首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Motion processing regions apart from V5+/MT+ are still relatively poorly understood. Here, we used functional magnetic resonance imaging to perform a detailed functional analysis of the recently described cingulate sulcus visual area (CSv) in the dorsal posterior cingulate cortex. We used distinct types of visual motion stimuli to compare CSv with V5/MT and MST, including a visual pursuit paradigm. Both V5/MT and MST preferred 3D flow over 2D planar motion, responded less yet substantially to random motion, had a strong preference for contralateral versus ipsilateral stimulation, and responded nearly equally to contralateral and to full-field stimuli. In contrast, CSv had a pronounced preference to 2D planar motion over 3D flow, did not respond to random motion, had a weak and nonsignificant lateralization that was significantly smaller than that of MST, and strongly preferred full-field over contralateral stimuli. In addition, CSv had a better capability to integrate eye movements with retinal motion compared with V5/MT and MST. CSv thus differs from V5+/MT+ by its unique preference to full-field, coherent, and planar motion cues. These results place CSv in a good position to process visual cues related to self-induced motion, in particular those associated to eye or lateral head movements.  相似文献   

2.
Cortical connections of area V4 in the macaque   总被引:1,自引:0,他引:1  
To determine the locus, full extent, and topographic organization of cortical connections of area V4 (visual area 4), we injected anterograde and retrograde tracers under electrophysiological guidance into 21 sites in 9 macaques. Injection sites included representations ranging from central to far peripheral eccentricities in the upper and lower fields. Our results indicated that all parts of V4 are connected with occipital areas V2 (visual area 2), V3 (visual area 3), and V3A (visual complex V3, part A), superior temporal areas V4t (V4 transition zone), MT (medial temporal area), and FST (fundus of the superior temporal sulcus [STS] area), inferior temporal areas TEO (cytoarchitectonic area TEO in posterior inferior temporal cortex) and TE (cytoarchitectonic area TE in anterior temporal cortex), and the frontal eye field (FEF). By contrast, mainly peripheral field representations of V4 are connected with occipitoparietal areas DP (dorsal prelunate area), VIP (ventral intraparietal area), LIP (lateral intraparietal area), PIP (posterior intraparietal area), parieto-occipital area, and MST (medial STS area), and parahippocampal area TF (cytoarchitectonic area TF on the parahippocampal gyrus). Based on the distribution of labeled cells and terminals, projections from V4 to V2 and V3 are feedback, those to V3A, V4t, MT, DP, VIP, PIP, and FEF are the intermediate type, and those to FST, MST, LIP, TEO, TE, and TF are feedforward. Peripheral field projections from V4 to parietal areas could provide a direct route for rapid activation of circuits serving spatial vision and spatial attention. By contrast, the predominance of central field projections from V4 to inferior temporal areas is consistent with the need for detailed form analysis for object vision.  相似文献   

3.
Novel mapping stimuli composed of biological motion figures were used to study the extent and layout of multiple retinotopic regions in the entire human brain and to examine the independent manipulation of retinotopic responses by visual stimuli and by attention. A number of areas exhibited retinotopic activations, including full or partial visual field representations in occipital cortex, the precuneus, motion-sensitive temporal cortex (extending into the superior temporal sulcus), the intraparietal sulcus, and the vicinity of the frontal eye fields in frontal cortex. Early visual areas showed mainly stimulus-driven retinotopy; parietal and frontal areas were driven primarily by attention; and lateral temporal regions could be driven by both. We found clear spatial specificity of attentional modulation not just in early visual areas but also in classical attentional control areas in parietal and frontal cortex. Indeed, strong spatiotopic activity in these areas could be evoked by directed attention alone. Conversely, motion-sensitive temporal regions, while exhibiting attentional modulation, also responded significantly when attention was directed away from the retinotopic stimuli.  相似文献   

4.
It has often been proposed that regions of the human parietal and/or frontal lobe may modulate activity in visual cortex, for example, during selective attention or saccade preparation. However, direct evidence for such causal claims is largely missing in human studies, and it remains unclear to what degree the putative roles of parietal and frontal regions in modulating visual cortex may differ. Here we used transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) concurrently, to show that stimulating right human intraparietal sulcus (IPS, at a site previously implicated in attention) elicits a pattern of activity changes in visual cortex that strongly depends on current visual context. Increased intensity of IPS TMS affected the blood oxygen level-dependent (BOLD) signal in V5/MT+ only when moving stimuli were present to drive this visual region, whereas TMS-elicited BOLD signal changes were observed in areas V1-V4 only during the absence of visual input. These influences of IPS TMS upon remote visual cortex differed significantly from corresponding effects of frontal (eye field) TMS, in terms of how they related to current visual input and their spatial topography for retinotopic areas V1-V4. Our results show directly that parietal and frontal regions can indeed have distinct patterns of causal influence upon functional activity in human visual cortex.  相似文献   

5.
We used the (14)C-deoxyglucose method to map the functional activity in the cortex of the lateral and medial parietal convexity, the intraparietal and the parietoccipital sulci of monkeys which either reached and grasped a 3D-object or observed the same reaching-to-grasp movements executed by a human. Execution of reaching-to-grasp induced activations in the superior parietal areas SI-forelimb/convexity, PE, PE caudal (PEc); in the intraparietal areas PE intraparietal (PEip), medial intraparietal (MIP), 5 intraparietal posterior, ventral intraparietal (VIP), anterior intraparietal (AIP), lateral intraparietal dorsal; in the inferior parietal areas PF, PFG, PG; in the parietoccipital areas V6, V6A-dorsal; in the medial cortical areas PGm/7m and retrosplenial cortex. Observation of reaching-to-grasp activated areas SI-forelimb/convexity, PE lateral, PEc, PEip, MIP, VIP, AIP, PF, V6, PGm/7m, 31, and retrosplenial cortex. The common activations were stronger for execution than for observation and the interhemispheric differences were smaller for observation than for execution, contributing to the attribution of action to the correct agent. The extensive overlap of parietal networks activated for action execution and observation supports the "mental simulation theory" which assigns the role of understanding others' actions to the entire distributed neural network responsible for the execution of actions, and not the concept of "mirroring" which reflects the function of a certain class of cells in a couple of cortical areas.  相似文献   

6.
We used positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) in human subjects to investigate whether the ventral and dorsal visual stream cooperate when active judgements about color have to be made. Color was used as the attribute, because it is processed primarily in the ventral stream. The centrally positioned stimuli were equiluminant shades of brown. The successive color discrimination task was contrasted to a dimming detection task, in which retinal input was identical but with double the number of motor responses. The stimulus presentation rate was parametrically varied and a constant performance level was obtained for all conditions. The visual activation sites were identified by retinotopic mapping and cortical flattening. In addition, one psychophysical and two fMRI experiments were performed to control for differences in visuospatial attention and motor output. Successive color discrimination involved early visual areas, including V1 and VP and the ventral color-responsive region, as well as anterior and middle dorsal intraparietal sulcus, dorsal premotor cortex and pre-SMA. Cortical regions involved in dimming detection and motor output included area V3A, hMT/V5+, lateral occipital sulcus, posterior dorsal intraparietal sulcus, primary motor cortex and SMA. These experiments demonstrated that even with color as the attribute, successive discrimination, in which a decision process has to link visual signals to motor responses, involves both ventral and dorsal visual stream areas.  相似文献   

7.
Visual and auditory motion information can be used together to provide complementary information about the movement of objects. To investigate the neural substrates of such cross-modal integration, functional magnetic resonance imaging was used to assess brain activation while subjects performed separate visual and auditory motion discrimination tasks. Areas of unimodal activation included the primary and/or early sensory cortex for each modality plus additional sites extending toward parietal cortex. Areas conjointly activated by both tasks included lateral parietal cortex, lateral frontal cortex, anterior midline and anterior insular cortex. The parietal site encompassed distinct, but partially overlapping, zones of activation in or near the intraparietal sulcus (IPS). A subsequent task requiring an explicit cross-modal speed comparison revealed several foci of enhanced activity relative to the unimodal tasks. These included the IPS, anterior midline, and anterior insula but not frontal cortex. During the unimodal auditory motion task, portions of the dorsal visual motion system showed signals depressed below resting baseline. Thus, interactions between the two systems involved either enhancement or suppression depending on the stimuli present and the nature of the perceptual task. Together, these results identify human cortical regions involved in polysensory integration and the attentional selection of cross-modal motion information.  相似文献   

8.
During locomotion, an observer sees a large and complex pattern of visual motion called optic flow. This phenomenon is characterized by elements in the environment accelerating and expanding as they move peripherally. In cats, previous studies have indicated that the posteromedial part of the lateral suprasylvian (PMLS) cortex may be involved in the processing of optic flow fields. We further addressed this issue by studying the importance of specific parameters of the optic flow patterns and investigating whether cell responses to these stimuli depend on receptive field (RF) location in the visual field. Results can be summarized as follows: approximately two-thirds of PMLS cells responded to optic flow fields and a subset of these (84/153) showed a clear direction selectivity for motion along the frontal axis. Of these units, the majority responded preferentially to expansion rather than contraction of the pattern. Cells' responses depend on RF location in the visual field. For centrally located RFs, tested both when the origin of motion was within the RF or at the area centralis, responses were generally comparable whether or not size or speed gradients were removed from the optic flow pattern. A different tendency was observed for peripherally located RFs. In general, these cells exhibited a preferred direction almost exclusively when the origin of motion was placed at the area centralis, and neuronal discharges and direction selectivity for many of them were reduced when the optic flow cues were removed from the pattern. The results of this study suggest that there may be functional differences in response properties between PMLS cells located in the central and peripheral parts of the visual field that may reflect a specialization of the PMLS cortex in optic flow processing.  相似文献   

9.
Electrophysiological and neuroimaging studies have shown that attention to visual motion can increase the responsiveness of the motion- selective cortical area V5 and the posterior parietal cortex (PP). Increased or decreased activation in a cortical area is often attributed to attentional modulation of the cortical projections to that area. This leads to the notion that attention is associated with changes in connectivity. We have addressed attentional modulation of effective connectivity using functional magnetic resonance imaging (fMRI). Three subjects were scanned under identical stimulus conditions (visual motion) while varying only the attentional component of the task. Haemodynamic responses defined an occipito-parieto-frontal network, including the, primary visual cortex (V1), V5 and PR A structural equation model of the interactions among these dorsal visual pathway areas revealed increased connectivity between V5 and PP related to attention. On the basis of our analysis and the neuroanatomical pattern of projections from the prefrontal cortex to PP we attributed the source of modulatory influences, on the posterior visual pathway, to the prefrontal cortex (PFC). To test this hypothesis we included the PFC in our model as a 'modulator' of the pathway between V5 and PP, using interaction terms in the structural equation model. This analysis revealed a significant modulatory effect of prefrontal regions on V5 afferents to posterior parietal cortex.   相似文献   

10.
The medial parieto-occipital cortex is a central node in the dorsomedial visual stream. Recent physiological studies in the macaque monkey have demonstrated that the medial parieto-occipital cortex contains two areas, the visual area V6 and the visuomotor area V6A. Area V6 is a retinotopically organized visual area that receives form and motion information directly from V1 and is heavily connected with the other areas of the dorsal visual stream, including V6A. Area V6A is a bimodal visual/somatosensory area that elaborates visual information such as form, motion and space suitable for the control of both reaching and grasping movements. Somatosensory and skeletomotor activities in V6A affect the upper limbs and involve both the transport phase of reaching and grasping movements. Finally, V6A is strongly and reciprocally connected with the dorsal premotor cortex controlling arm movements. The picture emerging from these data is that the medial parieto-occipital cortex is well equipped to control both proximal and distal movements in the online visuomotor guidance of prehension. In agreement with this view, selective V6A lesions in monkey produce misreaching and misgrasping with the arm contralateral to the lesion in visually guided movements. These deficits are similar to those observed in optic ataxia patients and suggest that human and monkey superior parietal lobules are homologous structures, and that optic ataxia syndrome is the result of the lesion of a 'human' area V6A.  相似文献   

11.
We hypothesized that neuronal responses to virtual self-movement would be enhanced during steering tasks. We recorded the activity of medial superior temporal (MSTd) neurons in monkeys trained to steer a straight-ahead course, using optic flow. We found smaller optic flow responses during active steering than during the passive viewing of the same stimuli. Behavioral analysis showed that the monkeys had learned to steer using local motion cues. Retraining the monkeys to use the global pattern of optic flow reversed the effects of the active-steering task: active steering then evoked larger responses than passive viewing. We then compared the responses of neurons during active steering by local motion and by global patterns: Local motion trials promoted the use of local dot movement near the center of the stimulus by occluding the peripheral visual field midway through the trial. Global pattern trials promoted the use of radial pattern movement by occluding the central visual field midway through the trial. In this study, identical full-field optic-flow stimuli evoked larger responses in global-pattern trials than in local motion trials. We conclude that the selection of specific visual cues reflects strategies for active steering and alters MSTd neuronal responses to optic flow.  相似文献   

12.
Cortical connections of the macaque anterior intraparietal (AIP) area   总被引:1,自引:0,他引:1  
We traced the cortical connections of the anterior intraparietal (AIP) area, which is known to play a crucial role in visuomotor transformations for grasping. AIP displayed major connections with 1) areas of the inferior parietal lobule convexity, the rostral part of the lateral intraparietal area and the SII region; 2) ventral visual stream areas of the lower bank of the superior temporal sulcus and the middle temporal gyrus; and 3) the premotor area F5 and prefrontal areas 46 and 12. Additional connections were observed with the caudal intraparietal area and the ventral part of the frontal eye field. This study suggests that visuomotor transformations for object-oriented actions, processed in AIP, rely not only on dorsal visual stream information related to the object's physical properties but also on ventral visual stream information related to object identity. The identification of direct anatomical connections with the inferotemporal cortex suggests that AIP also has a unique role in linking the parietofrontal network of areas involved in sensorimotor transformations for grasping with areas involved in object recognition. Thus, AIP could represent a crucial node in a cortical circuit in which hand-related sensory and motor signals gain access to representations of object identity for tactile object recognition.  相似文献   

13.
Extracellular recordings obtained from the extrastriate cortex of the California ground squirrel, a diurnal sciurid, show that large receptive fields and a strong direction selectivity are present in the middle lateral area (ML) and the lateral area (L), located laterally to V2 and V3. Direction selectivity was tested by presenting stimuli of varying dimensions, shapes and speeds at different locations in the visual field. Most cells in ML and L (84%) were direction selective, with a preference for fast speeds, indicating that these areas share a role in motion processing. Areas ML and L may be homologous to area MT or may represent a case of homoplasia. A directional anisotropy for motion towards the vertical meridian was found in ML and L cells, suggesting that these areas may be involved in detecting predators and other moving objects coming from the periphery, rather than in processing flow fields caused by forward locomotion, for which a centrifugal bias might be expected.   相似文献   

14.
The parietal cortex has traditionally been implicated in spatial attention and eye-movement processes. Recent functional neuroimaging studies have found that activation in the parietal cortex is related to successful recognition memory. The activated regions consistently include the intraparietal sulcus in the lateral parietal cortex and the precuneus in the medial parietal cortex. However, little is known about the functional differences between lateral and medial parietal cortices in the memory retrieval process. In this study, we examined whether the human lateral and medial parietal lobes have differential anatomical and functional connectivity with the temporal lobe. To this end, we used functional magnetic resonance imaging to constrain the analysis of anatomical connectivity obtained by diffusion tensor imaging (DTI). Both DTI tractography and functional connectivity analysis showed that the lateral parietal region has anatomical and functional connections with the lateral temporal lobe, and the medial parietal region has connections with the medial temporal lobe. These results suggest the existence of segregated lateral and medial parieto-temporal pathways in successful memory retrieval.  相似文献   

15.
This study was designed to assess the chemoarchitectural organization and extent of the mouse visual cortex. We used nonphosphorylated neurofilament protein, a neuronal marker that exhibits region-specific cellular and laminar patterns, to delineate cortical subdivisions. A comprehensive analysis demonstrated that pyramidal and nonpyramidal neurons expressing neurofilament proteins display striking laminar and regional patterns in the mouse visual cortex permitting the delineation of the primary visual cortex (V1) and its monocular and binocular zones, 2 lateral, and 5 medial extrastriate cortical areas with clear anatomical boundaries and providing evidence that the mouse medial extrastriate cortex is not homogeneous. We also investigated the expression profiles of 2 neuronal activity markers, the immediate early genes c-fos and zif-268, following deprivation paradigms to ascertain the visual nature of all subdivisions caudal, medial, and lateral to V1. The present data indicate that neurochemically identifiable subdivisions of the mouse visual cortex exist laterally and medially to V1 and reveal specific anatomical and functional characteristics at the cellular and regional levels.  相似文献   

16.
Priming of motion direction and area V5/MT: a test of perceptual memory   总被引:2,自引:2,他引:0  
Presentation of supraliminal or subliminal visual stimuli that can (or cannot) be detected or identified can improve the probability of the same stimulus being detected over a subsequent period of seconds, hours or longer. The locus and nature of this perceptual priming effect was examined, using suprathreshold stimuli, in subjects who received repetitive pulse transcranial magnetic stimulation over the posterior occipital cortex, the extrastriate motion area V5/MT or the right posterior parietal cortex during the intertrial interval of a visual motion direction discrimination task. Perceptual priming observed in a control condition was abolished when area V5/MT was stimulated but was not affected by magnetic stimulation over striate or parietal sites. The effect of transcranial magnetic stimulation (TMS) on priming was specific to site (V5/MT) and to task - colour priming was unaffected by TMS over V5/MT. The results parallel, in the motion domain, recent demonstrations of the importance of macaque areas V4 and TEO for priming in the colour and form domains.  相似文献   

17.
BACKGROUND: Functional magnetic resonance imaging of blood oxygenation level-dependent signal changes offers a very promising approach to investigate activated neural networks during anesthesia. METHODS: Sixteen healthy male volunteers, assigned into two groups of eight subjects (isoflurane group, control group), were investigated by functional magnetic resonance imaging during different experimental conditions. The isoflurane group successively breathed air (baseline condition), isoflurane in air (0.42 vol% inspiratory; isoflurane condition) and air again (recovery condition) while performing a visual search task, whereas the control group breathed air during all experimental conditions. Functional magnetic resonance images were acquired during the entire experimental session. In addition, reaction times and error rates were recorded. RESULTS: A significant isoflurane-related decrease (z > 3.1 corresponding to P < 0.001) in task-induced brain activation was found in three distinct cortical regions: the right anterio-superior insula (Talairach coordinates: x = 32, y = 22, z = 8) and the banks of the left and right intraparietal sulcus (Talairach coordinates: x = -34, y = -36, z = 32; x = 22, y = -60, z = 41, respectively). Subcortical structures (lateral geniculate nucleus) and the primary cortices (motor cortex, visual cortex) were not affected. All measured parameters indicated a nearly complete recovery of the affected networks within 5 min. CONCLUSIONS: Our findings indicate that subanesthetic isoflurane affected task-induced activation in specific neural networks rather than causing a global decrease in functional activation.  相似文献   

18.
We investigated whether the visual hMT+ cortex plays a role in supramodal representation of sensory flow, not mediated by visual mental imagery. We used functional magnetic resonance imaging to measure neural activity in sighted and congenitally blind individuals during passive perception of optic and tactile flows. Visual motion-responsive cortex, including hMT+, was identified in the lateral occipital and inferior temporal cortices of the sighted subjects by response to optic flow. Tactile flow perception in sighted subjects activated the more anterior part of these cortical regions but deactivated the more posterior part. By contrast, perception of tactile flow in blind subjects activated the full extent, including the more posterior part. These results demonstrate that activation of hMT+ and surrounding cortex by tactile flow is not mediated by visual mental imagery and that the functional organization of hMT+ can develop to subserve tactile flow perception in the absence of any visual experience. Moreover, visual experience leads to a segregation of the motion-responsive occipitotemporal cortex into an anterior subregion involved in the representation of both optic and tactile flows and a posterior subregion that processes optic flow only.  相似文献   

19.
Impaired optic flow perception may contribute to the visuospatial disorientation of Alzheimer's disease (AD). We find that 36% of AD patients have elevated perceptual thresholds for left/right outward radial optic flow discrimination. This impairment is related to independent visual motion processing deficits affecting the perception of left/right motion-defined boundaries and in/out radial motion. Elevated optic flow thresholds in AD are correlated with greater difficulty in the Road Map test of visuospatial function (r = -0.5) and in on-the-road driving tests (r = -0.83). When local motion cues are removed from optic flow, subjects must rely on the global pattern of motion. This reveals global pattern perceptual deficits that affect most AD patients (85%) and some normal elderly subjects (21%). This deficit might combine with impaired local motion processing to undermine the alternative perceptual strategies for visuospatial orientation. The greater prevalence of global pattern deficits suggests that it might precede local motion processing impairments, possibly relating to the sequence of early hippocampal and later posterior cortical damage that is typical of AD.  相似文献   

20.
In pursuing our work on the organization of human visual cortex,we wanted to specify more accurately the position of the visualmotion area (area V5) in relation to the sulcal and gyral patternof the cerebral cortex. We also wanted to determine the intersubjectvariation of area V5 in terms of position and extent of bloodflow change in it, in response to the same task. We thereforeused positron emission tomography (PET) to determine the fociof relative cerebral blood flow increases produced when subjectsviewed a moving checkerboard pattern, compared to viewing thesame pattern when it was stationary. We coregistered the PETimages from each subject with images of the same brain obtainedby magnetic resonance imaging, thus relating the position ofV5 in all 24 hemispheres examined to the individual gyral configurationof the same brains. This approach also enabled us to examinethe extent to which results obtained by pooling the PET datafrom a small group of individuals (e.g., six), chosen at random,would be representative of a much larger sample in determiningthe mean location of V5 after transformation into Talairachcoordinates. After stereotaxic transformation of each individual brain, wefound that the position of area V5 can vary by as much as 27mm in the left hemisphere and 18 mm in the right for the pixelwith the highest significance for blood flow change. There isalso an intersubject variability in blood flow change withinit in response to the same visual task. V5 nevertheless bearsa consistent relationship, within each brain, to the sulcalpattern of the occipital lobe. It is situated ventrolaterally,just posterior to the meeting point of the ascending limb ofthe inferior temporal sulcus and the lateral occipital sulcus.In position it corresponds almost precisely with Flechsig'sFeld 16, one of the areas that he found to be myelinated atbirth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号