首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this issue of the JCI, Stasch and colleagues suggest that a novel drug, BAY 58-2667, potently activates a pool of oxidized and heme-free soluble guanylyl cyclase (sGC; see the related article beginning on page 2552). The increased vasodilatory potency of BAY 58-2667 the authors found in a number of animal models of endothelial dysfunction and in human blood vessels from patients with diabetes suggests that there exists a subphenotype of endothelial dysfunction characterized by receptor-level NO resistance. Diseases associated with NO resistance would appear to be ideally suited for therapies directed at restoring redox homeostasis, sGC activity, and NO sensitivity.  相似文献   

2.
Soluble guanylyl cyclase (sGC), a ubiquitously expressed heme-containing receptor for nitric oxide (NO), is a key mediator of NO-dependent processes. In addition to NO, a number of synthetic compounds that target the heme-binding region of sGC and activate it in a NO-independent fashion have been described. We report here that dicyanocobinamide (CN2-Cbi), a naturally occurring intermediate of vitamin B(12) synthesis, acts as a sGC coactivator both in vitro and in intact cells. Heme depletion or heme oxidation does not affect CN2-Cbi-dependent activation. Deletion mutagenesis demonstrates that CN2-Cbi targets a new regulatory site and functions though a novel mechanism of sGC activation. Unlike all known sGC regulators that target the N-terminal regulatory regions, CN2-Cbi directly targets the catalytic domain of sGC, resembling the effect of forskolin on adenylyl cyclases. CN2-Cbi synergistically enhances sGC activation by NO-independent regulators 3-(4-amino-5-cyclopropylpyrimidine-2-yl)-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine (BAY41-2272), 4-[((4-carboxybutyl){2-[(4-phenethylbenzyl)oxy]phenethyl}amino) methyl [benzoic]-acid (cinaciguat or BAY58-2667), and 5-chloro-2-(5-chloro-thiophene-2-sulfonylamino-N-(4-(morpholine-4-sulfonyl)-phenyl)-benzamide sodium salt (ataciguat or HMR-1766). BAY41-2272 and CN2-Cbi act reciprocally by decreasing the EC(50) values. CN2-Cbi increases intracellular cGMP levels and displays vasorelaxing activity in phenylephrine-constricted rat aortic rings in an endothelium-independent manner. Both effects are synergistically potentiated by BAY41-2272. These studies uncover a new mode of sGC regulation and provide a new tool for understanding the mechanism of sGC activation and function. CN2-Cbi also offers new possibilities for its therapeutic applications in augmenting the effect of other sGC-targeting drugs.  相似文献   

3.
We aimed to characterize the relaxation induced by the soluble guanylyl cyclase (sGC) stimulator 5-cyclopropyl-2-[1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine-3-yl]pyrimidin-4-ylamine (BAY 41-2272) and its pharmacological interactions with nitric oxide (NO) in the corpus cavernosum (CC) from wild-type (WT), endothelial nitric-oxide synthase (eNOS)(-/-), and neuronal (n)NOS(-/-) mice. The effect of BAY 41-2272 on superoxide formation and NADPH oxidase expression was also investigated. Tissues were mounted in myographs for isometric force recording. Enzyme immunoassay kits were used for cGMP determination. sGC activity was determined in the supernatant fractions of the cavernosal samples by the conversion of GTP to cGMP. Superoxide formation and expression of NADPH oxidase subunits were studied using the reduction of ferricytochrome c and Western blot analysis, respectively. BAY 41-2272 (0.01-10 microM) relaxed CC with pEC(50) values of 6.36 +/- 0.07 (WT), 6.27 +/- 0.06 (nNOS(-/-)), and 5.88 +/- 0.07 (eNOS(-/-)). The relaxations were accompanied by increases in cGMP levels. N(omega)-Nitro-L-arginine methyl ester inhibited BAY 41-2272-evoked responses in CC from WT and nNOS(-/-), but not eNOS(-/-).1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one reduced and sildenafil potentiated the relaxations induced by BAY 41-2272 in all groups. BAY 41-2272 enhanced NO (endogenous and exogenous)-induced relaxations in a concentration-dependent manner. Expression and activity of sGC was similar among the different groups. Superoxide formation was reduced by BAY 41-2272 (0.1-1 microM). The compound also inhibited p22(phox) and gp91(phox) expression induced by 9,11-dideoxy-11 alpha,9 alpha-epoxymethanoprostaglandin F(2 alpha (U46619). Our results demonstrated that sGC activation in the penis by BAY 41-2272 directly or via enhancement of NO effects may provide a novel treatment for erectile dysfunction, particularly in the event of an increased intrapenile oxidative stress.  相似文献   

4.
The aim of this study was to investigate the mechanisms of relaxation to the nitric oxide (NO)-independent soluble guanylyl cyclase (sGC) stimulators 5-cyclopropyl-2-[1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]pyrimidin-4-ylamine (BAY 41-2272) and 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) in the rat mesenteric artery. In endothelium-intact rings, BAY 41-2272 (0.0001-1 microM) and YC-1 (0.001-30 microM) caused concentration-dependent relaxations (pEC(50) values of 8.21 +/- 0.05 and 6.75 +/- 0.06, respectively), which were shifted to the right by 6-fold in denuded rings. The sGC inhibitor H-[1,2,4]oxadiazolo [4,3,-a]quinoxalin-1-one (ODQ) (10 microM) partially attenuated the maximal responses to BAY 41-2272 and YC-1 and displaced their curves to the right by 9- to 10-fold in intact and 3-fold in denuded vessels. The NO synthesis inhibitor N(omega)-nitro-L-arginine methyl ester (100 microM) and the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (100 microM) reduced BAY 41-2272 and YC-1 relaxations, whereas the phosphodiesterase type 5 inhibitor sildenafil (0.1 microM) potentiated these responses. The phosphatase inhibitor calyculin A (50 nM) reduced the relaxant responses, and high concentrations of BAY 41-2272 (1 micorM) and YC-1 (10 microM) inhibited Ca(2+)-induced contractions in K(+)-depolarized rings. BAY 41-2272 (0.1 microM) and YC-1 (1 microM) markedly elevated cGMP levels in an ODQ-sensitive manner. Coincubation of BAY 41-2272 or YC-1 with a NO donor resulted in a synergistic inhibition of phenylephrine-induced contractions paralleled by marked increases in cGMP levels. In conclusion, BAY 41-2272 and YC-1 relax the mesenteric artery through cGMP-dependent and -independent mechanisms, including blockade of Ca(2+) influx. The synergistic responses probably reflect the direct effects of NO and NO-independent sGC stimulators on the enzyme, thus representing a potential therapeutic effect by permitting reductions of nitrovasodilator dose.  相似文献   

5.
Soluble guanylyl cyclase (sGC) is a cGMP-generating enzyme carrying a heme prosthetic group that functions as a nitric oxide (NO) sensor. sGC is present in most cells types, including the vascular endothelium, where its biological functions remain largely unexplored. Herein, we have investigated the role of sGC in angiogenesis and angiogenesis-related properties of endothelial cells (EC). Initially, we determined that sGC was present and enzymatically active in the chicken chorioallantoic membrane (CAM) during the days of maximal angiogenesis. In the CAM, inhibition of endogenous sGC inhibited neovascularization, whereas activation promoted neovessel formation. Using zebrafish as a model for vascular development, we did not detect any effect on vasculogenesis upon sGC blockade, but we did observe an abnormal angiogenic response involving the cranial and intersegmental vessels, as well as the posterior cardinal vein. In vitro, pharmacological activation of sGC or adenovirus-mediated sGC gene transfer promoted EC proliferation and migration, whereas sGC inhibition blocked tube-like network formation. In addition, sGC inhibition blocked the migratory response to vascular EC growth factor. Cells infected with sGC-expressing adenoviruses exhibited increased extracellular signal-regulated kinase 1/2 and p38 MAPK activation that was sensitive to sGC inhibition by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, suggesting that these mitogen-activated protein kinases are downstream effectors of sGC in EC. A functional role for p38 in cGMP-stimulated migration was demonstrated using SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole]; pharmacological inhibition of p38 attenuated BAY 41-2272 [5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine] and sGC overexpression-induced EC mobilization. We conclude that sGC activation promotes the expression of angiogenesis-related properties by EC and that sGC might represent a novel target to modulate neovessel formation.  相似文献   

6.
In gastrointestinal smooth muscle, cGMP levels in response to relaxant agonists are regulated by activation of phosphodiesterase 5 and inhibition of soluble guanylyl cyclase (sGC) in a feedback mechanism via cGMP-dependent protein kinase. The aim of the present study was to determine whether contractile agonists modulate cGMP levels by cross-regulating sGC activity. In gastric muscle cells, acetylcholine (ACh) stimulated Src activity and induced sGC phosphorylation. Concurrent stimulation of cells with ACh attenuated sGC activity and cGMP formation in response to the nitric oxide (NO) donor, S-nitrosoglutathione (GSNO). The effect of ACh on Src activity, sGC phosphorylation, and on GSNO-stimulated sGC activity and cGMP formation were blocked by the m2 receptor antagonist (methoctramine), pertussis toxin, and by inhibitors of phosphatidylinositol 3 kinase, LY294002 [2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride], or Src kinase, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, in dispersed muscle cells and in cells expressing Galpha(i) minigene or Gbetagamma-scavenging peptide, whereas the m3 receptor antagonist, N-(2-chloroethyl)-4-piperidinyl diphenylacetate, or expression of the Galpha(q) minigene had no effect. ACh also attenuated sGC activity and cGMP formation in response to the NO-independent activator, YC-1 [3-(5'-hydroxymethyl-2'furyl)-1-benzylindazole]. The pattern implied that phosphorylation of sGC by c-Src kinase inhibits NO-sensitive sGC activity, and the inhibition was not due to a decrease in the binding of NO but probably due to decrease in catalytic activity. We conclude that cGMP levels are cross-regulated by contractile agonists via a mechanism that involves c-Src-dependent phosphorylation of sGC, leading to inhibition of sGC activity and cGMP formation. The finding highlights a novel mechanism for attenuation of the NO/sGC/cGMP signal by G(i)-coupled contractile agonists, in addition to their inhibitory effect on adenylyl cyclase and cAMP formation.  相似文献   

7.
The mechanisms of relaxation to nitric oxide (NO)-independent soluble guanylyl cyclase (sGC) activator BAY 41-2272 [5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridine-3-yl]pyrimidin-4-ylamine] were investigated in isolated ovine pulmonary artery. BAY 41-2272 (1 nM-10 microM) produced concentration-dependent relaxation of endothelium-denuded pulmonary artery rings (pD2 = 6.82 +/- 0.16; Emax = 92.30 +/- 2.31%; n = 8), precontracted with 1 microM 5-hydroxytryptamine (serotonin). 1-H-[1,2,4]Oxadiazole[4,3-a]quinoxalin-1-one (ODQ; 10 microM), an inhibitor of sGC, partially inhibited (Emax = 57.10 +/- 3.10%; n = 6) the relaxation response of BAY 41-2272. In comparison with ODQ, sodium pump inhibitor ouabain (1 microM) produced a greater decrease in the vasodilator response of BAY 41-2272 (Emax = 20.17 +/- 4.55%; n = 6). K+-free solution also attenuated (Emax = 39.97 +/- 3.52%; n = 6) BAY 41-2272-induced relaxation. ODQ (10 microM) plus 1 microM ouabain abolished the relaxant response of BAY 41-2272 (Emax = 12.09 +/- 3.76%, n = 6 versus vehicle control dimethyl sulfoxide; Emax = 15.83 +/- 1.72%, n = 6). KT-5823 [1-oxo-9.12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-I][1,6]benzodiazocine-10-carboxylic acid methyl ester (2 microM), a specific inhibitor of protein kinase G had no effect on 10 microM ODQ-insensitive relaxation evoked by BAY 41-2272. BAY 41-2272 (10 microM) inhibited Ca2+-induced contractions in K+-depolarized preparations. BAY 41-2272 (10 microM) caused about a 14-fold increase in the intracellular cGMP over the basal level, which was completely inhibited by 10 microM ODQ. BAY 41-2272 (0.1, 1.0, and 10 microM) significantly (P < 0.05) increased ouabain-sensitive 86Rb uptake in a concentration-dependent manner. BAY 41-2272 (10 microM) also stimulated sarcolemmal Na+-K+-ATPase activity. However, 10 microM ODQ had no significant effect on either basal or BAY 41-2272-stimulated 86Rb uptake/Na+-K+-ATPase activities. In conclusion, this study provides the first evidence of sodium pump stimulation by BAY 41-2272 independent of cGMP as an additional mechanism to sGC activation in relaxation of ovine pulmonary artery.  相似文献   

8.
Phosphodiesterase type 5 (PDE5) inhibitors are used to treat erectile dysfunction, and growing evidence supports potential cardiovascular utility. Their efficacy declines with reduced nitric-oxide synthase (NOS) activity common to various diseases. We tested whether direct soluble guanylate cyclase (sGC) stimulation restores in vivo cardiovascular modulation by PDE5 inhibition despite acute or chronically suppressed NOS activity. Mice (C57/Bl6; n = 62) were studied by in vivo pressure-volume analysis to assess acute modulation by the PDE5 inhibitor sildenafil (SIL; 100 microg/kg/min) of the cardiac response to isoproterenol (ISO) with or without NOS inhibition [N(omega)-nitro-L-arginine methyl ester (L-NAME)] and cotreatment by the sGC stimulator 2-[1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-5-(4-morpholinyl)pyrimidine-4,6-diamine (BAY 41-8543). SIL induced mild vasodilation but no basal cardiac effects and markedly blunted ISO-stimulated contractility. Acute BAY 41-8543 at a dose lacking cardiovascular effects did not alter ISO responses. However, after acute L-NAME, SIL ceased to influence cardiovascular function, but adding BAY 41-8543 fully restored SIL effects. After 1 week of L-NAME, neither SIL nor SIL + BAY 41-8543 acutely induced vasodilation or blunted ISO responses. However, sustained BAY 41-8543 despite concurrent NOS inhibition restored the cardiovascular efficacy of SIL. The disparity between acute and chronic NOS inhibition related to diffusion of PDE5 away from myocyte z-bands coupled with reduced protein kinase G activation. Both were restored by sustained sGC costimulation. Thus, PDE5 regulation of adrenergic reserve and systemic vasodilation depends upon NOS-induced cGMP/protein kinase G and can be enhanced by sustained low-level stimulation of sGC. This may prove beneficial for enhancing the efficacy of PDE5 inhibitors in conditions with chronically reduced NOS activity.  相似文献   

9.
Summary. Background: Platelet‐derived nitric oxide (NO) has been shown to play conflicting roles in platelet function, although it is accepted that NO mediates its actions through soluble guanylyl cyclase (sGC). This confusion concerning the roles of platelet NO may have arisen because of an uncharacterized mechanism for activation of sGC. Objectives: To examine the ability of the novel platelet agonist globular adiponectin (gAd) to stimulate the NO‐independent cGMP–protein kinase G (PKG) signaling cascade. Methods: We used three independent markers of NO signaling, [3H]l ‐citrulline production, cGMP accrual, and immunoblotting of vasodilator‐stimulated phosphoprotein (VASP), to examine the NO signaling cascade in response to gAd. Results: gAd increased platelet cGMP formation, resulting in a dose‐ and time‐dependent increase in phospho‐VASP157/239. Phosphorylation of VASP in response to gAd was mediated by both protein kinase A and PKG. Importantly, cGMP formation occurred in the absence of NO synthase (NOS) activation and in the presence of NOS inhibitors. Indeed, inhibition of the NOS signaling cascade had no influence on gAd‐mediated platelet aggregation. Exploration of the mechanism demonstrated that NO‐independent cGMP formation, phosphorylation of VASP and association of sGCα1 with heat shock protein‐90 induced by gAd were blocked under conditions that inhibited Src kinases, implying a tyrosine kinase‐dependent mechanism. Indeed, sGCα1 was reversibly tyrosine phosphorylated in response to gAd, collagen, and collagen‐related peptide, an effect that required Src kinases and downstream Ca2+ mobilization. Conclusions: These data demonstrate activation of the platelet cGMP signaling cascade by a novel tyrosine kinase‐dependent mechanism in the absence of NO.  相似文献   

10.
11.
The pathogenesis of several neuropsychiatric disorders, including anxiety and depression, has been linked to oxidative stress, in part via alterations in cyclic nucleotide signaling. Phosphodiesterase-2 (PDE2), which regulates cGMP and cAMP signaling, may affect anxiety-related behavior through reduction of oxidative stress. The present study evaluated the effects of oxidative stress on behavior and assessed the anxiolytic effects of the PDE2 inhibitor Bay 60-7550 [(2-(3,4-dimethoxybenzyl)-7-{(1R)-1-[(1R)-1-hydroxyethyl]-4-phenylbutyl}-5-methyl imidazo-[5,1-f][1,2,4]triazin-4(3H)-one)]. Treatment of mice with L-buthionine-(S,R)-sulfoximine (300 mg/kg), an inducer of oxidative stress, caused anxiety-like behavioral effects in elevated plusmaze, open-field, and hole-board tests through the NADPH oxidase pathway; these effects were antagonized by Bay 60-7550 (3 mg/kg) and apocynin (3 mg/kg), an inhibitor of NADPH oxidase. The Bay 60-7550-mediated decrease in oxidative stress (i.e., superoxide anion and reactive oxygen species generation in cultured neurons and total antioxidant capacity and lipid peroxides in amygdala and hypothalamus) and expression of NADPH oxidase subunits (i.e., p47 phox and gp91 phox expression in amygdala, hypothalamus, and cultured neurons) was associated with increased cGMP and phosphorylation of vasodilator-stimulated phosphoprotein at Ser239, suggesting an important role of cGMP-protein kinase G signaling in reduction of anxiety. Overall, the present results indicate that oxidative stress induces anxiety-like behavior in mice and that PDE2 inhibition reverses it through an increase in cGMP signaling. Thus, PDE2 may be a novel pharmacological target for treatment of anxiety in neuropsychiatric and neurodegenerative disorders that involve oxidative stress.  相似文献   

12.
Vascular smooth muscle (VSM) proliferation and migration are key components in vessel remodeling. Cyclic nucleotide signaling is protective and has long-served as a therapeutic target against undesired VSM growth. The present work analyzed the effects of the soluble guanylate cyclase (sGC) stimulator 3-(4-amino-5-cyclopropylpyrimidine-2-yl)-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine [BAY 41-2272 (BAY)] on VSM growth, and we hypothesize that BAY has the capacity to reduce proliferation and migration via cyclic nucleotide-driven kinase signaling. Perivascular BAY postballoon injury reduced neointimal growth by ~ 40% compared with vehicle controls after 2 weeks. In VSM cells, BAY (10 μM) reduced proliferation by ~ 40% after 72 h and migration by ~ 40% after 6 h and ~ 60% after 18 h without deleterious effects on cell viability. cGMP content peaked (248 ×) 20 min after BAY treatment and remained elevated (140 ×) through 60 min; however, BAY did not affect cAMP levels compared with controls. Conventional and In-Cell Western analyses showed increases in vasodilator-stimulated phosphoprotein (VASP) phosphorylation (pVASP) at serines 239 (3 ×) and 157 (2 ×), respective markers of cGMP- and cAMP-directed protein kinases (PKG and PKA, respectively). The PKG inhibitor YGRKKRRQRRRPPLRKKKKKH peptide (DT-2) completely reversed BAY-mediated increases in pVASPSer(239) and BAY-mediated inhibition of migration. In comparison, the PKA inhibitor peptide PKI further potentiated BAY-stimulated pVASPSer(157) and pVASPSer(239) and partially reversed the antiproliferative effects of BAY. This is the first report demonstrating the effectiveness of BAY in reducing neointimal growth with direct evidence for PKG-specific antimigratory and PKA-specific antiproliferative mechanisms. Conclusively, the sGC stimulator BAY reduces VSM growth through cGMP-dependent PKG and PKA processes, providing support for continued evaluation of its clinical utility.  相似文献   

13.
Classically, nitric oxide (NO) formed by endothelial NO synthase (eNOS) freely diffuses from its generation site to smooth muscle cells where it activates soluble guanylyl cyclase (sGC), producing cGMP. Subsequently, cGMP activates both cGMP- and cAMP-dependent protein kinases [cGMP-dependent protein kinase (PKG) and cAMP-dependent protein kinase (PKA), respectively], leading to smooth muscle relaxation. In endothelial cells, eNOS has been localized to caveolae, small invaginations of the plasma membrane rich in cholesterol. Membrane cholesterol depletion impairs acetylcholine (ACh)-induced relaxation due to alteration in caveolar structure. Given the nature of NO to be more soluble in a hydrophobic environment than in water, and assuming that colocalization of components in a signal transduction cascade seems to be a critical determinant of signaling efficiency by eNOS activation, we hypothesize that sGC, PKA, and PKG activation may occur at the plasma membrane caveolae. In endothelium-intact rat aortic rings, the relaxation induced by ACh, by the sGC activator 3-(5'-hydroxymethyl-2'furyl)-1-benzyl indazole (YC-1), and by 8-bromo-cGMP was impaired in the presence of methyl-beta-cyclodextrin, a drug that disassembles caveolae by sequestering cholesterol from the membrane. sGC, PKG, and PKA were colocalized with caveolin-1 in aortic endothelium, and this colocalization was abolished by methyl-beta-cyclodextrin. Methyl-beta-cyclodextrin efficiently disassembled caveolae in endothelium. In summary, our results provide evidence of compartmentalization of sGC, PKG, and PKA in endothelial caveolae contributing to NO signaling cascade, giving new insights by which the endothelium mediates vascular smooth muscle relaxation.  相似文献   

14.
OBJECTIVE: The bacteriostatic preservative sodium azide (NaN(3)) activates soluble guanylate cyclase (sGC) in vascular tissues, thus elevating cellular 3',5'-cyclic guanosine monophosphate (cGMP). Because the sGC/cGMP pathway is involved in the control of platelet aggregation, we investigated whether in human platelets NaN(3) influences the responses to agonists, cGMP levels and cGMP-regulated pathways. DESIGN AND METHOD: Concentration- and time-dependent effects of NaN(3) (1-100 micromol/L; 5-60 min incubation) on ADP- and collagen-induced aggregation, NO synthase (NOS) activity, cGMP synthesis and vasodilator-stimulated phosphoprotein (VASP) phosphorylation at Ser239 were investigated in platelets from 21 healthy individuals. RESULTS: NaN(3) exerted concentration- and time-dependent antiaggregatory effects starting from 1 micromol/L (IC(50) with 5-min incubation: 2.77+/-0.35 micromol/L with ADP and 4.64+/-0.48 micromol/L with collagen) and significantly increased intraplatelet cGMP levels and phosphorylation of VASP at Ser239 at 1-100 micromol/L; these effects were prevented by sGC inhibition, but not by NOS inhibition. CONCLUSIONS: NaN(3) exerts antiaggregatory effects in human platelets via activation of the sGC/cGMP/VASP pathway. This biological effect must be considered when azide-containing reagents are used for in vitro studies on platelet function.  相似文献   

15.
Nitric oxide (NO) activates soluble guanylyl cyclase, which results in an increased synthesis of cyclic guanosine 3',5'-cyclic monophosphate (cGMP), smooth muscle relaxation and vasodilation. The heme group in soluble guanylyl cyclase binds NO and allosterically activates the catalytic site. In addition, a second allosteric site that synergistically activates the enzyme has been reported. BAY 41-2272 was reported as an NO-independent activator of soluble guanylyl cyclase. Treatment with this compound results in anti-platelet activity, a decrease in blood pressure and an increase in survival, indicating a potential for treating cardiovascular diseases. YC-1, another NO-independent activator, activates soluble guanylyl cyclase and the activity is enhanced in the presence of NO. YC-1 relaxed tissue strips in organ bath. Consistent with its biochemical activity, YC-1 induced penile erection in a conscious rat model. Recently, we found a novel series of soluble guanylyl cyclase activators that also NO-independently activate soluble guanylyl cyclase and cause penile erection, suggesting a synergy with the endogenous NO production in vivo. Here I review the NO/cGMP signal transduction pathway and define soluble guanylyl cyclase modulators as a novel approach for the treatment of cardiovascular diseases and erectile dysfunction.  相似文献   

16.
KMUP-3 (7-[2-[4-(4-nitrobenzene)piperazinyl]ethyl]-1,3-dimethylxanthine) was investigated in guinea pig tracheal smooth muscle. Intratracheal instillation of tumor necrosis factor (TNF)-alpha (0.01 mg/kg/300 microl) induced bronchoconstriction, increases of lung resistance, and decreases of dynamic lung compliance. Instillation of KMUP-3 (0.5-2.0 mg/kg) reversed this situation. In isolated trachea precontracted with carbachol, KMUP-3 (10-100 microM)-caused relaxations were attenuated by epithelium removal and by pretreatments with an inhibitor of K(+) channel, tetraethylammonium (10 mm); K(ATP) channel, glibenclamide (1 microM); voltage-dependent K(+) channel, 4-aminopyridine (100 microM); Ca(2+)-dependent K(+) channel, charybdotoxin (0.1 microM) or apamin (1 microM); soluble guanylate cyclase (sGC), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1one (ODQ, 1 microM); nitric-oxide (NO) synthase, N(omega)-nitro-L-arginine methyl ester (L-NAME, 100 microM); and adenylate cyclase, SQ 22536 [9-(terahydro-2-furanyl)-9H-purin-6-amine] (100 microM). KMUP-3 (0.01-100 microM) induced increases of cGMP and cAMP in primary culture of tracheal smooth muscle cells (TSMCs). The increase in cGMP by KMUP-3 was reduced by ODQ and L-NAME; the increase in cAMP was reduced by SQ 22536. Western blot analysis indicated that KMUP-3 (1 microM) induced expression of protein kinase A (PKA)(ri) and protein kinase G (PKG)(1alpha 1beta) in TSMCs.SQ 22536 inhibited KMUP-3-induced expression of (PKA)(ri).On the contrary, ODQ inhibited KMUP-3-induced expression of PKG(1alpha 1beta) In epithelium-intact trachea, KMUP-3 increased the NO release. Activation of sGC, NO release, and inhibition of phosphodiesterases in TSMCs by KMUP-3 may result in increases of intracellular cGMP and cAMP, which subsequently activate PKG and PKA, efflux of K(+) ion, and associated reduction in Ca(2+) influx in vitro, indicating the action mechanism to protect against TNF-alpha-induced airway dysfunction in vivo.  相似文献   

17.
Nitric oxide (NO) plays an essential role in regulating hypertension and blood flow by inducing relaxation of vascular smooth muscle. Male mice deficient in a NO receptor component, the α1 subunit of soluble guanylate cyclase (sGCα1), are prone to hypertension in some, but not all, mouse strains, suggesting that additional genetic factors contribute to the onset of hypertension. Using linkage analyses, we discovered a quantitative trait locus (QTL) on chromosome 1 that was linked to mean arterial pressure (MAP) in the context of sGCα1 deficiency. This region is syntenic with previously identified blood pressure-related QTLs in the human and rat genome and contains the genes coding for renin. Hypertension was associated with increased activity of the renin-angiotensin-aldosterone system (RAAS). Further, we found that RAAS inhibition normalized MAP and improved endothelium-dependent vasorelaxation in sGCα1-deficient mice. These data identify the RAAS as a blood pressure-modifying mechanism in a setting of impaired NO/cGMP signaling.  相似文献   

18.
Nitric oxide (NO) donors are believed to exert their vasodilatory action through the activation of soluble guanylate cyclase (sGC), the heme site of which can be specifically inhibited by 1H-[1,2, 4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). We examined the vascular relaxation of the rat aorta mediated by eight different NO donors in the presence of ODQ (0.1, 1, or 10 microM), and demonstrated that these NO donors displayed different sensitivities toward ODQ inhibition (ANOVA, P <.05). Among the NO donors studied, S-nitrosothiols such as S-nitroso-N-acetylpenicillamine (SNAP) and S-nitrosoglutathione exhibited partial resistance toward ODQ inhibition at 0.1 microM ODQ, whereas nitroglycerin (NTG) showed nearly complete inhibition at this concentration of ODQ. Three NO donors representing increasing sensitivity toward ODQ inhibition, SNAP < sodium nitroprusside (SNP) < NTG, were chosen for additional mechanistic studies. ODQ (1 microM) inhibition of vascular relaxation by SNAP and SNP, but not that by NTG, was partially reversed by a sulfhydryl donor, N-acetylpenicillamine (100 microM), and by a phosphodiesterase inhibitor, zaprinast (10 microM), specific for cGMP. Our results strongly indicate that the vascular relaxation mechanism(s) of NO donors is not identical for each. In the rat aorta, NTG appeared to exhibit its vasodilatory effect exclusively through activation of the heme site of sGC. On the other hand, in the intact vascular tissue, SNAP and SNP could bring about vasodilation through a secondary pathway. These results are consistent with the view that SNAP and SNP, but not NTG, can induce vascular relaxation additionally through the activation of the sulfhydryl site of sGC.  相似文献   

19.
In the vascular system, the receptor for the signaling molecule NO, guanylyl cyclase (GC), mediates smooth muscle relaxation and inhibition of platelet aggregation by increasing intracellular cyclic GMP (cGMP) concentration. The heterodimeric GC exists in 2 isoforms (alpha1-GC, alpha2-GC) with indistinguishable regulatory properties. Here, we used mice deficient in either alpha1- or alpha2-GC to dissect their biological functions. In platelets, alpha1-GC, the only isoform present, was responsible for NO-induced inhibition of aggregation. In aortic tissue, alpha1-GC, as the major isoform (94%), mediated vasodilation. Unexpectedly, alpha2-GC, representing only 6% of the total GC content in WT, also completely relaxed alpha1-deficient vessels albeit higher NO concentrations were needed. The functional impact of the low cGMP levels produced by alpha2-GC in vivo was underlined by pronounced blood pressure increases upon NO synthase inhibition. As a fractional amount of GC was sufficient to mediate vasorelaxation at higher NO concentrations, we conclude that the majority of NO-sensitive GC is not required for cGMP-forming activity but as NO receptor reserve to increase sensitivity toward the labile messenger NO in vivo.  相似文献   

20.
Nitric oxide (NO)-derived species could potentially react with arachidonic acid to generate novel vasoactive metabolites. We studied the reaction of arachidonic acid with nitrogen dioxide (NO2), a free radical that originates from NO oxidation. The reaction mixture contained lipid products that relaxed endothelium-removed bovine coronary arteries. Relaxation to the lipid mixture was inhibited approximately 20% by indomethacin and approximately 70% by a soluble guanylate cyclase (sGC) inhibitor (ODQ). Thus, novel lipid products, which activate sGC presumably through a mechanism involving NO, appeared to have contributed to the observed vasorelaxation. Lipids that eluted at 9 to 12 min during high-performance liquid chromatography fractionation accounted for about one-half of the vasodilator activity in the reaction mixture, which was inhibited by ODQ. Lipid products in fractions 9 to 12 were identified by electrospray tandem mass spectrometry to be eight isomers having molecular weight of 367 and a fragmentation pattern indicative of arachidonic acid derivatives containing nitro and hydroxy groups and consistent with the structures of vicinal nitrohydroxyeicosatrienoic acids. These lipids spontaneously released NO (183 +/- 12 nmol NO/15 min/micromol) as detected by head space/chemiluminescence analysis. Mild alkaline hydrolysis of total lipids extracted from bovine cardiac muscle followed by isotopic dilution gas chromatography/mass spectrometry analysis detected basal levels of nitrohydroxyeicosatrienoic acids (6.8 +/- 2.6 ng/g tissue; n = 4). Thus, the oxidation product of NO, NO2, reacts with arachidonic acid to generate biologically active vicinal nitrohydroxyeicosatrienoic acids, which may be important endogenous mediators of vascular relaxation and sGC activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号