首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics   总被引:32,自引:0,他引:32  
Osteoblast, fibroblast, and endothelial cell adhesion on nanophase (that is, materials with grain sizes less than 100 nm) alumina, titania, and hydroxyapatite (HA) was investigated using in vitro cellular models. Osteoblast adhesion was significantly (p < 0.01) greater after 4 h on nanophase alumina, titania, and HA than it was on conventional formulations of the same ceramics. In contrast, compared to conventional alumina, titania, and HA, after 4 h fibroblast adhesion was significantly (p < 0.01) less on nanophase ceramics. Examination of the underlying mechanism(s) of cell adhesion on nanophase ceramics revealed that these ceramics adsorbed significantly (p < 0.01) greater quantities of vitronectin, which, subsequently, may have contributed to the observed select enhanced adhesion of osteoblasts. Select enhanced osteoblast adhesion was independent of surface chemistry and material phase but was dependent on the surface topography (specifically on grain and pore size) of nanophase ceramics. The capability of synthesizing and processing nanomaterials with tailored (through, for example, specific grain and pore size) structures and topographies to control select subsequent cell functions provides the possibility of designing the novel proactive biomaterials (that is, materials that elicit specific, timely, and desirable responses from surrounding cells and tissues) necessary for improved implant efficacy.  相似文献   

2.
Enhanced functions of osteoblasts on nanophase ceramics   总被引:56,自引:0,他引:56  
Select functions of osteoblasts (bone-forming cells) on nanophase (materials with grain sizes less than 100 nm) alumina, titania, and hydroxyapatite (HA) were investigated using in vitro cellular models. Compared to conventional ceramics, surface occupancy of osteoblast colonies was significantly less on all nanophase ceramics tested in the present study after 4 and 6 days of culture. Osteoblast proliferation was significantly greater on nanophase alumina, titania, and HA than on conventional formulations of the same ceramic after 3 and 5 days. More importantly, compared to conventional ceramics, synthesis of alkaline phosphatase and deposition of calcium-containing mineral was significantly greater by osteoblasts cultured on nanophase than on conventional ceramics after 21 and 28 days. The results of the present study provided the first evidence of enhanced long-term (on the order of days to weeks) functions of osteoblasts cultured on nanophase ceramics; in this manner, nanophase ceramics clearly represent a unique and promising class of orthopaedic/dental implant formulations with improved osseointegrative properties.  相似文献   

3.
In an attempt to simulate the microstructure and mechanical properties of natural bone, novel nanoceramic/polymer composite formulations were fabricated and characterized with respect to their cytocompatibility and mechanical properties. The bending moduli of nanocomposite samples of either poly(L-lactic acid) (PLA) or poly(methyl methacrylate) (PMMA) with 30, 40, and 50 wt % of nanophase (<100 nm) alumina, hydroxyapatite, or titania loadings were significantly (p < 0.05) greater than those of pertinent composite formulations with conventional, coarser grained ceramics. The nanocomposite bending moduli were 1-2 orders of magnitude larger than those of the homogeneous, respective polymer. For example, compared with 0.06 GPa for the 100% PLA, the bending modulus of 50/50 nanophase alumina/PLA composites was 3.5 GPa. Osteoblast adhesion on the surfaces of the nanophase alumina/PLA composites increased as a function of the nanophase ceramic content. Most importantly, osteoblast adhesion on the 50/50 nanophase alumina/PLA substrates was similar to that observed on the 100% nanophase ceramic substrates. Similar trends of osteoblast adhesion were observed on the surfaces of the nanophase titania/polymer and nanophase hydroxyapaptite/polymer composites that were tested. In contrast, fibroblast adhesion on the nanophase composites was either similar or lower than that observed on the conventional composites with either PLA or PMMA and minimum on all tested neat nanophase substrates. The calcium content in the extracellular matrix of cultured osteoblasts was also enhanced on the nanoceramic/PLA composite substrates tested as a function of the nanophase ceramic loading and duration of cell culture. The results of the present in vitro study provide evidence that nanoceramic/polymer composite formulations are promising alternatives to conventional materials because they can potentially be designed to match the chemical, structural, and mechanical properties of bone tissue in order to overcome the limitations of the biomaterials currently used as bone prostheses.  相似文献   

4.
Modification of the chemistry and surface topography of nanophase ceramics was used to provide biomaterial formulations designed to direct the adhesion and proliferation of human mesenchymal stem cells (HMSCs). HMSC adhesion was dependent upon both the substrate chemistry and grain size, but not on surface roughness or crystal phase. Specifically, cell adhesion on alumina and hydroxyapatite was significantly reduced on the 50 and 24 nm surfaces, as compared with the 1500 and 200 nm surfaces, but adhesion on titania substrates was independent of grain size. HMSC proliferation was minimal on the 50 and 24 nm substrates of any chemistry tested, and thus significantly lower than the densities observed on either the 1500 or 200 nm surfaces after 3 or more consecutive days of culture. Furthermore, HMSC proliferation was enhanced on the 200 nm substrates, compared with results obtained on the 1500 nm substrates after 7 or more days of culture. HMSC proliferation was independent of both substrate surface roughness and crystal phase. Rat osteoblast and fibroblast adhesion and proliferation exhibited similar trends to that of HMSCs on all substrates tested. These results demonstrated the potential of nanophase ceramic surfaces to modulate functions of HMSCs, which are pertinent to biomedical applications such as implant materials and devices.  相似文献   

5.
Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo   总被引:11,自引:0,他引:11  
Webster TJ  Ejiofor JU 《Biomaterials》2004,25(19):4731-4739
Previous studies have demonstrated increased functions of osteoblasts (bone-forming cells) on nanophase compared to conventional ceramics (specifically, alumina, titania, and hydroxyapatite), polymers (such as poly lactic-glycolic acid and polyurethane), carbon nanofibers/nanotubes, and composites thereof. Nanophase materials are unique materials that simulate dimensions of constituent components of bone since they possess particle or grain sizes less than 100 nm. However, to date, interactions of osteoblasts on nanophase compared to conventional metals remain to be elucidated. For this reason, the objective of the present in vitro study was to synthesize, characterize, and evaluate osteoblast adhesion on nanophase metals (specifically, Ti, Ti6Al4V, and CoCrMo alloys). Such metals in conventional form are widely used in orthopedic applications. Results of this study provided the first evidence of increased osteoblast adhesion on nanophase compared to conventional metals. Interestingly, osteoblast adhesion occurred preferentially at surface particle boundaries for both nanophase and conventional metals. Since more particle boundaries are present on the surface of nanophase compared to conventional metals, this may be an explanation for the measured increased osteoblast adhesion. Lastly, material characterization studies revealed that nanometal surfaces possessed similar chemistry and only altered in degree of nanometer surface roughness when compared to their respective conventional counterparts. Because osteoblast adhesion is a necessary prerequisite for subsequent functions (such as deposition of calcium-containing mineral), the present study suggests that nanophase metals should be further considered for orthopedic implant applications.  相似文献   

6.
Gutwein LG  Webster TJ 《Biomaterials》2004,25(18):4175-4183
In the present in vitro study, osteoblast (bone-forming cells) viability and cell density were investigated when cultured in the presence of nanophase compared to conventional (i.e. micron) alumina and titania particles at various concentrations (from 10,000 to 100 microg/ml of cell culture media) for up to 6h. Results confirmed previous studies of the detrimental influences of all ceramic particulates on osteoblast viability and cell densities. For the first time, however, results provided evidence of increased apoptotic cell death when cultured in the presence of conventional compared to nanophase alumina and titania particles. Moreover, since material characterization studies revealed that the only difference between respective ceramic particles was nanometer- and conventional-dimensions (specifically, phase and chemical properties were similar between respective nanophase and conventional alumina as well as titania particles), these results indicated that osteoblast viability and densities were influenced solely by particle size. Such nanometer particulate wear debris may result from friction between articulating components of orthopedic implants composed of novel nanophase ceramic materials. Results of a less detrimental effect of nanometer--as compared to conventional-dimensioned particles on the functions of osteoblasts provide additional evidence that nanophase ceramics may become the next generation of bone prosthetic materials with increased efficacy and, thus, deserve further testing.  相似文献   

7.
Osteoblast (bone-forming cell) and chondrocyte (cartilage-synthesizing cell) adhesion on novel nanostructured polylactic/glycolic acid (PLGA) and titania composites were investigated in the present in vitro study. Nanostructured polymers were created by chemically treating micron-structured PLGA with select concentrations of NaOH for various periods of time. Dimensions of ceramics were controlled by utilizing either micron or nanometer grain size titania. Compared with surfaces with conventional or micron surface roughness dimensions, results provided the first evidence of increased osteoblast and chondrocyte adhesion on 100 wt% PLGA films with nanometer polymer surface roughness dimensions. Results also confirmed other literature reports of enhanced osteoblast adhesion on 100 wt% nanometer compared with conventional grain size titania compacts; however, the present study provided the first evidence that decreasing titania grain size into the nanometer range did not influence chondrocyte adhesion. Finally, osteoblast and chondrocyte adhesion increased on 70/30 wt% PLGA/titania composites formulated to possess nanosurface rather than conventional surface feature dimensions. The present study, thus, provided evidence that these nanostructured PLGA/titania composites may possess the ability to simulate surface and/or chemical properties of bone and cartilage, respectively, to allow for exciting alternatives in the design of prostheses with greater efficacy.  相似文献   

8.
The role, including concentration, conformation, and bioactivity, of adsorbed vitronectin in enhancing osteoblast adhesion on nanophase alumina was investigated in the present study. Vitronectin adsorbed in a competitive environment in the highest concentration on nanophase alumina compared to conventional alumina. Enhanced adsorption of vitronectin on nanophase alumina was possibly due to decreased adsorption of apolipoprotein A-I and/or increased adsorption of calcium on nanophase alumina. In a novel manner, the present study utilized surface-enhanced Raman scattering (SERS) to determine the conformation of vitronectin adsorbed on nanophase alumina. These results provided the first evidence of increased unfolding of vitronectin adsorbed on nanophase alumina. Increased adsorption of calcium on nanophase alumina may affect the conformation of adsorbed vitronectin specifically to promote unfolding of the macromolecule to expose cell-adhesive epitopes recognized by specific cell-membrane receptors. Results of the present study also provided evidence of dose-dependent inhibition of osteoblast adhesion on nanophase alumina pretreated with vitronectin following preincubation (and thus blocking respective cell-membrane receptors) with either Arginine-Glycine-Aspartic Acid-Serine (RGDS) or Lysine-Arginine-Serine-Arginine (KRSR). These events, namely, enhanced vitronectin adsorption, comformation, and bioactivity, may explain the increased osteoblast adhesion on nanophase alumina.  相似文献   

9.
Peptide sequences such as lysine-arginine-serine-arginine (KRSR) selectively bind transmembrane proteoglycans (e.g. heparin sulfate) of osteoblasts (bone-forming cells) and are, therefore, actively being investigated for orthopedic applications. Further, nanophase materials (or materials with grain or particle sizes less than 100 nm) are promising new materials that promote new bone growth more than compared to conventional (that is, micron grain or particle size) materials. To combine the above two promising approaches for improving orthopedic implants, the objective of this in vitro study was to functionalize titanium (Ti) surfaces (both nanophase and conventional) with KRSR peptides and study their osteoblast cell adhesive properties. Materials were characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy. Results of this in vitro study provided evidence of increased osteoblast adhesion on nanophase compared to conventional Ti whether functionalized with KRSR or not. Results further showed that the immobilization of KRSR onto Ti (both nanophase and conventional) increased osteoblast adhesion compared to respective nonfunctionalized Ti and those functionalized with the negative control peptide KSRR. Most importantly, osteoblast adhesion on nonfunctionalized nanophase Ti increased compared to conventional Ti functionalized with KRSR. Further, select initial osteoblast adhesion was observed to occur at particle boundaries for any type of nanophase and conventional Ti formulated in this study. In summary, results provided evidence that not only should nonfunctionalized nanophase Ti be further studied for improved orthopedic applications but so should nanophase Ti functionalized with KRSR.  相似文献   

10.
Currently, the scientific challenges for bone tissue engineering lie in the development of suitable scaffold materials that can improve bone cell adhesion, proliferation, and differentiation. The design of nanophase titania/poly(lactide-co-glycolide) (PLGA) composites offers an exciting approach to combine the advantages of a degradable polymer with nanosize ceramic particles to optimize the physical and biological properties necessary for bone regeneration. Moreover, because of the presence of nanosized ceramics, such composites can be formulated to match the surface roughness of bone. For these reasons, the objective of the present in vitro study was to investigate osteoblast (bone-forming cell) adhesion and long-term functions on nanophase titania/PLGA composites that mimic the surface roughness of bone. Various sonication powers were applied in this study to manipulate titania dispersions in PLGA and consequently control their surface roughness. Most importantly, results correlated better osteoblast adhesion and long-term functions (such as collagen, alkaline phosphatase activity, and calcium-containing mineral deposition) among nanophase titania/PLGA composites that had surface roughness values closer to natural bone. In this manner, this present study demonstrated that the nanophase titania/PLGA composites sonicated to have nanometer surface roughness values can improve osteoblast functions necessary for enhanced bone tissue engineering applications.  相似文献   

11.
Nanotechnology creates materials that potentially outperform, at several boundaries, existing materials in terms of mechanical, electrical, catalytic, and optical properties. However, despite their promise to mimic the surface roughness cells experience in vivo, the use of nanophase materials in biological applications remains to date largely unexplored. The objective of the present in vitro study was, therefore, to determine whether when added to a polymer scaffold, nanophase compared to conventional ceramics enhance functions of osteoblasts (or bone-forming cells). Results from this study provided the first evidence that functions (specifically, adhesion, synthesis of alkaline phosphatase, and deposition of calcium-containing mineral) of osteoblasts increased on poly-lactic-co-glycolic acid (PLGA) scaffolds containing nanophase compared to conventional grain size titania with greater weight percentage (from 10-30 wt %). Because the chemistry, material phase, porosity (%), and pore size of the composites were similar, this study implies that the surface features created by adding nanophase compared to conventional titania was a key parameter that enhanced functions of osteoblasts. In this manner, the study adds another novel property of nanophase ceramics: their ability to promote osteoblast functions in vitro when added to a polymer scaffold. For this reason, nanophase ceramics (and nanomaterials in general) deserve further attention as orthopedic tissue engineering materials.  相似文献   

12.
Alumina is a material that has been used in both dental and orthopedic applications. It is with these uses in mind that osteoblast (bone-forming cell) function on alumina of varying particulate size, chemistry, and phase was tested in order to determine what formulation might be the most beneficial for bone regeneration. Specifically, in vitro osteoblast adhesion, proliferation, intracellular alkaline phosphatase activity, and calcium deposition was observed on delta-phase nanospherical, alpha-phase conventional spherical, and boehmite nanofiber alumina. Results showed for the first time increased osteoblast functions on the nanofiber alumina. Specifically, a 16% increase in osteoblast adhesion over nanophase spherical alumina and a 97% increase over conventional spherical alumina were found for nanofiber alumina after 2 h. A 29% increase in cell number after 5 days and up to a 57% greater amount of calcium was found on the surface of the nanofiber alumina compared with other alumina surfaces. Some of the possible explanations for such enhanced osteoblast behavior on nanofiber alumina may be attributed to chemistry, crystalline phase, and topography. Increased osteoblast function on nanofiber alumina suggests that it may be an ideal material for use in orthopedic and dental applications.  相似文献   

13.
Enhanced osteoclast-like cell functions on nanophase ceramics   总被引:20,自引:0,他引:20  
Synthesis of tartrate-resistant acid phosphatase (TRAP) and formation of resorption pits by osteoclast-like cells, the bone-resorbing cells, on nanophase (that is, material formulations with grain sizes less than 100nm) alumina and hydroxyapatite (HA) were investigated in the present in vitro study. Compared to conventional (that is, grain sizes larger than 100 nm) ceramics, synthesis of TRAP was significantly greater in osteoclast-like cells cultured on nanophase alumina and on nanophase HA after 10 and 13 days, respectively. In addition, compared to conventional ceramics, formation of resorption pits was significantly greater by osteoclast-like cells cultured on nanophase alumina and on nanophase HA after 7, 10, and 13 days, respectively. The present study, therefore, demonstrated, for the first time, enhanced osteoclast-like cell function on ceramic surfaces with nanometer-size surface topography.  相似文献   

14.
纳米羟基磷灰石对成骨细胞功能代谢影响的研究   总被引:10,自引:0,他引:10  
比较纳米羟基磷灰石(nHA)和常规羟基磷灰石(cHA)对成骨细胞功能代谢影响方面的差异。采用化学沉淀法制备nHA粉体,采用压制成型和无压烧结工艺制备nHA与cHA的块体材料。将Wistar乳鼠颅骨体外原代分离培养的成骨细胞接种于nHA与cHA的表面,分别在7、14、21、28d时检测细胞内总蛋白、ALP活性及细胞基质钙含量。结果表明,所制备的nHA与cHA的平均粒径分别为55nm和0.78μm;第21和28d,nHA表面附着的成骨细胞ALP活性和细胞基质钙含量均高于cHA。该研究提示:与相应的cHA比较,nHA更能增强成骨细胞的功能及代谢活动。  相似文献   

15.
Bulk hydroxyapatite (HA) and titania have been used to improve the osseointegration of orthopedic implants. For this reason, composites of HA and titania have been receiving increased attention in orthopedics as novel coating materials. The objective of this in vitro study was to produce nanophase (i.e., materials with grain size less than 100 nm) HA/titania coatings on titanium. The adhesion of bone forming cells (osteoblasts) on the composite coatings were also assessed and compared with single-phase nanotitania and nano-HA titanium coatings. Nanocrystalline HA powders were synthesized through wet chemistry and hydrothermal treatments at 200 degrees C. Nanocrystalline titania powders obtained commercially were mixed with the nanocrystalline HA powders at various weight ratios. The mixed powders were then deposited on titanium utilizing a room-temperature coating process called IonTite. The results of the present study showed that such coatings maintained the chemistry and crystallite size of the original HA and titania powders. Moreover, osteoblasts adherent on single-phase nanotitania coatings were well-spread whereas they became more round and extended distinct filopodia on the composite and single-phase HA coatings. Interestingly, the number of osteoblasts adherent on the nanotitania/HA composite coatings at weight ratios of 2/1 and 1/2 were significantly greater compared with single-phase nanotitania coatings, currently-used plasma-sprayed HA coatings, and uncoated titanium. These findings suggest that nanotitania/HA coatings on titanium should be further studied for improved orthopedic applications.  相似文献   

16.
An understanding of osteoblast response to surface topography is essential for successful bone tissue engineering applications. Alumina has been extensively used as a substrate for bone tissue constructs. However, current techniques do not allow precise surface topography and orientation of the material. In this research, a two-step anodization process was optimized for the fabrication of nanoporous alumina membranes with uniform pore dimension and distribution. The anodization voltage can be varied to create nanoporous alumina membranes with pore sizes ranging from 30 to 80 nm in diameter. The impact of the nanoscale pores on osteoblast response was studied by evaluating cell adhesion, morphology, and matrix production. Scanning electron microscopy and atomic force microscopy were used to characterize the nanoporous alumina membranes. Osteoblast adhesion and morphology were investigated using scanning electron microscopy images and matrix production was characterized using energy dispersive spectroscopy. This research combined the advantages of using alumina, a material with proven biocompatibility and current orthopedic clinical applications, and incorporated porous features on the nanoscale which have been reported to improve osteoblast response.  相似文献   

17.
Many engineers and surgeons trace implant failure to poor osseointegration (or the bonding of an orthopedic implant to juxtaposed bone) and/or bacteria infection. By using novel nanotopographies, researchers have shown that nanostructured ceramics, carbon fibers, polymers, metals, and composites enhance osteoblast adhesion and calcium/phosphate mineral deposition. However, the function of bacteria on materials with nanostructured surfaces remains largely uninvestigated. This is despite the fact that during normal surgical insertion of an orthopedic implant, bacteria from the patient's own skin and/or mucosa enters the wound site. These bacteria (namely, Staphylococcus epidermidis) irreversibly adhere to an implant surface while various physiological stresses induce alterations in the bacterial growth rate leading to biofilm formation. Because of their integral role in determining the success of orthopedic implants, the objective of this in vitro study was to examine the functions of (i) S. epidermidis and (ii) osteoblasts (or bone-forming cells) on ZnO and titania (TiO(2)), which possess nanostructured compared to microstructured surface features. ZnO is a well-known antimicrobial agent and TiO(2) readily forms on titanium once implanted. Results of this study provided the first evidence of decreased S. epidermidis adhesion on ZnO and TiO(2) with nanostructured when compared with microstructured surface features. Moreover, compared with microphase formulations, results of this study showed increased osteoblast adhesion, alkaline phosphatase activity, and calcium mineral deposition on nanophase ZnO and TiO(2). In this manner, this study suggests that nanophase ZnO and TiO(2) may reduce S. epidermidis adhesion and increase osteoblast functions necessary to promote the efficacy of orthopedic implants.  相似文献   

18.
Savaiano JK  Webster TJ 《Biomaterials》2004,25(7-8):1205-1213
Chondrocyte (cartilage-synthesizing cells) cell density and synthesis of select intracellular proteins by chondrocytes were investigated on novel nanophase poly-lactic/glycolic acid (PLGA) and titania composites in the present in vitro study. Nanophase PLGA films were created by chemically treating conventional (or micron-structured) PLGA films with 10N NaOH for 1h. Titania particle dimensions in ceramic compacts were controlled by utilizing either conventional (i.e., micron) or nanometer grain size titania. Composites of either conventional or nanophase PLGA with either conventional or nanophase titania at 70/30wt% were also created. Compared to surfaces with a conventional or micron topography, results provided the first evidence of stagnant confluent cell densities on nanostructured surfaces at time points between 1 and 7 days. Moreover, compared to surfaces with a conventional topography, increased chondrocyte intracellular synthesis of alkaline phosphatase and chondrocyte expressed protein-68 (proteins that have been correlated with the functions of chondrocytes) were observed on nanophase PLGA/nanophase titania composites. The present study, thus, provided the first evidence of different chondrocyte responses to nanostructured PLGA/nanophase titania composites; in light of other reports demonstrating increased functions of bone cells on the same materials, such data indicates that further investigation of these materials at the bone-cartilage interface should be conducted.  相似文献   

19.
The biological properties of calcium phosphate-derived materials are strongly influenced by changes in Ca/P stoichiometry and grain size, which have not yet been fully elucidated to date. For this reason, the objective of this in vitro study was to understand osteoblast (bone forming cells) adhesion on nanoparticulate calcium phosphates of various Ca/P ratios. A group of calcium phosphates with Ca/P ratios between 0.5 and 2.5 were obtained by adjusting the Ca/P stoichiometry of the initial reactants necessary for calcium phosphate precipitation. For samples with 0.5 and 0.75 Ca/P ratios, tricalcium phosphate (TCP) and Ca(2)P(2)O(7) phases were observed. In contrast, for samples with 1.0 and 1.33 Ca/P ratios, the only stable phase was TCP. For samples with 1.5 Ca/P ratios, the TCP phase was dominant, however, small amounts of the hydroxyapatite (HA) phase started to appear. For samples with 1.6 Ca/P ratios, the HA phase was dominant. Last, for samples with 2.0 and 2.5 Ca/P ratios, the CaO phase started to appear in the HA phase, which was the dominant phase. Moreover, the average nanometer grain size, porosity (%), and the average pore size decreased in general with increasing Ca/P ratios. Most importantly, results demonstrated increased osteoblast adhesion on calcium phosphates with higher Ca/P ratios (up to 2.5). In this manner, this study provided evidence that Ca/P ratios should be maximized (up to 2.5) in nanoparticulate calcium phosphate formulations to increase osteoblast adhesion, a necessary step for subsequent osteoblast functions such as new bone deposition.  相似文献   

20.
Li B  Chen X  Guo B  Wang X  Fan H  Zhang X 《Acta biomaterialia》2009,5(1):134-143
Microwave heating was applied to fabricate interconnective porous structured bodies by foaming as-synthesized calcium-deficient hydroxyapatite (Ca-deficient HA) precipitate containing H(2)O(2). The porous bodies were sintered by a microwave process with activated carbon as the embedding material to prepare nano- and submicron-structured ceramics. By comparison, conventional sintering was used to produce microstructured ceramics. The precursor particles and bulk ceramics were characterized by transmission electron microscopy (TEM), dynamic light scattering, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR) and mechanical testing. TEM micrographs and assessment of the size distribution showed that the needle-like precursor particles are on the nanoscale. SEM observation indicated that the ceramics formed by microwave sintering presented a structure of interconnective pores, with average grain sizes of approximately 86 and approximately 167nm. XRD patterns and FTIR spectra confirmed the presence of carbonated biphasic calcium phosphate (BCP), and the mechanical tests showed that the ceramics formed by microwave sintering had a compressive strength comparable to that obtained by conventional methods. Rat osteoblasts were cultured on the three kinds of BCP ceramics to evaluate their biocompatibility. Compared with the microscale group formed by conventional sintering, MTT assay and ALP assay showed that nanophase scaffolds promoted cell proliferation and differentiation respectively, and SEM observation showed that the nanoscale group clearly promoted cell adhesion. The results from this study suggest that porous carbonated biphasic calcium phosphate ceramics with a nanostructure promote osteoblast adhesion, proliferation and differentiation. In conclusion, porous carbonated BCP ceramics with a nanostructure are simple and quick to prepare using microwaves and compared with those produced by conventional sintering, may be better bone graft materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号