethyl-5-hydroxyhexyl) phthalate and ring-deuterated mono(2-ethyl-5-oxohexyl) phthalate were determined in urine for up to 46 h after ingestion. The bioavailability of DEHP-D4 was surprisingly high with an area under the concentration-time curve until 24 h (AUC) amounting to 50% of that of free MEHP-D4. The AUC of free MEHP-D4 normalized to DEHP-D4 dose and body weight (AUC/D) was 2.1 and 8.1 times, that of DEHP-D4 even 50 and 100 times higher than the corresponding AUC/D values obtained earlier in rat and marmoset, respectively. Time courses of the compounds in blood and urine of the volunteers oscillated widely. Terminal elimination half-lives were short (4.3-6.6 h). Total amounts of metabolites in 22-h urine are correlated linearly with the AUC of free MEHP-D4 in blood, the parameter regarded as relevant for risk assessment. 相似文献
4.
Di(2-ethylhexyl)phthalate (DEHP) and mono(2-ethylhexyl)phthalate (MEHP) were administered PO or IP to pregnant ICR mice at varying doses on days 7, 8, and 9 of gestation. In groups given DEHP orally, resorptions and malformed fetuses increased significantly at 1,000 mg/kg. Fetal weights were also significantly suppressed. Anterior neural tube defects (anencephaly and exencephaly) were the malformations most commonly produced. No teratogenic effects were revealed by IP doses of DEHP and PO or IP doses of MEHP, although high doses were abortifacient and lethal to pregnant females. Thus DEHP is highly embryotoxic and teratogenic in mice when given PO but not IP. The difference in metabolism, disposition, or excretion by the route of administration may be responsible for the difference in DEHP teratogenicity. Although MEHP is a principal metabolite of DEHP and is several times more toxic than DEHP to adult mice, it seems that MEHP and its metabolites are not teratogenic in ICR mice. 相似文献
5.
Phthalates are suspected to be endocrine disruptors. Di(2-ethylhexyl) phthalate (DEHP) is assumed to have low dermal absorption; however, previous in vitro skin permeation studies have shown large permeation differences. Our aims were to determine DEHP permeation parameters and assess extent of skin DEHP metabolism among workers highly exposed to these lipophilic, low volatile substances. 相似文献
6.
In-Sik Shin Mee-Young Lee Eun-Sang Cho Eun-young Choi Hwa-Young Son Kyoung-Youl Lee 《Toxicology and applied pharmacology》2014
Di(2-ethylhexyl) phthalate (DEHP) is used as a plasticizer and is widely dispersed in the environment. In this study, we investigated the effects of maternal exposure to DEHP during pregnancy on neonatal asthma susceptibility using a murine model of asthma induced by ovalbumin (OVA). Pregnant BALB/c mice received DEHP from gestation day 13 to lactation day 21. Their offspring were sensitized on postnatal days (PNDs) 9 and 15 by intraperitoneal injection of 0.5 μg OVA with 200 μg aluminum hydroxide. On PNDs 22, 23 and 24, live pups received an airway challenge of OVA for 30 min. Offspring from pregnant mice that received DEHP showed reductions in inflammatory cell count, interleukin (IL)-4, IL-13, and eotaxin in their bronchoalveolar lavage fluid and in total immunoglobulin E and OVA-specific IgE in their plasma compared with offspring from pregnant mice that did not receive DEHP treatment. These results were consistent with histological analysis and immunoblotting. Maternal exposure to DEHP reduces airway inflammation and mucus production in offspring, with a decrease in inducible nitric oxide synthase (iNOS) in the lung tissue. This study suggests that maternal exposure to DEHP during pregnancy reduces asthmatic responses induced by OVA challenge in offspring. These effects were considered to be closely related to the suppression of Th2 immune responses and iNOS expression. 相似文献
7.
Kessler W Numtip W Grote K Csanády GA Chahoud I Filser JG 《Toxicology and applied pharmacology》2004,195(2):142-153
A comparison of the dose-dependent blood burden of di(2-ethylhexyl) phthalate (DEHP) and mono(2-ethylhexyl) phthalate (MEHP) in pregnant and nonpregnant rats and marmosets is presented. Sprague-Dawley rats and marmosets were treated orally with 30 or 500 mg DEHP/kg per day, nonpregnant animals on 7 (rats) and 29 (marmosets) consecutive days, pregnant animals on gestation days 14-19 (rats) and 96-124 (marmosets). In addition, rats received a single dose of 1000 mg DEHP/kg. Blood was collected up to 48 h after dosing. Concentrations of DEHP and MEHP in blood were determined by GC/MS. In rats, normalized areas under the concentration-time curves (AUCs) of DEHP were two orders of magnitude smaller than the normalized AUCs of the first metabolite MEHP. Metabolism of MEHP was saturable. Repeated DEHP treatment and pregnancy had only little influence on the normalized AUC of MEHP. In marmosets, most of MEHP concentration-time courses oscillated. Normalized AUCs of DEHP were at least one order of magnitude smaller than those of MEHP. In pregnant marmosets, normalized AUCs of MEHP were similar to those in nonpregnant animals with the exception that at 500 mg DEHP/kg per day, the normalized AUCs determined on gestation days 103, 117, and 124 were distinctly smaller. The maximum concentrations of MEHP in blood of marmosets were up to 7.5 times and the normalized AUCs up to 16 times lower than in rats receiving the same daily oral DEHP dose per kilogram of body weight. From this toxicokinetic comparison, DEHP can be expected to be several times less effective in the offspring of marmosets than in that of rats if the blood burden by MEHP in dams can be regarded as a dose surrogate for the MEHP burden in their fetuses. 相似文献
8.
Ito Y Yokota H Wang R Yamanoshita O Ichihara G Wang H Kurata Y Takagi K Nakajima T 《Archives of toxicology》2005,79(3):147-154
To clarify species differences in the metabolism of di(2-ethylhexyl) phthalate (DEHP) we measured the activity of four DEHP-metabolizing enzymes (lipase, UDP-glucuronyltransferase (UGT), alcohol dehydrogenase (ADH), and aldehyde dehydrogenase (ALDH)) in several organs (the liver, lungs, kidneys, and small intestine) of mice (CD-1), rats (Sprague–Dawley), and marmosets (Callithrix jacchus). Lipase activity, measured by the rate of formation of mono(2-ethylhexyl) phthalate (MEHP) from DEHP, differed by 27- to 357-fold among species; the activity was highest in the small intestines of mice and lowest in the lungs of marmosets. This might be because of the significant differences between Vmax/Km values of lipase for DEHP among the species. UGT activity for MEHP in the liver microsomes was highest in mice, followed by rats and marmosets. These differences, however, were only marginal compared with those for lipase activity. ADH and ALDH activity also differed among species; the activity of the former in the livers of marmosets was 1.6–3.9 times greater than in those of rats or mice; the activity of the latter was higher in rats and marmosets (2–14 times) than in mice. These results were quite different from those for lipase or UGT activity. Because MEHP is considered to be the more potent ligand to peroxisome proliferator-activated receptor involved in different toxic processes, a possibly major difference in MEHP-formation capacity could be also considered on extrapolation from rodents to humans. 相似文献
9.
Brian G. Lake Paul G. Brantom Sharat D. Gangolli Kenneth R. Butterworth Paul Grasso 《Toxicology》1976,6(3):341-356
A target-organ study of the effects of the phthalate ester di-(2-ethylhexyl) phthalate (DEHP) has been conducted in mature male albino ferrets. DEHP treatment caused a loss of body weight when administered as a 1% (w/w) diet for 14 months. Additionally, marked liver enlargement with associated morphological and biochemical changes was observed. These changes consisted of liver cell enlargement, lysosomal changes, dilatation of the endoplasmic reticulum and the depression of a number of marker enzyme activities. The only other tissue observed to be affected by DEHP treatment was the testes where histological evidence of tissue damage was observed in some animals.Studies on the metabolism of [14C]DEHP in the ferret indicated that the diester was metabolised to derivatives of mono-(2-ethylhexyl) phthalate which were excreted in the urine both unconjugated and as glucuronides.The results obtained have been compared with previous studies in the rat and it is concluded that DEHP is hepatotoxic in both species. 相似文献
10.
Two studies were designed to examine amniotic fluid and maternal urine concentrations of the di(2-ethylhexyl) phthalate (DEHP) metabolite mono(2-ethylhexyl) phthalate (MEHP) and the di-n-butyl phthalate (DBP) metabolite monobutyl phthalate (MBP) after administration of DEHP and DBP during pregnancy. In the first study, pregnant Sprague-Dawley rats were administered 0, 11, 33, 100, or 300 mg DEHP/kg/day by oral gavage starting on gestational day (GD) 7. In the second study, DBP was administered by oral gavage to pregnant Sprague-Dawley rats at doses of 0, 100, or 250 mg/kg/day starting on GD 13. Maternal urine and amniotic fluid were collected and analyzed to determine the free and glucuronidated levels of MEHP and MBP. In urine, MEHP and MBP were mostly glucuronidated. By contrast, free MEHP and free MBP predominated in amniotic fluid. Statistically significant correlations were found between maternal DEHP dose and total maternal urinary MEHP (p=0.0117), and between maternal DEHP dose and total amniotic fluid MEHP levels (p=0.0021). Total maternal urinary MEHP and total amniotic fluid MEHP levels were correlated (Pearson correlation coefficient=0.968). Statistically significant differences were found in amniotic MBP levels between animals within the same DBP dose treatment group (p<0.0001) and between animals in different dose treatment groups (p<0.0001). Amniotic fluid MBP levels increased with increasing DBP doses, and high variability in maternal urinary levels of MBP between rats was observed. Although no firm conclusions could be drawn from the urinary MBP data, the MEHP results suggest that maternal urinary MEHP levels may be useful surrogate markers for fetal exposure to DEHP. 相似文献
11.
Effect of di-2-ethylhexyl phthalate (DEHP) on glycogen contents and certain enzymes of carbohydrate metabolism of rat liver was investigated. A significant decrease in glycogen content of unfasted and an increase in fasted animals was observed. Blood glucose tolerance was reduced and the rate of both glycogenesis and glycogenolysis, as judged by measuring glycogen contents after feeding labelled and unlabelled glucose, was also decreased. Activities of glucose-6-phosphate dehydrogenase, phosphorylase and glucose-6-phosphatase were significantly decreased while activities of fructose-1-6-diphosphate and aldolase remained unaltered. The present results suggest that DEHP affects both glycogenesis and glycogenolysis in rat liver. 相似文献
12.
Administration of 2000 mg/kg of di(2-elhylhexyl)phthalate (DEHP) for a period of 7 or 15 days in rats, mice, guinea pigs and rabbits produced a differential effect as judged by alterations in body weight gain, liver weight and activities of mixed function oxidases. DEHP exposure for 7 days caused an increase in the activity of aniline hydroxylase, arylhydrocarbon hydroxylase and ethylmorphine N-demethylase in rats, mice and guinea pigs, but a decrease in that of rabbits. However, exposure for 15 days produced a smaller degree of increase in the activity of these enzymes in rats and mice and even produced a decrease in the activity of these enzymes in guinea pigs. This differential response of DEHP in various animal species suggests a species difference in the toxicity of the plasticizer. 相似文献
13.
The distribution and elimination of di-2-ethylhexyl phthalate (DEHP) and mono-2-ethylhexyl phthalate (MEHP) after a single oral administration of DEHP (25 mmol/kg) were studied. A gas-liquid Chromatographic method was used for the simultaneous determination of MEHP and DEHP. The compounds were extracted with methylene chloride and the monoester was alkylated to the hexyl derivative by solid-liquid phase transfer catalysis in methylethyl ketone. The coefficients of variation of this method for determination of DEHP and MEHP were 8.3% and 11.4% respectively. The concentration of DEHP and MEHP in blood and tissues increased to maximum within 6–24 h after dosing, while the highest levels observed in the heart and lungs occurred within 1 h. At 6 h after administration, the highest ratio of MEHP/DEHP (mol%) were recorded in testes (210%) while the other tissues exhibited less than 100%. MEHP disappeared exponentially with t
1/2 values ranging from 23 to 68 h; DEHP t
1/2 ranged from 8 to 156 h and the t
1/2 values of MEHP in several tissues were slightly longer than DEHP. The t
1/2 values in blood were 23.8 h and 18.6 h for MEHP and DEHP, respectively. 相似文献
14.
Di(2-ethylhexyl) phthalate (DEHP) is used as a plastic softener in the polymer industry and is widespread in medical devices. DEHP has been incriminated as an endocrine-disrupting chemical, and the effects of DEHP in various species have included disturbances in the reproductive system. The effects of the chemical have varied, depending upon exposure routes and species. This study was performed in order to characterise the kinetics of DEHP and its metabolite mono(2-ethylhexyl) phthalate (MEHP) in the young male pig, an omnivore model-species for research in reproductive toxicology. Eight pigs were given 1000 mg DEHP/kg bodyweight by oral gavage. The concentrations of DEHP and MEHP were then measured in the plasma and tissues of the pigs at different time points after administration. There was no consistent rise above contamination levels of concentrations of DEHP in the plasma of the pigs. However, the metabolite MEHP reached the systemic blood circulation. The half-life of MEHP in the systemic blood circulation was calculated to be 6.3 h. Absorption from the intestine was biphasic in six of the eight pigs and the mono-exponential elimination-phase started 16 h after the after the administration of DEHP. To conclude, MEHP consistently reaches the systemic circulation in the pig when DEHP is administered orally. The kinetic pattern of the parent substance on the other hand is more difficult to characterise. 相似文献
15.
Ito R Seshimo F Miura N Kawaguchi M Saito K Nakazawa H 《Journal of pharmaceutical and biomedical analysis》2005,39(5):1036-1041
The risk assessment of di(2-ethylhexyl) phthalate (DEHP) that migrated from polyvinyl chloride (PVC) medical devices is an important issue for hospitalized patients. Many studies have been conducted to determine the level of DEHP migration. A recent report has indicated that DEHP in blood bags was hydrolyzed by esterase to mono(2-ethylhexyl) phthalate (MEHP). Therefore, a method for the simultaneous determination of DEHP and MEHP was developed. The migration of DEHP and MEHP from PVC tubing to drugs was examined. Although we detected MEHP in the drugs, we found no enzymatic activity involved in the migration process. Some reports have indicated that hydrolysis may have occurred during sterilization by autoclaving. However, we did not perform any heat treatment. It is speculated that the MEHP migrated directly from the PVC tubing. The simultaneous determination of DEHP and MEHP is required for risk assessment, as MEHP may be even more toxic than the parent compound. 相似文献
16.
Chronic toxicity of di(2-ethylhexyl)phthalate in mice. 总被引:4,自引:0,他引:4
B6C3F1 mice were treated with 0, 100, 500, 1500, or 6000 ppm di(2-ethylhexyl)phthalate (DEHP) in the diet for up to 104 weeks. Blood and urine were analyzed at Weeks 26, 52, 78, and 104 from 10 animals per sex per group. Body weights and food consumption were measured weekly for the first 16 weeks, then monthly thereafter. Survival was reduced for mice receiving 6000 ppm DEHP. Overall weight gains were significantly lower for the 6000-ppm male group, but there was no difference among female groups. Food consumption was not affected by exposure. No biologically significant changes in clinical chemistry, hematology, or urinalysis were observed. After 104 weeks of exposure, kidney weights for the 500- and 1500-ppm male, and 6000-ppm male/female groups were significantly lower than for the controls. Significantly higher liver weight was seen for the 500-, 1500-, and 6000-ppm male groups and the 6000-ppm female group of mice. Testis weights for the 500-, 1500-, and 6000-ppm males were significantly lower than for the controls. Uterine weights for the 6000-ppm group were significantly lower than for the controls. All organs were examined for histopathology. The incidence of hepatocellular lesions has been reported separately (R. M. David et al., 1999. Toxicol. Sci. 50, 195-205). Tumors were observed at > or = 500-ppm dosages, where peroxisome proliferation was significantly increased. A NOEL for both tumors and peroxisome proliferation was 100 ppm. In the study presented here, bilateral hypospermia in the testes of male mice, hepatocyte pigmentation and cytoplasmic eosinophilia in the liver, and chronic progressive nephropathy of male and female mice were observed at 6000 ppm. Hypospermia and chronic progressive nephropathy were also observed at 1500 ppm, where peroxisome proliferation was 2.7-6.8-fold higher than controls. Many lesions observed in rats were not seen in mice. A dose level of 500 ppm (98.5-116.8 mg/kg/day) was identified as a no-observed-adverse-effect level (NOAEL) for noncarcinogenic effects. 相似文献
17.
Chronic toxicity of di(2-ethylhexyl)phthalate in rats. 总被引:2,自引:0,他引:2
Fischer 344 rats were treated with 0, 100, 500, 2500, or 12,500 ppm di(2-ethylhexyl)phthalate (DEHP) in the diet for up to 104 weeks. Blood and urine were analyzed at weeks 26, 52, 78, and 104 from 10 animals per sex per group. Survival was slightly but not statistically reduced for rats receiving 12,500 ppm DEHP. Body weights and food consumption were significantly reduced for rats receiving the highest dose level of DEHP and occasionally for the male 2500-ppm group. BUN and albumin were significantly higher and globulin lower at nearly every sampling interval for the 12,500-ppm group compared with the controls. There was an increase in the mean activities of AST and ALT at 104 weeks, but no statistically significant differences were seen. Erythrocyte count, hemoglobin, and hematocrit values for the 12,500-ppm group were significantly lower than controls at nearly every sampling interval. No other differences in hematology were seen. No toxicologically significant changes were observed in urinalysis. At termination, relative lung weights for the 2500- and 12,500-ppm male groups of rats were significantly higher than for the controls. Absolute and relative liver and kidney weights for the 2500- and 12,500-ppm male rats, and liver weights for 12,500-ppm female rats were higher compared with the controls. Absolute and relative testes weights for the 12, 500-ppm male rats were lower compared with the controls. All organs were examined for histopathology. The incidence of hepatocellular lesions has been reported separately and correlated with the induction of peroxisomal enzyme activity (David et al., 1999). A dose level of 500 ppm was the NOEL for peroxisome proliferation. Bilateral aspermatogenesis in the testes, castration cells in the pituitary gland, spongiosis hepatis, and pancreatic acinar cell adenoma were observed for 12,500-ppm male rats. Aspermatogenesis and spongiosis hepatis were observed for 2500-ppm male rats, and aspermatogenesis was seen at 500 ppm. DEHP exposure exacerbated age-, species- or strain-related lesions such as mineralization of the renal papilla and chronic progressive nephropathy in male rats. Kupffer cell pigmentation and renal tubule pigmentation were seen in male and female 12,500-ppm rats. The increased incidence of spongiosis hepatis correlated with increased palmitoyl CoA oxidase activity, but the incidence of pancreatic acinar cell adenoma was increased only at the highest dose level of 12,500 ppm. These lesions, although typical of those seen with other peroxisome proliferators, may respond differently depending on the potency of the peroxisome proliferator. A dose level of 500 ppm (28.9-36.1 mg/kg/day) was considered to be the NOAEL. 相似文献
18.
The absorption, metabolism and tissue distribution of di(2-ethylhexyl)phthalate in rats 总被引:1,自引:0,他引:1
Rats given a single oral dose of [14C] di(2-ethylhexyl) phthalate [14C] (DEHP) excreted 42% and 57% of the dose in the urine and faeces respectively in 7 days. A significant proportion (14%) of the dose is excreted in bile. Rats fed 1000 ppm DEHP in the diet for 7 days prior to dosing with [14C] DEHP excreted 57% and 38% in the urine and faeces respectively in 4 days.When fed continuously to rats at dietary concentrations of 1000 and 5000 ppm, the amount of the ester in liver and abdominal fat rapidly attains a steady-state concentration and there is no evidence of accumulation. When returned to a normal diet, the radioactivity in the liver declined with a half life of 1–2 days while that in fat declined rather more slowly to give a half life of 3–5 days. The relative liver weight increased to a level 50% above normal in rats receiving 5000 ppm DEHP and returned to normal within 1 week after being returned to normal diet.When administered intravenously DEHP is preferentially localised in lung, liver and spleen from where it is eliminated with a half-life of 1–2 days.The hexobarbital sleeping time was reduced by 30–40% in rats following repeated oral administration of DEHP; when the ester was administered intravenously sleeping time was increased by approx. 40%.DEHP is extensively metabolised after oral administration, the principal metabolites being identified as the acid, alcohol and ketone resulting from ω- and (ω-1)-oxidation of mono(2-ethylhexyl) phthalate (MEHP). DEHP is rapidly hydrolysed to the half-ester by pancreatic lipase. 相似文献
19.
Di (2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer, also known as a developmental toxicant, but its neurobehavioral toxicity remains elusive. This study evaluated the neurobehavioral toxicity and its possible mechanism in larval zebrafish. Embryos at gastrula period (~6 h post fertilization, hpf) were exposure to DEHP (0, 1, 2.5, 5 and 10 mg/L) for 7 days. Spontaneous tail movement in embryos and swimming activity in larvae were monitored. Alterations in the mRNA expression of genes involved in dopamine signaling and apoptosis pathway were assessed. In situ apoptotic cells were assessed by Acridine orange staining, and oxidative damage were measured using enzymatic assay. The behavior results showed that DEHP inhibited spontaneous tail movement and decreased locomotor activities in the light/dark behavioral test. Meanwhile, behavioral changes were accompanied by increased apoptosis and malondialdehyde (MDA) content, decreased superoxide dismutase (SOD) activity and dopamine (DA) content, and perturbed the expression of genes associated with the synthesis (th), reuptake (dat) and metabolism (mao) of DA, with dopamine receptors (DRs), and with the apoptosis pathway (p53, bax, bcl2, caspase-3, caspase-8, caspase-9). The findings will help to illuminate the possible neurobehavioral toxicity mechanisms of organism exposure to DEHP. 相似文献
20.
Nakamura Yoshiyuki Yagi Yasuoki Tomita Isao Tsuchikawa Kiyoshi 《Toxicology letters》1979,4(2):113-117
Fetotoxicity of di-(2-ethylhexyl)phthalate (DEHP) was studied in a random strain (ddY-Slc♀ × CBA ♂) of mice. A single oral administration of DEHP 0.05 ml/kg on day 7 of gestation resulted in a decrease in body weight of live fetuses, but there were no dead, gross, or skeletal abnormal fetuses. At 0.1 ml/kg and above DEHP decreased fetal body weight and the fetuses were dead or deformed. The fetotoxicity was dose dependent and a straight line Y = 51.9 log X + 61.6 was obtained where Y = the rate of death(%) and X = the dose of DEHP administered (ml/kg). The LD50 and the non-effective aximum dose which induced fetal death was 0.60 ml/kg and 0.065 ml/kg, respectively. The non-effective maximum doses which resulted in gross and skeletal abnormalities were 0.80 and 0.68 ml/kg, respectively. 相似文献