首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到1条相似文献,搜索用时 1 毫秒
1.
The perception of changes in the direction of objects that translate in space is an important function of our visual system. Here we investigate the brain electrical phenomena underlying such a function by using a combination of magnetoencephalography (MEG) and magnetic resonance imaging. We recorded MEG-evoked responses in 9 healthy human subjects while they discriminated the direction of a transient change in a translationally moving random dot pattern presented either to the right or to the left of a central fixation point. We found that responses reached their maximum in 2 main regions corresponding to motion processing area middle temporal (MT)/V5 contralateral to the stimulated visual field, and to the right inferior parietal lobe (rIPL). The activation latencies were very similar in both regions ( approximately 135 ms) following the direction change onset. Our findings suggest that area MT/V5 provides the strongest sensory signal in response to changes in the direction of translational motion, whereas area rIPL may be involved either in the sensory processing of transient motion signals or in the processing of signals related to orienting of attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号