首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Owing to recent advances in immunotherapies, the overall survival of patients with skin cutaneous melanoma (SKCM) has increased; however, the 5‐year survival rate of metastatic patients remains poor. Skin cutaneous melanoma—upregulated genes were screened via analysis of differentially expressed genes (GSE3189 and GSE46517), and metastasis‐related oncogenes were identified via weighted gene coexpression network analysis of the GSE46517 dataset. As confirmed by the Tumor Immune Estimation Resource, we found highly expressed centromere protein F (CENPF) in SKCM and its metastases. Immunostaining of human melanoma tissues demonstrated high CENPF expression. According to the Kaplan‐Meier survival curve log‐rank test, receiver‐operating characteristic curve, and univariate and multivariate analyses, the Cancer Genome Atlas (TCGA) database suggested CENPF be a typical independent predictor of SKCM. The CIBERSORT algorithm classified the types of the immune cells from GSE46517 and showed higher proportion of CD4+ memory‐activated T cells in metastatic melanoma. Single‐sample gene set enrichment analysis of TCGA data confirmed the correlation between CENPF and activated CD4+ T cells. Centromere protein F was positively correlated with tumor mutational burden and CD4+ memory T cell markers (interleukin [IL]‐23A, CD28, and CD62L), negatively associated with memory T cell maintenance factors (IL‐7 and IL‐15) by correlation analysis. Moreover, immunofluorescence showed high coexpression of CENPF and IL23A, CD4 in melanoma. Upregulated CENPF might lead to premature depletion of CD4+ memory T cells and immunosuppression. Nomogram indicated CENPF clinical predictive value for 1‐, 3‐, 5‐, and 7‐year melanoma overall survival. Therefore, CENPF plays a vital role in the progression and metastasis of melanoma and can be an effective therapeutic target.  相似文献   

2.
3.
CEBPA‐IGH, a fusion gene of the immunoglobulin heavy‐chain locus (IGH) and the CCAAT enhancer‐binding protein α (C/EBPα) gene, is recurrently found in B‐ALL cases and causes aberrant expression of C/EBPα, a master regulator of granulocyte differentiation, in B cells. Forced expression of C/EBPα in B cells was reported to cause loss of B‐cell identity due to the inhibition of Pax5, a master regulator of B‐cell differentiation; however, it is not known whether the same mechanism is applicable for B‐ALL development by CEBPA‐IGH. It is known that a full‐length isoform of C/EBPα, p42, promotes myeloid differentiation, whereas its N‐terminal truncated isoform, p30, inhibits myeloid differentiation through the inhibition of p42; however, the differential role between p42 and p30 in ALL development has not been clarified. In the present study, we examined the effect of the expression of p42 and p30 in B cells by performing RNA‐seq of mRNA from LCL stably transfected with p42 or p30. Unexpectedly, suppression of PAX5 target genes was barely observed. Instead, both isoforms suppressed the target genes of MEF2 family members (MEF2s), other regulators of B‐cell differentiation. Similarly, MEF2s target genes rather than PAX5 target genes were suppressed in CEBP‐IGH‐positive ALL (n = 8) compared with other B‐ALL (n = 315). Furthermore, binding of both isoforms to MEF2s target genes and the reduction of surrounding histone acetylation were observed in ChIP‐qPCR. Our data suggest that the inhibition of MEF2s by C/EBPα plays a role in the development of CEBPA‐IGH‐positive ALL and that both isoforms work co‐operatively to achieve it.  相似文献   

4.
《Molecular oncology》2022,16(16):2899
B‐cell acute lymphoblastic leukemia (B‐ALL) is the commonest childhood cancer. High hyperdiploidy (HHD) identifies the most frequent cytogenetic subgroup in childhood B‐ALL. Although hyperdiploidy represents an important prognostic factor in childhood B‐ALL, the specific chromosome gains with prognostic value in HHD‐B‐ALL remain controversial, and the current knowledge about the hierarchy of chromosome gains, clonal heterogeneity and chromosomal instability in HHD‐B‐ALL remains very limited. We applied automated sequential‐iFISH coupled with single‐cell computational modeling to identify the specific chromosomal gains of the eight typically gained chromosomes in a large cohort of 72 primary diagnostic (DX, n = 62) and matched relapse (REL, n = 10) samples from HHD‐B‐ALL patients with either favorable or unfavorable clinical outcome in order to characterize the clonal heterogeneity, specific chromosome gains and clonal evolution. Our data show a high degree of clonal heterogeneity and a hierarchical order of chromosome gains in DX samples of HHD‐B‐ALL. The rates of specific chromosome gains and clonal heterogeneity found in DX samples differ between HHD‐B‐ALL patients with favorable or unfavorable clinical outcome. In fact, our comprehensive analyses at DX using a computationally defined risk predictor revealed low levels of trisomies +18+10 and low levels of clonal heterogeneity as robust relapse risk factors in minimal residual disease (MRD)‐negative childhood HHD‐B‐ALL patients: relapse‐free survival beyond 5 years: 22.1% versus 87.9%, P < 0.0001 and 33.3% versus 80%, P < 0.0001, respectively. Moreover, longitudinal analysis of matched DX‐REL HHD‐B‐ALL samples revealed distinct patterns of clonal evolution at relapse. Our study offers a reliable prognostic sub‐stratification of pediatric MRD‐negative HHD‐B‐ALL patients.  相似文献   

5.
The low sensitivity of radiotherapy is the main cause of tumor tolerance against ionizing radiation (IR). However, the molecular mechanisms by which radiosensitivity is controlled remain elusive. Here, we observed that high expression of pellino E3 ubiquitin protein ligase 1 (PELI1) was correlated with improved prognosis in human esophageal squamous cell carcinoma stage III patients that received adjuvant radiotherapy. Moreover, we found PELI1‐mediated IR‐induced tumor cell apoptosis in vivo and in vitro. Mechanistically, PELI1 mediated the lysine 48 (Lys48)–linked polyubiquitination and degradation of NF‐κB–inducing kinase (NIK; also known as MAP3K14), the master kinase of the noncanonical NF‐κB pathway, thereby inhibiting IR‐induced activation of the noncanonical NF‐κB signaling pathway during radiotherapy. As a consequence, PELI1 inhibited the noncanonical NF‐κB–induced expression of the anti‐apoptotic gene BCL2 like 1 (Bclxl; also known as BCL2L1), leading to an enhancement of the IR‐induced apoptosis signaling pathway and ultimately promoting IR‐induced apoptosis in tumor cells. Therefore, Bclxl or NIK knockdown abolished the apoptosis‐resistant effect in PELI1‐knockdown tumor cells after radiotherapy. These findings establish PELI1 as a critical tumor intrinsic regulator in controlling the sensitivity of tumor cells to radiotherapy through modulating IR‐induced noncanonical NF‐κB expression.  相似文献   

6.
7.
Positron emission tomography is a useful technique for diagnosing lymph node (LN) metastasis. This study aimed to elucidate the association between fluorodeoxyglucose accumulation and the microenvironment in metastatic LNs in lung adenocarcinoma. We retrospectively analyzed 62 patients with surgically resected pathological N2 lung adenocarcinoma who underwent preoperative PET. The maximum standardized uptake value (SUVmax) in the metastatic LNs was measured. Lymph node specimens were immunohistochemically analyzed for CD8+, FoxP3+, and CD79a+ lymphocytes, CD204+ tumor‐associated macrophages (TAMs), and alpha‐smooth muscle actin‐positive cancer‐associated fibroblasts (αSMA+ CAFs). We compared the clinicopathologic and immunohistochemical characteristics between two groups with high and low LN SUVmax. Using novel 3D hybrid spheroid models, we investigated the change in invasiveness of cancer cells in the presence of CAFs. In the multivariate analyses, LN SUVmax was an independent prognostic factor. The overall survival in the LN SUVmax high group was significantly worse than in the low group (P = .034). In the LN SUVmax high group, metastatic cancer cell invasion of extranodal tissue was more frequent (P = .005) and the number of CD204+ TAMs and αSMA+ CAFs in metastatic LNs was significantly higher than in the low group (P < .001 and P = .002, respectively). Hybrid spheroid models revealed that cancer cells coexisting with CAFs were more invasive than those without CAFs. Our results indicated a strong association between LN SUVmax and poor prognosis in patients with N2 lung adenocarcinoma. Moreover, LN SUVmax was suggested to be associated with the presence of tumor‐promoting stromal cells in metastatic LNs.  相似文献   

8.
It has been reported that certain microRNAs (miRNA) are associated with the pathogenesis of lymphoma. We have previously demonstrated that histone deacetylase inhibitors restore tumor‐suppressive miRNAs, such as miR‐16, miR‐29, miR‐150, and miR‐26, in advanced cutaneous T‐cell lymphoma (CTCL). Among these, the function of miR‐26 remains unclear. In this study, we aimed to reveal the function of miR‐26 in CTCL oncogenesis. First, we confirmed that the miR‐26 family was markedly dysregulated in CTCL cell lines and primary samples. In vivo analysis using miR‐26a‐transduced CTCL cells injected into immunodeficient NOG mice demonstrated the significant prolonged survival of the mice, suggesting that the miRNA had a tumor‐suppressive function. We performed gene expression assays and identified 12 candidate miR‐26 targets, namely RGS13, FAM71F1, OAF, SNX21, CDH2, PTPLB, IL22, DNAJB5, CASZ1, CACNA1C, MYH10, and CNR1. Among these, IL22 was the most likely candidate target because the IL‐22–STAT3–CCL20–CCR6 cascade is associated with tumor invasion and metastasis of advanced CTCL. In vitro analysis of IL22 and IL22RA knockdown and miR‐26 transduction demonstrated inhibited CTCL cell migration. In particular, IL22 knockdown induced cell apoptosis. Finally, we conducted in vivo inoculation analysis of mice injected with shIL22‐transfected CTCL cells, and found no tumor invasion or metastasis in the inoculated mice, although the control mice showed multiple tumor invasions and metastases. These results, along with our previous data, demonstrated that miR‐26 is a tumor suppressor that is associated with tumor invasion and the metastasis of advanced CTCL by regulating the IL‐22–STAT3–CCL20 cascade. Therefore, a IL‐22‐targeting therapy could be a novel therapeutic strategy for advanced CTCL.  相似文献   

9.
Clonal hematopoiesis of indeterminate potential (CHIP) is an age‐associated phenomenon characterized by clonal expansion of blood cells harboring somatic mutations in hematopoietic genes, including DNMT3A, TET2, and ASXL1. Clinical evidence suggests that CHIP is highly prevalent and associated with poor prognosis in solid‐tumor patients. However, whether blood cells with CHIP mutations play a causal role in promoting the development of solid tumors remained unclear. Using conditional knock‐in mice that express CHIP‐associated mutant Asxl1 (Asxl1‐MT), we showed that expression of Asxl1‐MT in T cells, but not in myeloid cells, promoted solid‐tumor progression in syngeneic transplantation models. We also demonstrated that Asxl1‐MT–expressing blood cells accelerated the development of spontaneous mammary tumors induced by MMTV‐PyMT. Intratumor analysis of the mammary tumors revealed the reduced T‐cell infiltration at tumor sites and programmed death receptor‐1 (PD‐1) upregulation in CD8+ T cells in MMTV‐PyMT/Asxl1‐MT mice. In addition, we found that Asxl1‐MT induced T‐cell dysregulation, including aberrant intrathymic T‐cell development, decreased CD4/CD8 ratio, and naïve‐memory imbalance in peripheral T cells. These results indicate that Asxl1‐MT perturbs T‐cell development and function, which contributes to creating a protumor microenvironment for solid tumors. Thus, our findings raise the possibility that ASXL1‐mutated blood cells exacerbate solid‐tumor progression in ASXL1‐CHIP carriers.  相似文献   

10.
Signal regulatory protein alpha (SIRPα) is a type I transmembrane protein that inhibits macrophage phagocytosis of tumor cells upon interaction with CD47, and the CD47‐SIRPα pathway acts as an immune checkpoint factor in cancers. This study aims to clarify the clinical significance of SIRPα expression in esophageal squamous cell carcinoma (ESCC). First, we assessed SIRPα expression using RNA sequencing data of 95 ESCC tissues from The Cancer Genome Atlas (TCGA) and immunohistochemical analytic data from our cohort of 131 patients with ESCC. Next, we investigated the correlation of SIRPα expression with clinicopathological factors, patient survival, infiltration of tumor immune cells, and expression of programmed cell death‐ligand 1 (PD‐L1). Overall survival was significantly poorer with high SIRPα expression than with low expression in both TCGA and our patient cohort (P < .001 and P = .027, respectively). High SIRPα expression was associated with greater depth of tumor invasion (P = .0017). Expression of SIRPα was also significantly correlated with the tumor infiltration of M1 macrophages, M2 macrophages, CD8+ T cells, and PD‐L1 expression (P < .001, P < .001, P = .03, and P < .001, respectively). Moreover, patients with SIRPα/PD‐L1 coexpression tended to have a worse prognosis than patients with expression of either protein alone or neither. Taken together, SIRPα indicates poor prognosis in ESCC, possibly through inhibiting macrophage phagocytosis of tumor cells and inducing suppression of antitumor immunity. Signal regulatory protein alpha should be considered as a potential therapeutic target in ESCC, especially if combined with PD‐1‐PD‐L1 blockade.  相似文献   

11.
Diffuse large B‐cell lymphoma (DLBCL) is the most common lymphoid malignancy with a high relapse rate of up to 40%. The prognosis of the disease needs improvement and requires a understanding of its molecular mechanism. We investigated the mechanisms of DLBCL development and its sensitivity to chemotherapy by focusing on circPCBP2/miR‐33a/b/PD‐L1 axis. Human DLBCL specimens and cultured cancer cell lines were used. Features of circPCBP2 were systematically characterized through Sanger sequencing, Actinomycin D, RNase R treatment, and FISH. The expression levels of circPCBP2, miR‐33a/b, PD‐L1, stemness‐related markers, ERK/AKT and JAK2/STAT3 signaling were measured using qRT‐PCR, western blotting, and immunohistochemistry. Stemness of DLBCL cells was assessed through spheroid formation assay and flow cytometry. Cell viability and apoptosis upon cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) treatment were determined using MTT assay and flow cytometry, respectively. Interactions of circPCBP2‐miR‐33a/b and miR‐33a/b‐PD‐L1 were validated using dual luciferase activity assay and RNA‐RIP. Nude mouse xenograft model was used to assess the function of circPCBP2 in DLBCL growth in vivo. circPCBP2 was upregulated in human DLBCL specimens and cultured DLBCL cells while miR‐33a/b was reduced. Knockdown of circPCBP2 or miR‐33a/b overexpression inhibited the stemness of DLBCL cells and promoted cancer cell apoptosis upon CHOP treatment. circPCBP2 directly bound with miR‐33a/b while miR‐33a/b targeted PD‐L1 3’‐UTR. circPCBP2 disinhibited PD‐L1 signaling via sponging miR‐33a/b. miR‐33a/b inhibitor and activating PD‐L1 reversed the effects of circPCBP2 knockdown and miR‐33a/b mimics, respectively. circPBCP2 knockdown restrained DLBCL growth in vivo and potentiated the anti‐tumor effects of CHOP. In conclusion, circPCBP2 enhances DLBCL cell stemness but suppresses its sensitivity to CHOP via sponging miR‐33a/b to disinhibit PD‐L1 expression. circPCBP2/miR‐33a/b/PD‐L1 axis could serve as a diagnosis marker or therapeutic target for DLBCL.  相似文献   

12.
To investigate the effect of Apatinib (an inhibitor targeting VEGFR‐2) enhances chemosensitivity of ABT‐199 on diffuse large B‐cell lymphoma (DLBCL). Viability assay and flow cytometric assay for determining apoptosis, cell cycle, mitochondrial membrane potential, reactive oxygen species and immunoblotting were used to explore the combination effect in DLBCL cell lines, DLBCL patient samples, and DLBCL mouse models. RNA sequencing assay helped identify mechanisms of ABT‐199 plus Apatinib. The results show that ABT‐199 combined with Apatinib inhibited cell proliferation, reduced colony‐forming capacity, and induced apoptosis and cell cycle arrest in DLBCL cells. Mechanistically, the combination therapy inhibited tumour cell growth and promoted tumour cell death by regulating EDN1 and MAPK‐related pathways and activating the intrinsic apoptotic pathway. The effect of the combination therapy was also validated in primary DLBCL blasts and xenograft mouse models. Our findings indicate that Apatinib enhances the chemosensitivity of ABT‐199 and might serve as a promising therapeutic strategy for DLBCL.  相似文献   

13.
目的 探讨肿瘤相关巨噬细胞(tumor?associated macrophages,TAMs)与弥漫大B细胞淋巴瘤(diffuse large B?cell lymphoma,DLBCL)预后的关系.方法 收集2015年7月至2018年5月广西医科大学附属肿瘤医院收治的95例DLBCL患者的临床资料,采用免疫组化法检...  相似文献   

14.
15.
Despite impressive and durable responses, nonsmall cell lung cancer (NSCLC) patients treated with anaplastic lymphoma kinase (ALK) inhibitors (ALK‐Is) ultimately progress due to development of resistance. Here, we have evaluated the clinical utility of circulating tumor DNA (ctDNA) profiling by next‐generation sequencing (NGS) upon disease progression. We collected 26 plasma and two cerebrospinal fluid samples from 24 advanced ALK‐positive NSCLC patients at disease progression to an ALK‐I. These samples were analyzed by NGS and digital PCR. A tool to retrieve variants at the ALK locus was developed (VALK tool). We identified at least one resistance mutation in the ALK locus in ten (38.5%) plasma samples; the G1269A and G1202R mutations were the most prevalent among patients progressing to first‐ and second‐generation ALK‐Is, respectively. Overall, 61 somatic mutations were detected in 14 genes: TP53, ALK, PIK3CA, SMAD4, MAP2K1 (MEK1), FGFR2, FGFR3, BRAF, EGFR, IDH2, MYC, MET, CCND3, and CCND1. Specifically, a deletion in exon 19 in EGFR, a non‐V600 BRAF mutation (G466V), and the F129L mutation in MAP2K1 were identified in four patients who showed no objective survival benefit from ALK‐Is. Potential ALK‐I‐resistance mutations were also found in PIK3CA and IDH2. Finally, a c‐MYC gain, along with a loss of CCND1 and FGFR3, was detected in a patient progressing on a first‐line treatment with crizotinib. We conclude that NGS analysis of liquid biopsies upon disease progression identified different putative ALK‐I‐resistance mutations in most cases and could be a valuable approach for therapy decision making.  相似文献   

16.

Background:

We investigated the prognostic role of tumour-associated macrophages (TAMs) in patients with head and neck squamous cell carcinoma (HNSCC) treated with definitive chemoradiotherapy (CRT).

Methods:

The expression of CD68+, CD163+ and CD11b+ cells was assessed using immunohistochemistry in n=106 pre-treatment tumour biopsy samples and was correlated with clinicopathological characteristics, including T-stage, N-stage, grading, tumour localisation, age and sex as well as local failure-free survival (LFFS), distant metastases-free survival (DMFS), progression-free (PFS), and overall survival (OS). Finally, TAMs expression and vessel density (CD31) were examined in n=12 available early local recurrence samples and compared with their matched primary tumours . The diagnostic images and radiotherapy plans of these 12 patients were also analysed. All local recurrences occurred in the high radiation dose region (⩾70 Gy).

Results:

With a median follow-up of 40 months, OS at 2 years was 60.5%. High CD163 expression in primary tumours was associated with decreased OS (P=0.010), PFS (P=0.033), LFFS (P=0.036) and DMFS (P=0.038) in multivariate analysis. CD163 demonstrated a strong prognostic value only in human papillomavirus (p16INK4)-negative patients. Early local recurrence specimens demonstrated a significantly increased infiltration of CD11b+ myeloid cells (P=0.0097) but decreased CD31-positive vessel density (P=0.0004) compared with their matched primary samples.

Conclusions:

Altogether, baseline CD163 expression predicts for an unfavourable clinical outcome in HNSCC after definitive CRT. Early local recurrences showed increased infiltration by CD11b+ cells. These data provide important insight on the role of TAMs in mediating response to CRT in patients with HNSCC.  相似文献   

17.
18.
Immunotherapy with immune‐checkpoint therapy has recently been used to treat oral squamous cell carcinomas (OSCCs). However, improvements in current immunotherapy are expected because response rates are limited. Transforming growth factor‐β (TGF‐β) creates an immunosuppressive tumor microenvironment (TME) by inducing the production of regulatory T‐cells (Tregs) and cancer‐associated fibroblasts and inhibiting the function of cytotoxic T‐lymphocytes (CTLs) and natural killer cells. TGF‐β may be an important target in the development of novel cancer immunotherapies. In this study, we investigated the suppressive effect of TGF‐β on CTL function in vitro using OSCC cell lines and their specific CTLs. Moreover, TGFB1 mRNA expression and T‐cell infiltration in 25 OSCC tissues were examined by in situ hybridization and multifluorescence immunohistochemistry. We found that TGF‐β suppressed the function of antigen‐specific CTLs in the priming and effector phases in vitro. Additionally, TGF‐β inhibitor effectively restored the CTL function, and TGFB1 mRNA was primarily expressed in the tumor invasive front. Interestingly, we found a significant negative correlation between TGFB1 mRNA expression and the CD8+ T‐cell/Treg ratio and between TGFB1 mRNA expression and the Ki‐67 expression in CD8+ T‐cells, indicating that TGF‐β also suppressed the function of CTLs in situ. Our findings suggest that the regulation of TGF‐β function restores the immunosuppressive TME to active status and is important for developing new immunotherapeutic strategies, such as a combination of immune‐checkpoint inhibitors and TGF‐β inhibitors, for OSCCs.  相似文献   

19.
Inflammatory and immune cells in the tumor microenvironment are reported to be associated with tumor progression in several cancers. In total, 225 patients who underwent initial and curative hepatectomy for hepatocellular carcinoma (HCC) from 2004 to 2013 were enrolled in this study. Tumor‐associated neutrophils (TANs), M2 macrophages (TAMs; tumor‐associated macrophages), CD8+ T cells, and regulatory T cells (Tregs) were evaluated by immunohistochemistry (IHC), and their relationships with patient clinicopathological characteristics and prognosis were evaluated. IHC was performed focusing on TANs first. We could not find a relationship between intratumoral and peritumoral TANs and clinicopathological features except for the fibrous capsule and infiltration of tumors into capsule. Next, TAMs, CD8+ cells and Tregs were evaluated by IHC. At the peritumoral area, TANs and TAMs (r = 0.36, p = 0.001) or Tregs (r = 0.16, p = 0.008) showed a positive correlation, whereas TANs and CD8+ cells showed a negative correlation (r = −0.16, p = 0.02). As for survival outcomes, at the peritumoral area, high TANs (p = 0.0398), low CD8+ cells (p = 0.0275), and high TAMs (p = 0.001) were significantly associated with worse overall survival (OS). In addition, high TANs (p = 0.010), and high TAMs (p = 0.00125) were significantly associated with worse disease‐free survival (DFS). Finally, we established a risk signature model by combining the expression patterns of these cells. The high‐risk signature group had significantly worse OS (p = 0.0277) and DFS (p = 0.0219) compared with those in the low‐risk signature group. Our risk signature based on immune cells at the peritumoral area of the HCC can predict patient prognosis of HCC after curative hepatectomy.  相似文献   

20.
To identify liquid biomarkers that predict clinical outcomes of epidermal growth factor receptor‐tyrosine kinase inhibitor (EGFR‐TKI), we enrolled patients with EGFR gene mutation‐positive non–small‐cell lung cancer who were intended to receive gefitinib treatment. Using plasma samples obtained prior to gefitinib treatment from 12 enrolled patients, we performed comprehensive proteomic analysis of plasma exosomes to explore proteins correlating with tumor reduction rate (TRR), progression‐free survival (PFS), or overall survival (OS). Of the detected 1769 proteins, 119, 130, or 119 proteins demonstrated a strong correlation (|r| > 0.5) with TRR, PFS, or OS, respectively. Interestingly, 34 (29%), 41 (32%), or 27 (23%) of them, respectively, were functionally involved in the regulation of the immune response. CD8α chain was consistently listed as a molecule positively correlated with PFS and OS, suggesting that the long‐lasting effects of gefitinib may be due to the antitumor effects of CD8+ T cells, as well as the induction of immunogenic apoptosis of tumor cells by blocking the EGFR signaling pathway. Notably, Doking Protein 3 (DOK3), a molecule involved in B‐cell receptor signaling, and some immunoglobulin and complement molecules exhibited a clear correlation with PFS longevity of gefitinib treatment. Indeed, the strong expression of DOK3 in B cells was confirmed within tertiary lymphoid structures of lung cancer tissues derived from patients with long PFS. These findings suggest that the patients with active B‐cell and T‐cell immunity as a host immunological feature are more likely to benefit from gefitinib therapy. Circulating exosomal DOK3 has the potential as a predictive marker of response to gefitinib indicating this immunological feature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号