首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
In this paper, the behavior of quasielastic light scattering (QELS) in a PbMg1/3Nb2/3O3 (PMN) crystal under broadband Brillouin light scattering in a temperature range from 750 K to 80 K was studied. It was shown that QELS consists of two components: narrow (0.9 GHz to 11 GHz) and wide (80 GHz to 600 GHz). The dependencies of the intensity, I, of these components on the frequency, ν, are well described by the power law I ~ eνα, with different α, and are determined by the distribution of the relaxation times. The analysis of the Brillouin spectra showed that the behavior of the relaxation time of both the components of QELS with temperature change is well described by the Arrhenius law. Additionally, in the vicinity of the intermediate temperature T* ≈ 380 K, a critical relaxation time behavior for the narrow component of QELS was detected. In the vicinity of the same temperature, a maximum in the integral intensity of both the components of QELS was observed, which is adjacent to another maximum in the region of the Vogel–Fulcher temperature TVF ≈ 250 K corresponding to the transformation of the crystal to a nonergodic state.  相似文献   

2.
The aim of this work was to obtain dense Cu2S superionic thermoelectric materials, homogeneous in terms of phase and chemical composition, using a very fast and cheap induction-melting technique. The chemical composition was investigated via scanning electron microscopy (SEM) combined with an energy-dispersive spectroscopy (EDS) method, and the phase composition was established by X-ray diffraction (XRD). The thermoelectric figure of merit ZT was determined on the basis of thermoelectric transport properties, i.e., Seebeck coefficient, electrical and thermal conductivity in the temperature range of 300–923 K. The obtained values of the ZT parameter are comparable with those obtained using the induction hot pressing (IHP) technique and about 30–45% higher in the temperature range of 773–923 K in comparison with Cu2S samples densified with the spark plasma sintering (SPS) technique.  相似文献   

3.
In this work, the properties of ZnO films of 100 nm thickness, grown using atomic layer deposition (ALD) on a–(100) and c–(001) oriented Al2O3 substrate are reported. The films were grown in the same growth conditions and parameters at six different growth temperatures (Tg) ranging from 100 °C to 300 °C. All as-grown and annealed films were found to be polycrystalline, highly (001) oriented for the c–Al2O3 and highly (101) oriented for the a–Al2O3 substrate. The manifestation of semi-polar-(101) and polar (001)–oriented ZnO films on the same substrate provided the opportunity for a comparative study in terms of the influence of polarization on the electrical and structural properties of ZnO films. It was found that the concentration of hydrogen, carbon, and nitrogen impurities in polar (001)–oriented films was considerably higher than in semi-polar (101)–oriented ZnO films. The study showed that when transparent conductive oxide applications were considered, the ZnO layers could be deposited at a temperature of about 160 °C, because, at this growth temperature, the high electrical conductivity was accompanied by surface smoothness in the nanometer scale. On the contrary, semi-polar (101)–oriented films might offer a perspective for obtaining p-type ZnO films, because the concentration of carbon and hydrogen impurities is considerably lower than in polar films.  相似文献   

4.
BiFeO3–BaTiO3 (BF–BT) ceramics exhibit great potential for diverse applications in high temperature piezoelectric transducers, temperature-stable dielectrics and pulsed-power capacitors. Further optimization of functional properties for different types of applications can be achieved by modification of processing parameters or chemical composition. In the present work, the influence of pentavalent niobium substitution for trivalent ferric ions on the structure, microstructure and dielectric properties of 0.7BF–0.3BT ceramics was investigated systematically. Doping with niobium led to incremental reductions in grain size (from 7.0 to 1.3 µm) and suppression of long-range ferroelectric ordering. It was found that core-shell type microstructural features became more prominent as the Nb concentration increased, which were correlated with the formation of distinct peaks in the dielectric permittivity–temperature relationship, at ~470 and 600 °C, which were attributed to the BT-rich shell and BF-rich core regions, respectively. Nb-doping of BF–BT ceramics yielded reduced electronic conductivity and dielectric loss, improved electrical breakdown strength and enhanced dielectric energy storage characteristics. These effects are attributed to the charge compensation of pentavalent Nb donor defects by bismuth vacancies, which suppresses the formation of oxygen vacancies and the associated electron hole conduction mechanism. The relatively high recoverable energy density (Wrec = 2.01 J cm−3) and energy storage efficiency (η = 68%) of the 0.7BiFeO3–0.3BaTiO3 binary system were achieved at 75 °C under an electric field of 15 kV mm−1. This material demonstrates the greatest potential for applications in energy storage capacitors and temperature-stable dielectrics.  相似文献   

5.
Permingeatite (Cu3SbSe4) is a promising thermoelectric material because it has a narrow band gap, large carrier effective mass, and abundant and nontoxic components. Mechanical alloying (MA), which is a high-energy ball mill process, has various advantages, e.g., segregation/evaporation is not required and homogeneous powders can be prepared in a short time. In this study, the effects of MA and hot-pressing (HP) conditions on the synthesis of the Cu3SbSe4 phase and its thermoelectric properties were evaluated. The electrical conductivity decreased with increasing HP temperature, while the Seebeck coefficient increased. The power factor (PF) was 0.38–0.50 mW m−1 K−2 and the thermal conductivity was 0.76–0.78 W m−1 K−1 at 623 K. The dimensionless figure of merit, ZT, increased with increasing temperature, and a reliable and maximum ZT value of 0.39 was obtained at 623 K for Cu3SbSe4 prepared using MA at 350 rpm for 12 h and HP at 573 K for 2 h.  相似文献   

6.
In this article, we reported on a Ga2O3-based Schottky barrier diode and heterojunction diode from MOCVD. The Si-doped n-type Ga2O3 drift layer, grown by MOCVD, exhibited high crystal quality, flat surfaces, and uniform doping. The distribution of unintentional impurities in the films was studied. Then nickel Schottky barrier diode and p-NiO/n-Ga2O3 heterojunction diode were fabricated and measured. Without any electric field management structure, the Schottky barrier diode and heterojunction diode have specific resistances of 3.0 mΩ·cm2 and 6.2 mΩ·cm2, breakdown voltages of 380 V and 740 V, thus yielding power figures of merit of 48 MW·cm−2 and 88 MW·cm−2, respectively. Besides, both devices exhibit a current on/off ratio of more than 1010. This shows the prospect of MOCVD in power device manufacture.  相似文献   

7.
In this paper, we used differential scanning calorimetry (DSC), high-temperature X-ray diffraction (HT-XRD), and confocal scanning laser microscopy (CSLM) to investigate the Li2O–Al2O3–SiO2 glass crystallization process. At 943 K, lithium disilicate (Li2Si2O5) phase crystals began to precipitate in the Li2O–Al2O3–SiO2 glass with a crystal size of 50–70 nm. At the temperature of 1009 K, petalite (LiAlSi4O10) crystals began to precipitate in the vitreous phase, forming composite spherical crystals of LiAlSi4O10 and Li2Si2O5 with size in the range of 90–130 nm. Furthermore, the Kissinger method and KAS method of the JMAK model were used to calculate the crystallization activation energy and the Avrami index “n”. It was found that the precipitation mechanism of the two kinds of crystals is whole crystallization; accordingly, the selection of crystallization heat treatment system was guided to determine the nucleation and crystallization temperature.  相似文献   

8.
Flexible PVC/BT (Polyvinyl chloride/Barium Titanate) composite thick films with (0–30%) volume fractions of BaTiO3 were fabricated via the solution casting method. The effects of BaTiO3 filler on the phase, microstructure and dielectric properties of composite films were investigated. The XRD results revealed that BT particles are embedded in the PVC matrix with no chemical reaction taking place between the two phases. It was observed that the glass transition temperature of PVC had increased with the addition of BT. The frequency dispersion in the dielectric constant versus temperature curves indicated the relaxor nature of the composites. The dielectric constant (εr) measured at 40 °C, increased from 7.6 for pure PVC to 16.1 for 30% of BaTiO3 content in PVC polymer matrix. It is suggested that BaTiO3 ceramic powder enhanced the dielectric properties of PVC and may be used as a flexible dielectric material.  相似文献   

9.
In this study, we evaluated the temperature- and frequency-dependent ferroelectric characteristics of TiN/undoped HfO2/TiN metal-ferroelectric-metal (MFM) capacitors in which an undoped HfO2 film was deposited through atomic layer deposition (ALD). Successful ferroelectric characteristics were achieved after postdeposition annealing at 650 °C, which exhibited a remanent polarization of 8 μC/cm2 and a coercive electric field of 1.6 MV/cm at 25 °C (room temperature). The ferroelectric property was maintained at 200 °C and decreased as the temperature increased. The ferroelectric property was completely lost above 320 °C and fully recovered after cooling. The frequency dependency was evaluated by bias-dependent capacitance–voltage and s-parameter measurements, which indicated that the ferroelectric property was maintained up to several hundred MHz. This study reveals the ultimate limitations of the application of an undoped HfO2 MFM capacitor.  相似文献   

10.
In the current study, Bi2/3Cu3Ti4O12 (BCTO) ceramics were prepared by mechanical ball mill of the elemental oxides followed by conventional sintering of the powder without any pre-sintering heat treatments. The sintering temperature was in the range 950–990 °C, which is 100–150 °C lower than the previous conventional sintering studies on BCTO ceramics. All the ceramic samples showed body-centered cubic phase and grain size ≈ 2–6 μm. Sintering temperature in the range 950–975 °C resulted in comparatively lower dielectric loss and lower thermal coefficient of permittivity in the temperature range from −50 to 120 °C. All the BCTO ceramics showed reasonably high relative permittivity. The behavior of BCTO ceramics was correlated with the change in oxygen content in the samples with sintering temperature. This interpretation was supported by the measurements of the energy dispersive x-ray spectroscopy (EDS) elemental analysis and activation energy for conduction and for relaxation in the ceramics.  相似文献   

11.
Two homometallic Coordination Polymers (CPs) with composition [Ln(hfac)3bipy]n (Ln3+ = Eu3+, 1, and Tb3+, 2; hfac = hexafluoroacetylacetonato, bipy = 4,4′-bipyridine) were used to develop a family of ratiometric luminescent thermometers containing Eu3+ and Tb3+ as red and green emitters, respectively. The thermometric properties of pure CPs and of their mixtures having an Eu3+/Tb3+ molar ratio of 1:1, 1:3, 1:5, and 1:10 (samples: Eu1Tb1, Eu1Tb3, Eu1Tb5, and Eu1Tb10) were studied in the 83–383 K temperature range. Irrespective of the chemical composition, we observed similar thermometric responses characterized by broad applicative temperature ranges (from 100 to 165 K wide), and high relative thermal sensitivity values (Sr), up to 2.40% K−1, in the physiological temperature range (298–318 K). All samples showed emissions endowed with peculiar and continuous color variation from green (83 K) to red (383 K) that can be exploited to develop a colorimetric temperature indicator. At fixed temperature, the color of the emitted light can be tuned by varying composition and excitation wavelength.  相似文献   

12.
Physical properties of the mixed-valent tellurate of lithium and manganese, LiMn2TeO6, were investigated in measurements of ac and dc magnetic susceptibility χ, magnetization M, specific heat Cp, electron spin resonance (ESR), and nuclear magnetic resonance (NMR) in the temperature range 2–300 K under magnetic field up to 9 T. The title compound orders magnetically in two steps at T1 = 20 K and T2 = 13 K. The intermediate phase at T2 < T < T1 is fully suppressed by magnetic field µ0H of about 4 T. Besides magnetic phases transitions firmly established in static measurements, relaxation-type phenomena were observed well above magnetic ordering temperature in resonant measurements.  相似文献   

13.
Gadolinia (Gd2O3) is potentially attractive as a dispersive phase for copper matrix composites due to its excellent thermodynamic stability. In this paper, a series of 1.5 vol% nano-Gd2O3/Cu composites were prepared via an internal oxidation method followed by powder metallurgy in the temperature range of 1123–1223 K with a holding time of 5–60 min. The effects of processing parameters on the microstructure and properties of the composites were analyzed. The results showed that the tensile strength and conductivity of the nano-Gd2O3/Cu composite have a strong link with the microporosity and grain size, while the microstructure of the composite was determined by the sintering temperature and holding time. The optimal sintering temperature and holding time for the composite were 1173 K and 30 min, respectively, under which a maximum ultimate tensile strength of 317 MPa was obtained, and the conductivity was 96.8% IACS. Transmission electron microscopy observations indicated that nano-Gd2O3 particles with a mean size of 76 nm formed a semi-coherent interface with the copper matrix. In the nano-Gd2O3/Cu composite, grain-boundary strengthening, Orowan strengthening, thermal mismatch strengthening, and load transfer strengthening mechanisms occurred simultaneously.  相似文献   

14.
The cathode material LiNi2/3Co1/6Mn1/6O2 with excellent electrochemical performance was prepared successfully by a rheological phase method. The materials obtained were characterized by X-ray diffraction, scanning electron microscopy, electrochemical impedance spectroscopy and charge-discharge tests. The results showed that both calcination temperatures and atmosphere are very important factors affecting the structure and electrochemical performance of LiNi2/3Co1/6Mn1/6O2 material. The sample calcinated at 800 °C under O2 atmosphere displayed well-crystallized particle morphology, a highly ordered layered structure with low defects, and excellent electrochemical performance. In the voltage range of 2.8–4.3 V, it delivered capacity of 188.9 mAh g−1 at 0.2 C and 130.4 mAh g−1 at 5 C, respectively. The capacity retention also reached 93.9% after 50 cycles at 0.5 C. All the results suggest that LiNi2/3Co1/6Mn1/6O2 is a promising cathode material for lithium-ion batteries.  相似文献   

15.
Transitions associated with orientational order–disorder phenomena are found in a wide range of materials and may have a significant impact on their properties. In this work, specific heat and 1H NMR measurements have been used to study the phase transition in the metal-organic framework (MOF) compound [(CH3)2NH2]Zn(HCOO)3. This compound, which possesses a perovskite-type architecture, undergoes a remarkable order–disorder phase transition at 156 K. The (DMA+) cationic moieties that are bound by hydrogen bonds to the oxygens of the formate groups (N─H⋯O ∼ 2.9 ) are essentially trapped inside the basic perovskite cage architecture. Above 156 K, it is the orientations of these moieties that are responsible for the disorder, as each can take up three different orientations with equal probability. Below 156 K, the DMA+ is ordered within one of these sites, although the moiety still retains a considerable state of motion. Below 40 K, the rotational motions of the methyl groups start to freeze. As the temperature is increased from 4 K in the NMR measurements, different relaxation pathways can be observed in the temperature range approximately 65–150 K, as a result of a “memory effect.” This dynamic behavior is characteristic of a glass in which multiple states possess similar energies, found here for a MOF. This conclusion is strongly supported by the specific heat data.  相似文献   

16.
Li2SO4 or (Li2SO4 + SiO2)-mixture fluxes were used to prepare a Lu2O3:Eu powder phosphor as well as an undoped Lu2O3 utilizing commercial lutetia and europia as starting reagents. SEM images showed that the fabricated powders were non-agglomerated and the particles sizes varied from single microns to tens of micrometers depending largely on the flux composition rather than the oxide(s)-to-flux ratio. In the presence of SiO2 in the flux, certain grains grew up to 300–400 μm. The lack of agglomeration and the large sizes of crystallites allowed making single crystal structural measurements and analysis on an undoped Lu2O3 obtained by means of the flux technique. The cubic structure with a = 10.393(2) Å, and Ia3 space group at 298 K was determined. The most efficient radioluminescence of Lu2O3:Eu powders reached 95%–105% of the commercial Gd2O2S:Eu.  相似文献   

17.
Thermoelectric generators are an excellent option for waste heat reuse. Materials for such devices have seen their thermoelectric properties improving constantly. The functioning of a generator, however, does not only depend on thermoelectric properties. Thermal and mechanical properties play a decisive role in the feasibility of any thermoelectric generator. To shed light on the properties exhibited by thermoelectric materials, we present the temperature dependent characterization of Young’s modulus and coefficient of thermal expansion for Mg2Si0.3Sn0.7. Comparing undoped to Bi-doped n-type and Li-doped p-type material, we investigated the influence of doping in the relevant temperature regime and found the influences to be minor, proving similar properties for n- and p-type. We found a Young’s modulus of 84 GPa for the p-type and 83 GPa for the n-type, similar to that of the undoped compound with 85 GPa. The thermal expansion coefficients of undoped, as well as n- and p-type were equally similar with values ranging from 16.5 to 17.5 × 10−6 1/K. A phase analysis was performed to further compare the two materials, finding a similar phase distribution and microstructure. Finally, using the gathered data, estimations on the possible thermally induced stresses under a temperature difference are provided to evaluate the relevance of knowing temperature dependent thermal and mechanical properties.  相似文献   

18.
In this study, the effect of heat treatment on the structural, magnetic and electrical properties of La2FeMnO6 prepared via the sol–gel and sintering method were investigated. The heat-treatment conditions, i.e., the calcination temperature (1023 K and 1173 K), sintering temperature and time (1273 K for 1 and 3 h) were carried out. X-ray diffraction (XRD) revealed orthorhombic pnma (62) symmetry without any impurity phase for all samples. X-ray photoelectron spectroscopy confirmed the presence of Fe2+–Fe3+–Fe4+ and Mn3+–Mn4+ mixed states, and lanthanum and oxygen vacancies resulting in various magnetic exchange interactions. Furthermore, the magnetisation hysteresis showed enhanced hysteresis loops accompanied by an increase in magnetisation parameters with calcination temperature. The Raman phonon parameters induced a redshift in the phonon modes, alongside an increase in the intensity and compression of the linewidth, reflecting a decrease in lattice distortion, which was confirmed by XRD. The temperature-dependent conductivity showed that the conduction mechanism is dominated by p-type polaron hopping, and the lowest activation energy was approximately 0.237 ± 0.003 eV for the minimum heat-treatment conditions. These results show that varying heat-treatment conditions can significantly affect the structural, magnetic and electrical properties of the La2FeMnO6 system.  相似文献   

19.
Three-dimensional BaTiO3 (3D BT)/polyvinylidene fluoride (PVDF) composite dielectrics were fabricated by inversely introducing PVDF solution into a continuous 3D BT network, which was simply constructed via the sol-gel method using a cleanroom wiper as a template. The effect of the 3D BT microstructure and content on the dielectric and energy storage properties of the composites were explored. The results showed that 3D BT with a well-connected continuous network and moderate grain sizes could be easily obtained by calcining a barium source containing a wiper template at 1100 °C for 3 h. The as-fabricated 3D BT/PVDF composites with 21.1 wt% content of 3D BT (3DBT–2) exhibited the best comprehensive dielectric and energy storage performances. An enhanced dielectric constant of 25.3 at 100 Hz, which was 2.8 times higher than that of pure PVDF and 1.4 times superior to the conventional nano–BT/PVDF 25 wt% system, was achieved in addition with a low dielectric loss of 0.057 and a moderate dielectric breakdown strength of 73.8 kV·mm−1. In addition, the composite of 3DBT–2 exhibited the highest discharge energy density of 1.6 × 10−3 J·cm−3 under 3 kV·mm−1, which was nearly 4.5 times higher than that of neat PVDF.  相似文献   

20.
Local distortions in perovskites can be induced by cation displacements and/or by the tilting and rotating of cation–anion octahedra. Both phenomena have been subject to intense investigations over many years. However, there are still controversies in the results obtained from experimental techniques that are sensitive to long-range order (X-ray, neutron, or electron diffraction) and those sensitive to short-range order (X-ray absorption spectroscopy). In this study, we probed the details of the local environment in AMoO3 perovskites (A = Ca, Sr, Ba) using extended X-ray absorption fine structure (EXAFS) in a wide temperature range (10–300 K). An advanced analysis of the EXAFS spectra within the multiple-scattering formalism using the reverse Monte Carlo method enhanced by an evolutionary algorithm allowed us (i) to extract detailed information on metal–oxygen and metal–metal radial distribution functions, and metal–oxygen–metal and oxygen–metal–oxygen bond angle distribution functions, and (ii) to perform polyhedral analysis. The obtained results demonstrate the strong sensitivity of the EXAFS spectra to the tilting of [MoO6] octahedra induced by the differences in the sizes of alkaline earth metal cations (Ca2+, Sr2+, and Ba2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号