首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Vogt S  Fuchs K  Richter E 《Toxicology》2006,222(1-2):71-79
The incidence of esophageal adenocarcinoma is rapidly rising in Western populations. Gastroesophageal reflux disease (GERD) is thought to be one of the most important risk factors. However, the mechanisms by which GERD enhances tumor formation at the gastroesophageal junction are not well understood. Myosmine is a tobacco alkaloid which has also a wide spread occurrence in human diet. It is readily activated by nitrosation and peroxidation giving rise to the same hydroxypyridylbutanone-releasing DNA adducts as the esophageal carcinogen N'-nitrosonornicotine. Therefore, the genotoxicity of myosmine was tested in a human esophageal adenocarcinoma cell line (OE33). DNA damage was assessed by single-cell gel electrophoresis (Comet assay). DNA strand breaks, alkali labile sites and incomplete excision repair were expressed using the Olive tail moment (OTM). The Fapy glycosylase (Fpg) enzyme was incorporated into the assay to reveal additional oxidative DNA damage. DNA migration was determined after incubation of the cells for 1-24h. Under neutral conditions high myosmine concentrations of 25-50mM were necessary to elicit a weak genotoxic effect. At pH 6 genotoxicity was clearly enhanced giving a significant increase of OTM values at 5mM myosmine. Lower pH values could not be tested because of massive cytotoxicity even in the absence of myosmine. Co-incubation of 25 mM myosmine with 1mM H(2)O(2) for 1h significantly enhanced the genotoxicity of H(2)O(2) but not the oxidative lesions additionally detected with the Fpg enzyme. In the presence of the peroxynitrite donor 3-morpholinosydnonimine (SIN-1) a dose-dependent significant genotoxic effect was obtained with 1-10mM myosmine after 4h incubation. NS-398, a selective inhibitor of cyclooxygenase 2, did not affect the SIN-1 stimulated genotoxicity of myosmine. Finally, the 23 h repair of N-methyl-N'-nitro-N-nitrosoguanidine-induced DNA lesions was significantly inhibited in the presence of 10mM myosmine. In conclusion, myosmine exerts significant genotoxic effects in esophageal cells under conditions which may prevail in GERD such as increased oxidative and nitrosative stress resulting from chronic inflammation.  相似文献   

2.
A novel bifunctional hypoxia-selective compound [Rh2(O2CCH3)4.2C6N3O3H9] has been synthesized and its genotoxic and potential mutagenic effects studied with reference to those of dirhodium tetraacetate (RAc) and metronidazole. The properties of the two functional components have been examined by comparing its oxic genotoxicity, a measure of the DNA damage induced by RAc, with its anoxic genotoxicity by electrochemical reduction, a measure of DNA damage resulting from the combined activity of reduced nitro group intermediates and RAc. The induction of DNA SOS repair has also been studied as well as the strand-breaking ability of the compound using viscometry. The genotoxic effects observed are proportional to the drug concentration over the range tested and the compound exhibits a high selective toxicity differential to hypoxic bacteria. The strand-breaking and mutagenic properties are governed by the metronidazole component and other effects, such as inhibition of DNA synthesis, are governed by the RAc component.  相似文献   

3.
This study evaluated the effects of cadmium (Cd) adaptation in cultured alveolar epithelial cells on oxidant-induced DNA damage and its subsequent repair. Using the comet assay, we determined that lower levels of DNA damage occurred in Cd-adapted cells compared with non-adapted cells following treatment of cells with hydrogen peroxide (H(2)O(2)). This may be a consequence of increased thiol-containing antioxidants that were observed in adapted cells, including metallothionein and glutathione. Cd-adapted cells were, however, less efficient at repairing total oxidative DNA damage compared with non-adapted cells. Subsequently, we investigated the effect of Cd adaptation on the repair of particular oxidized DNA lesions by employing lesion-specific enzymes in the comet assay, namely formamidopyrimidine DNA glycosylase (Fpg), an enzyme that predominantly repairs 8-oxoguanine (8-oxoG), and endonuclease III, that is capable of repairing oxidized pyrimidines. The data demonstrated that adaptation to Cd results in significantly impaired repair of both Fpg- and endonuclease III-sensitive lesions. In addition, in situ detection of 8-oxoG using a recombinant monoclonal antibody showed that Cd-adaptation reduces the repair of this oxidative lesion after exposure of cells to H(2)O(2). Activities of 8-oxoG-DNA glycosylase and endonuclease III were determined in whole cell extracts using 32P-labeled synthetic oligonucleotides containing 8-oxoG and dihydrouracil sites, respectively. Cd adaptation was associated with an inhibition of 8-oxoG-DNA glycosylase and endonuclease III enzyme activity compared with non-adapted cells. In summary, this study has shown that Cd adaptation: (1) reduces oxidant-induced DNA damage; (2) increases the levels of key intracellular antioxidants; (3) inhibits the repair of oxidative DNA damage.  相似文献   

4.
One of the largest oil spill disasters in recent times was the accident of the oil tanker Prestige in front of the Galician coast in 2002. Thousands of people participated in the cleanup of the contaminated areas, being exposed to a complex mixture of toxic substances. Acute and prolonged respiratory symptoms and genotoxic effects were reported, although environmental exposure measurements were restricted to current determinations, such that attribution of effects observed to oil exposure is difficult to establish. The aim of this study was to analyze peripheral blood leukocytes (PBL) harvested from a rat model of subchronic exposure to a fuel oil with similar characteristics to that spilled by the Prestige tanker, in order to determine potential genotoxic effects under strictly controlled, in vivo exposure. Wistar Han and Brown Norway rats were exposed to the oil for 3 wk, and micronucleus test (MN) and comet assay, standard and modified with 8-oxoguanine DNA glycosylase (OGG1) enzyme, were employed to assess genotoxicity 72 h and 15 d after the last exposure. In addition, the potential effects of oil exposure on DNA repair capacity were determined by means of mutagen sensitivity assay. Results obtained from this study showed that inhalation oil exposure induced DNA damage in both Brown Norway and Wistar Han rats, especially in those animals evaluated 15 d after exposure. Although alterations in the DNA repair responses were noted, the sensitivity to oil substances varied depending on rat strain. Data support previous positive genotoxicity results reported in humans exposed to Prestige oil during cleanup tasks.  相似文献   

5.
Data on local genotoxicity after particle exposure are crucial to resolve mechanistic aspects such as the impact of chronic inflammation, types of DNA damage, and their role in lung carcinogenesis. We established immunohistochemical methods to quantify the DNA damage markers poly(ADP-ribose) (PAR), phosphorylated H2AX (γ-H2AX), 8-hydroxyguanosine (8-OH-dG), and 8-oxoguanine DNA glycosylase (OGG1) in paraffin-embedded tissue from particle-exposed rats. The study was based on lungs from a subchronic study that was part of an already published carcinogenicity study where rats had been intratracheally instilled with saline, quartz DQ12, amorphous silica (Aerosil® 150), or carbon black (Printex® 90) at monthly intervals for 3 months. Lung sections were stained immunohistochemically and markers were quantified in alveolar lining cells. Local genotoxicity was then correlated with already defined endpoints, i.e. mean inflammation score, bronchoalveolar lavage parameters, and carcinogenicity. Genotoxicity was most pronounced in quartz DQ12-treated rats, where all genotoxicity markers gave statistically significant positive results, indicating considerable genotoxic stress such as occurrence of DNA double-strand breaks (DSB), and oxidative damage with subsequent repair activity. Genotoxicity was less pronounced for Printex® 90, but significant increases in γ-H2AX- and 8-OH-dG-positive nuclei and OGG1-positive cytoplasm were nevertheless detected. In contrast, Aerosil® 150 significantly enhanced only 8-OH-dG-positive nuclei and oxidative damage-related repair activity (OGG1) in cytoplasm. In the present study, γ-H2AX was the most sensitive genotoxicity marker, differentiating best between the three types of particles. The mean number of 8-OH-dG-positive nuclei, however, correlated best with the mean inflammation score at the same time point. This methodological approach enables integration of local genotoxicity testing in subchronic inhalation studies and makes immunohistochemical detection, in particular of γ-H2AX and 8-hydroxyguanine, a very promising approach for local genotoxicity testing in lungs, with prognostic value for the long-term outcome of particle exposure.  相似文献   

6.
Due to extensive use in consumer goods, it is important to understand the genotoxicity of silver nanoparticles (AgNPs) and identify susceptible populations. 8-Oxoguanine DNA glycosylase 1 (OGG1) excises 8-oxo-7,8-dihydro-2-deoxyguanine (8-oxoG), a pro-mutagenic lesion induced by oxidative stress. To understand whether defects in OGG1 is a possible genetic factor increasing an individual’s susceptibly to AgNPs, we determined DNA damage, genome rearrangements, and expression of DNA repair genes in Ogg1-deficient and wild type mice exposed orally to 4?mg/kg of citrate-coated AgNPs over a period of 7?d. DNA damage was examined at 3 and 7?d of exposure and 7 and 14?d post-exposure. AgNPs induced 8-oxoG, double strand breaks (DSBs), chromosomal damage, and DNA deletions in both genotypes. However, 8-oxoG was induced earlier in Ogg1-deficient mice and 8-oxoG levels were higher after 7-d treatment and persisted longer after exposure termination. AgNPs downregulated DNA glycosylases Ogg1, Neil1, and Neil2 in wild type mice, but upregulated Myh, Neil1, and Neil2 glycosylases in Ogg1-deficient mice. Neil1 and Neil2 can repair 8-oxoG. Thus, AgNP-mediated downregulation of DNA glycosylases in wild type mice may contribute to genotoxicity, while upregulation thereof in Ogg1-deficient mice could serve as an adaptive response to AgNP-induced DNA damage. However, our data show that Ogg1 is indispensable for the efficient repair of AgNP-induced damage. In summary, citrate-coated AgNPs are genotoxic in both genotypes and Ogg1 deficiency exacerbates the effect. These data suggest that humans with genetic polymorphisms and mutations in OGG1 may have increased susceptibility to AgNP-mediated DNA damage.  相似文献   

7.
Four extracts were prepared from the roots and leaves of Moricandia arvensis: root chloroform extract (ChlR), leaf chloroform extract (ChlL), root ethyl acetate extract (EAR) and leaf ethyl acetate extract (EAL). The genotoxic and antigenotoxic properties of these extracts were investigated by assessing the induction and inhibition of the genotoxicity induced by the direct-acting mutagen, hydrogen peroxide (H(2)O(2)), using the "Comet assay." It appears that none of the different extracts produces a genotoxic effect, except the highest tested concentrations of the leaf extracts which were capable to eliciting DNA damage. Human lymphoblast cells K562 were pretreated with different concentrations of each extracts and then treated by H(2)O(2), for the antigenotoxic study. The results showed that all extracts inhibited the genotoxicity induced by H(2)O(2) and particularly ChlR (42.5μg/ml) and ChlL (65μg/ml) extracts. In addition, antioxidant potential study of root and leaf extracts using different antioxidant tests indicated that root extracts possess a potent antioxidant activity through namely their capacity to transfer electrons.  相似文献   

8.
Generation of DNA damage is considered to be an important initial event in carcinogenesis. The single cell gel electrophoresis (comet) assay is a technically simple and fast method that detects genotoxicity in virtually any mammalian cell type without requirement for cell culture. This review discusses the strength of the comet assay in biomonitoring at its present state of validation. The simple version of the alkaline comet assay detects DNA migration caused by strand breaks, alkaline labile sites, and transient repair sites. By incubation with bacterial glycosylase/endonuclease enzymes, broad classes of oxidative DNA damage, alkylations, and ultraviolet light-induced photoproducts are detected as additional DNA migration. The most widely measured enzyme sensitive sites have been those detected by formamidopyrimidine DNA glycosylase (FPG) and endonuclease III (ENDOIII). Reports from biomonitoring studies show that the basal level of DNA damage in leukocytes is influenced be a variety of lifestyle and environmental exposures, including exercise, air pollution, sunlight, and diet. Although not all types of carcinogenic exposures should be expected to damage DNA in leukocytes, the comet assay is a valuable method for detection of genotoxic exposure in humans. However, the predictive value of the comet assay is unknown because it has not been investigated in prospective cohort studies. Also, it is important that the performance of the assay is investigated in multi-laboratory validation trials. As a tool in risk assessment the comet assay can be used in characterization of hazards.  相似文献   

9.
In the presence of oxygen, ascorbic acid (AA) is unstable in aqueous media and oxidises to dehydroascorbate (DHA), generating reactive intermediates such as ascorbate free radical and H2O2. It is proposed that the cytotoxicity of AA is due to the extracellular production of H2O2 and that this is mediated by transition metal ions present in cell media. Here we investigate the role of extracellular H2O2 and metal ions in the genotoxicity of AA in cell culture models. Our preliminary results confirmed that physiological concentrations of AA were not toxic to confluent human fibroblasts, although they inhibited the proliferation of cells at low density. No inhibition was observed with ascorbic acid 2-phosphate (AA2P), a vitamin C derivative that remains stable in culture media. Furthermore, high concentrations of AA induced DNA strand breakage in a dose-dependent manner, whereas DHA and AA2P were not genotoxic. The genotoxic effect of AA was transient, required the formation of extracellular H2O2 and the presence of intracellular iron, but not of extracellular transition metal ions. These observations further clarify the pro-oxidant effect of AA solutions in cell culture models. The possibility that intravenous administration of high-dose AA may cause a similar genotoxic effect in vivo is discussed.  相似文献   

10.
To clarify the mechanism by which Cd initiates rat testicular cancer, the ability of Cd or H2O2 to induce DNA single strand breakage was evaluated in testicular Leydig cells using a simple and rapid DNA precipitation method. Effects of Cd, Fe, Zn and Ca on the oxidant-induced DNA damage and effects of reduced glutathione (GSH) on the genotoxicity caused by the peroxide and/or Fe were also assessed. H2O2 induced strong DNA single strand breakage. Cd alone did not exhibit such a genotoxicity nor did it enhance the peroxide-induced DNA damage. Ca and Fe(II) potentiated the oxidant-induced DNA single strand breakage, while Zn partially protected cells from the oxidative damage of DNA caused by the peroxide. GSH attenuated single strand breaks of DNA brought about by H2O2 and/or Fe. These results suggest that the initiation of carcinogenesis in the rat testis by Cd is triggered by active oxygen species such as H2O2, which is generated by the metal exposure, rather than by a direct genotoxicity of Cd. The oxidant-mediated initiation is clearly a complicated event accomplished by multiple factors.  相似文献   

11.
12.
The role of reactive oxygen species in microcystin-LR-induced DNA damage   总被引:12,自引:0,他引:12  
Zegura B  Lah TT  Filipic M 《Toxicology》2004,200(1):59-68
Microcystins are cyclic heptapeptides produced by different freshwater cyanobacterial species such as Microcystis aeruginosa. They have been shown to induce DNA damage in vitro and in vivo, however, the mechanisms of their genotoxic activity remain unclear. With the comet assay we demonstrate that, in human hepatoma HepG2 cells, microcystin-LR (MCLR) induced DNA strand breaks which were transiently present and probably produced during the cellular repair of MCLR-induced DNA damage. Digestion of DNA from MCLR-treated HepG2 cells with purified formamidopyrimidine-DNA glycosylase (Fpg), which recognizes specific oxidized purines, displayed a greater extent of DNA strand breaks than non-digested DNA, providing evidence that MCLR induced oxidation of purines. The number of DNA strand breaks detected after digestion with Fpg increased with time of exposure of the cells to MCLR, indicating that oxidized purines were not repaired. Using the 2',7'-dichlorofluorescin diacetate (DCFH-DA) fluoroprobe we showed that MCLR, at non-cytotoxic concentrations, induced a time and dose dependent increase of intracellular reactive oxygen species (ROS) formation in HepG2 cells. The role of ROS in MCLR-induced DNA damage was further confirmed by exposing the cells to MCLR in the presence of different ROS scavengers. The formation of DNA strand breaks and oxidized purines was completely prevented by a superoxide dismutase mimic, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL), an iron chelator, deferoxamine (DFO), a precursor of glutathione (GSH) and intracellular ROS scavenger, N-acetyl-L-cysteine (NAC), and partly by hydroxyl radical scavengers dimethylsulphoxide (DMSO) and 1,3-dimethyl-2-thiourea (DMTU). The results provide evidence that the genotoxicity of MCLR is mediated by ROS.  相似文献   

13.
Plant-derived polyphenolics and other chemicals with antioxidant properties have been reported to inhibit the expression of genotoxic activity by pro-oxidant chemicals (Sai et al., 1992, 1994; Teel and Castonguay, 1992). In vitro and in vivo studies with ionizing radiation suggest that hydroquinone (HQ) may have similar protective effects (Babaev et al., 1994). The present study was conducted to determine whether HQ is capable of inhibiting the induction of micronuclei in the bone marrow of mice following exposure to an oxidant, potassium bromate or KBrO3 (Nakajima et al., 1989; Sai et al., 1992, 1994). To be able to interpret the results of this work, it was also necessary to determine whether HQ is itself genotoxic when fed in the diet. HQ diets (0.8%) fed to mice for 6 days reduced the background incidence of micronuclei compared with the basal diet. KBrO3 dosed ip (12.5-100 mg/kg) produced a dose-dependent increase in micronuclei as reported by others. Mice fed 0.8% HQ diets 6 days, and then dosed intraperitoneally with KBrO3, showed a 36% reduction in micronuclei across the range of KBrO3 dose levels. This effect was associated with a reduction in the background micronucleus response as well as a reduction in response to KBrO3. Statistical significance (P < or = 0.05), observed at a dose of 25 mg/kg KBrO3 in the mice fed the control diet, was abolished in the group fed 0.8% HQ. When mice were given 50 mg HQ/kg by oral gavage and then given 50 mg KBrO3/kg ip 20 min later, the micronucleus response induced by KBrO3, was lower in animals given HQ. The results of this study demonstrate that large doses of HQ may be given orally without induction of micronuclei or bone marrow depression, that HQ reduces the background micronucleus response in animals fed a basal diet, and that the HQ reduces the micronucleus response to KBrO3 as well as background incidence of micronuclei in KBrO3-dosed animals. The protective effect of HQ may be due to enzyme induction or a direct antioxidant effect of HQ against oxidants commonly present in the diet.  相似文献   

14.
Although the effects of heavy metals on marine invertebrate species are well studied in term of their toxicity and bioaccumulation, less is known about their genotoxicity. The aim of this investigation was to assess the DNA damaging potential of cadmium (Cd) in an important pollution sentinel organism, the mussel Mytilus edulis. Cadmium is one of the most toxic and widespread heavy metals found in the marine environment, and is a recognised carcinogen in mammals. Based on the results of the comet assay (alkaline single cell gel electrophoresis), Cd was found not to be genotoxic in mussel gill cells under acute and chronic exposure conditions, whereas pre-exposure to low concentrations of Cd was found to enhance the genotoxicity of another mutagen, hydrogen peroxide (H2O2). The effects of H2O2 were normally reversible when cells were transferred to clean saline buffer. However, in cells that had been pre-treated with Cd, in vivo or in vitro, we observed a decrease in this post-treatment DNA repair. The effects of Cd were reversed by zinc which suggests that the inhibitory effect of Cd on DNA repair was due to the displacement of zinc ions from active sites on proteins involved in the repair process (a property already described for mammals). Moreover, since Cd inhibits or delays the onset of apoptosis (programmed cell death), this removes one of the main defence mechanisms responsible for protecting the organism against neoplasia. There appears to be a close similarity between the effects of Cd on marine molluscs and mammals.  相似文献   

15.
Generation of DNA damage is considered to be an important initial event in carcinogenesis. A considerable battery of assays exists for the detection of different genotoxic effects of compounds in experimental systems, or for investigations of exposure to genotoxic agents in environmental or occupational settings. Some of the tests may have limited use because of complicated technical setup or because they only are applicable to a few cell types. The single cell gel electrophoresis (comet) assay is technically simple, relatively fast, cheap, and DNA damage can be investigated in virtually all mammalian cell types without requirement for cell culture. The aim of this thesis was to evaluate the comet assay as a genotoxicity test in genetic toxicology of environmental agents, encompassing both experimental animal models and biomonitoring. The comet assay detects strand breaks (SB). The cells are embedded in agarose and lysed, generating nucleus-like structures in the gel (referred to as nucleoids). Following alkaline electrophoresis, the DNA strands migrate toward the anode, and the extent of migration depends on the number of SB in the nucleoid. The migration is visualized and scored in a fluorescence microscope after staining. Broad classes of oxidative DNA damage can be detected as additional SB if nucleoids are incubated with bacterial DNA glycosylase/endonuclease enzymes. Oxidized pyrimidines and purines can be detected by incubation with endonuclease III and formamidopyrimidine DNA glycosylase, respectively. The animal experimental studies indicated that the comet assay was able to detect genotoxic effects of diesel exhaust particles in lung tissue, 2-amino-3-methylimidazo[4,5-f]quinoline (IQ)-induced DNA damage in colon epithelial cells and liver tissue, and benzene-induced damage in bone marrow and liver cells. The strength of the comet assay was further outlined by application of repair enzymes, indicating no oxidative DNA base damage following IQ treatment. High levels of oxidative DNA lesions were detected after exposure to benzene or X-ray irradiation. The comet assay did not detect DNA damage in colon or liver following ingestion of diets containing of high contents of animal fat or sucrose, although other indices of DNA damage were found. Determined from the results of a large Japanese study, the discrimination between carcinogens and non-carcinogens appears to be similar between the comet assay and alkaline elution, which also detects SB. This suggests that the comet assay is a reliable genotoxicity test in animal experimental systems. In the biomonitoring studies, we investigated the effect of common exposures and lifestyle factors (rather than effects of known carcinogens) on the level of oxidative DNA damage in mononuclear blood cells of humans. In the first study, based on repeated measurements, it was shown that interindividual variation and seasonal variation were major determinants for the basal level of SB, whereas no effect of age, exercise, or antioxidant intake could be detected. The effect of exercise was further investigated under both normoxic and hypoxic circumstances, showing a strong effect of hypoxia, and only effect of exercise in terms of SB in hypoxia. In a placebo-controlled parallel dietary fruit and vegetable (or the corresponding amount of antioxidants) intervention study, no effects of the level of oxidative DNA damage or sensitivity to hydrogen peroxide were observed. Although this may seem in contrast to other antioxidant intervention studies, a critical literature survey of antioxidant intervention studies on oxidative DNA damage suggested that well-controlled studies tended to show no effect of antioxidant supplementation. In summary, the aggregated data from the publications included in this thesis, and other publications encompassing the comet assay, indicate that the comet assay is a reliable method for detection of DNA damage in tissues of experimental animals. Although not all types of genotoxic exposures should be expected to result in DNA damage in mononuclear blood cells, the comet assay seems to be a valuable tool for detection of genotoxic exposure in humans. The comet assay indicates that DNA damage is abundant in mammalian cells and affected by lifestyle and many environmental exposures, including diet, exercise, hypoxia, and sunlight.  相似文献   

16.
To date, only a limited number of toxicological studies have focused on the establishment and validation of in vitro genotoxicity screening systems using primary hepatocytes, and the results of these studies have been inconsistent. Therefore, the aim of this study was to develop an effective co-culture model of mouse-derived primary hepatocytes and splenocytes for screening chemicals for genotoxicity using the medium-throughput Comet assay. This cocultured model was constructed and verified using known genotoxic and non-genotoxic compounds as positive and negative controls, respectively. Cytotoxicity was measured using Cell Counting Kit-8 and lactate dehydrogenase methods. DNA damage was detected using both alkaline and formamidopyrimidine DNA glycosylase (FPG) Comet assays. Compared with the controls, DNA strand breaks and FPG-sensitive sites showed significant concentration-dependent increases in genotoxic-agent-treated groups. In contrast, DNA damage remained unchanged in non-genotoxic-agent-treated groups. In addition, different types of genotoxic agents resulted in different time-dependent DNA lesions. Our results indicated that the % tail DNA indicating both DNA strand breaks and FPG-sensitive sites might be effective markers for predicting chemical-induced DNA damage and oxidative DNA damage using the cocultured model of hepatocytes and splenocytes. Collectively, these findings provide reliable experimental data for the establishment of in vitro genotoxicity screening methods.  相似文献   

17.
Potassium bromate (KBrO3), a food additive, induces renal-cell tumors in rats. KBrO3 induced 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG) formation in human leukemia cell line HL-60 as well as in its H2O2-resistant clone, HP100, suggesting no involvement of H2O2. Depletion of GSH by buthionine sulfoximine (BSO) had a little inhibitory effect on KBrO3-induced 8-oxodG formation. However, the amount of 8-oxodG was still significantly higher than that in control, suggesting that intracellular Cys can affect KBrO3 to oxidize DNA, when GSH decreased. KBrO3 caused 8-oxodG in isolated DNA in the presence of GSH (tripeptide; gamma-GluCysGly), gamma-GluCys, CysGly, or Cys. Methional completely inhibited 8-oxodG formation induced by KBrO3 plus GSH, but typical hydroxyl radical scavengers, SOD and catalase, had little or no inhibitory effects. When bromine solution (BrO(-)) was used instead of BrO3(-), similar scavenger effects were observed. Experiments with 32P-labeled DNA fragments obtained from the human p53 tumor suppressor gene and the c-Ha-ras-1 protooncogene suggested that KBrO3 induced 8-oxodG formation at 5'-site guanine of GG and GGG sequences of double-stranded DNA in the presence of GSH and that treatment of formamidopyrimidine-DNA glycosylase led to chain cleavages at the guanine residues. ESR spin-trapping studies showed that 1:2:2:1 quartet DMPO (5,5-dimethyl-1-pyrroline N-oxide) spectrum similar to DMPO/hydroxy radical (*OH) adduct, but the signals were not inhibited by ethanol. Therefore, the signal seemed not to be due to *OH but byproduct due to oxidation of DMPO by the reactive species. The signals were suppressed by the addition of dGMP, but not by other mononucleotides, suggesting the specific reactivity with guanine. On the basis of our results and previous literature, it is speculated that reduction of KBrO3 by SH compounds in renal proximal tubular cells yields bromine oxides and bromine radicals, which are the reactive species that cause guanine oxidation, leading to renal carcinogenesis of KBrO3.  相似文献   

18.
Myeloperoxidase catalyzes the formation of hypochlorous acid (HOCI) via reaction of H2O2 with CI(-) ions. Although HOCI plays a major role in the human immune system by killing bacteria and other invading pathogens, excessive generation of this oxidant causes damage to tissues. Exposure of HeLa cells to HOCI decreased viability, inactivated antioxidant enzymes, damaged mitochondria, and modulated cellular redox status. HOCI also induced significant increases in cellular oxidative damage reflected by lipid peroxidation, protein oxidation, and DNA damage. HOCI-mediated oxidative damage to HeLa cells may perturb the cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant state.  相似文献   

19.
Ethephon is one of the most widely used plant growth regulator in agriculture that its application has been increased in recent years. Many reports have raised concern over the safety of this organophosphorus compound. The aim of the current study was to assess the potential genotoxic effect of ethephon on murine embryonic fibroblast (MEF) cell line, using two genotoxicity endpoints: γH2AX expression and comet assay. γH2AX served as an early and sensitive biomarker of genotoxic damage. Oxidative stress biomarkers, including reactive oxygen species (ROS), lipid peroxidation (LPO) and total antioxidant capacity were also examined. The results showed a significant increase in cell proliferation, 24?h post-treatment with 10, 40,160?μg/ml ethephon, while at the higher concentrations cytotoxic effect was observed. The γH2AX expression and γH2AX foci count per cell were significantly increased at non-cytotoxic concentrations of ethephon, accompanied with increased DNA damage as illustrated by comet assay. LPO and ROS levels were elevated only at 160?μg/ml and higher doses. The results interestingly showed that low non-cytotoxic doses of ethephon promoted DNA damage inducing cell proliferation, raising the possibility of ethephon mutagenicity. The genotoxic effect of ethephon at low doses might not relate to oxidative damage and that increased in the level of ROS and LPO generation at higher doses could account for the cytotoxic effect of ethephon. Taken together, our study provides strong in vitro evidence on potential genotoxicity of ethephon at low doses. More precise studies are needed to clarify the mutagenic effect of chronic exposure to ethephon.  相似文献   

20.
Tamoxifen (TAM) is a non-steroidal anti-estrogen used widely in the treatment and chemoprevention of breast cancer. TAM treatment can lead to DNA damage, but the mechanism of this process is not fully understood and the experimental data are often inconclusive. We compared the DNA-damaging potential of TAM in normal human peripheral blood lymphocytes and MCF-7 breast cancer cells by using the comet assay. In order to assess whether oxidative DNA damage may contribute to TAM-induced lesions, we employed two DNA repair enzymes: endonuclease III (Endo III) and formamidopyrimidine-DNA glycosylase (Fpg). The kinetics of repair of DNA damage was also measured. In order to evaluate the involvement of free radicals in the genotoxicity of TAM we pre-treated the cells with nitrone spin traps: DMPO and POBN. The use of common antioxidants: vitamin C, amifostine and genistein, helped to assess the contribution of free radicals. TAM damaged DNA in both normal and cancer cells, inducing mainly DNA strand breaks but not alkali-labile sites. The drug at 5 and 10 μM induced DNA double strand breaks (DSBs) in lymphocytes and at 10 μM in MCF-7 cells. We observed complete repair of DSBs in cancer cells by contrast with incomplete repair of these lesions in lymphocytes. In both types of cells TAM induced oxidized purines and pyrimidines. Incubation of the cells with nitrone spin traps and antioxidants decreased, with exception of amifostine in MCF-7 cells, the extents of DNA damage in both kinds of cells, but the results were more distinct in cancer cells. Our results indicate that TAM can be genotoxic for normal and cancer cells by free radicals generation. It seems to have a higher genotoxic potential for normal cells, which can be the result of incomplete repair of DNA DSBs. Free radicals scavengers can modulate TAM-induced DNA damage interfering with its antitumour activity in cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号