首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A key factor in effective protection against airborne hazards, i.e., biological and nonbiological aerosols, vapors, and gases, is a good face fit of respiratory protective devices (RPDs). Equally important is the comfort of use, which may encourage or discourage users from donning RPDs. The objective of the work was to develop viscoelastic polyurethane foams for use in RPD seals. The obtained foams were characterized using scanning electron microscopy, infrared spectroscopy, thermogravimetry, and differential scanning calorimetry. Measurements also involved gel fraction, apparent density, air permeability, elastic recovery time, compression set, rebound resilience, and sweat uptake. The results were discussed in the context of modifications to the foam formulation: the isocyanate index (INCO) in the range of 0.6–0.9 and the blowing agent content in the range of 1.2–3.0 php. FTIR analysis revealed a higher level of urea groups with increasing water content in the formulation. Higher INCO and water content levels also led to lower onset temperatures of thermal degradation and higher glass-transition temperatures of the soft phase. A decrease in apparent density and an increase in mean pore sizes of the foams with increasing INCO and water content levels was observed. Functional parameters (air permeability, elastic recovery time, compression set, rebound resilience, and sweat uptake) were also found to be satisfactory at lower INCO and water content levels.  相似文献   

2.
One of the essential factors in prostheses is their fitting. To assemble a prosthesis with the residual limb, so-called liners are used. Liners used currently are criticized by users for their lack of comfort, causing excessive sweating and skin irritation. The objective of the work was to develop viscoelastic polyurethane foams for use in limb prostheses. As part of the work, foams were produced with different isocyanate indexes (0.6–0.9) and water content (1, 2 and 3 php). The produced foams were characterized by scanning electron microscopy, computer microtomography, infrared spectroscopy, thermogravimetry and differential scanning calorimetry. Measurements also included apparent density, recovery time, rebound elasticity, permanent deformation, compressive stress value and sweat absorption. The results were discussed in the context of modifying the foam recipe. The performance properties of the foams, such as recovery time, hardness, resilience and sweat absorption, indicate that foams that will be suitable for prosthetic applications are foams with a water content of 2 php produced with an isocyanate index of 0.8 and 0.9.  相似文献   

3.
Taking into account the circular economy guidelines and results of life cycle analyses of various materials, it was proposed to use a blackcurrant pomace filler in the production process of viscoelastic polyurethane (PUR) foams intended for application as mattresses, pillows, or elements for orthopedics. Open-cell viscoelastic PUR foams containing 10–60 per hundred polyols (php) blackcurrant pomace were prepared. It was found that after introducing the filler to the PUR foam formulation, the speed of the first stage of the foaming process significantly decreases, the maximum temperature achieved during the synthesis drops (by 30 °C for the foam containing 40 php of filler compared to unfilled foam), and the maximum pressure achieved during the synthesis of foam containing 20 php is reduced by approximately 57% compared to the foam without filler. The growth time of the foams increases with increasing the amount of introduced filler; for the foam containing 60 php, the time is extended even by about 24%. The effect of the filler on the physical, morphological, mechanical, and functional performances of PUR foam composites has been analyzed. The use of 60 php as the filler reduced the hardness of the foams by approximately 30% and increased their comfort factor from 3 to 5.  相似文献   

4.
In this paper, novel rigid polyurethane foams modified with Baltic Sea biomass were compared with traditional petro-based polyurethane foam as reference sample. A special attention was focused on complex studies of microstructure, which was visualized and measured in 3D with high-resolution microcomputed tomography (microCT) and, as commonly applied for this purpose, scanning electron microscopy (SEM). The impact of pore volume, area, shape and orientation on appearance density and thermal insulation properties of polyurethane foams was determined. The results presented in the paper confirm that microcomputed tomography is a useful tool for relatively quick estimation of polyurethane foams’ microstructure, what is crucial especially in the case of thermal insulation materials.  相似文献   

5.
The reported study concerns the introduction of renewable raw materials into the formulation of rigid polyurethane foams in the quest for the sustainable development of polymer composites. In this study, rigid polyurethane foam composites were prepared using 75 wt.% of rapeseed oil-based polyol and 15 parts per hundred parts of polyol (php) of natural fillers such as chokeberry pomace, raspberry seeds, as well as hazelnut and walnut shells. The influence of the used raw materials on the foaming process, structure, and properties of foams was investigated using a FOAMAT analyzer and a wide selection of characterization techniques. The introduction of renewable raw materials limited reactivity of the system, which reduced maximum temperature of the foaming process. Moreover, foams prepared using renewable raw materials were characterized by a more regular cell structure, a higher share of closed cells, lower apparent density, lower compressive strength and glass transition temperature, low friability (<2%), low water absorption (<1%), high dimensional stability (<±0.5%) and increased thermal stability. The proper selection and preparation of the renewable raw materials and the rational development of the polyurethane recipe composition allow for the preparation of environmentally-friendly foam products with beneficial application properties considering the demands of the circular economy in the synthesis of rigid foams.  相似文献   

6.
This paper presents results of research on the preparation of biochar-modified rigid polyurethane foams that could be successfully used as thermal insulation materials. The biochar was introduced into polyurethane systems in an amount of up to 20 wt.%. As a result, foam cells became elongated in the direction of foam growth and their cross-sectional areas decreased. The filler-containing systems exhibited a reduction in their apparent densities of up to 20% compared to the unfilled system while maintaining a thermal conductivity of 25 mW/m·K. Biochar in rigid polyurethane foams improved their dimensional and thermal stability.  相似文献   

7.
The present paper illustrates a comparison of open-cell aluminum foams. The foams were fabricated by two different methods: spark plasma sintering and replication on a polyurethane template. The influence of pressure, temperature, and diameter of space holding material on foam obtained by the spark plasma sintering method was investigated. Additionally, the aluminum powder content in slurry and atmosphere during thermal processing of foam prepared by the replication technique were studied. The morphology and structure of obtained samples were analyzed by scanning electron microscopy and X-ray diffraction analysis. Supplementarily, mechanical properties and electrical conductivity were studied. The porosity of obtained samples was 83% for the SPS sample and 85% for the replication sample. The results of the studies carried out gave us an understanding that the SPS method is more promising for using the obtained foams as cathode current collectors in lithium-ion batteries due to excessive aluminum oxidation during sintering in the furnace.  相似文献   

8.
We investigated the effect of the type and amount of expandable graphite (EG) and blackcurrant pomace (BCP) on the flammability, thermal stability, mechanical properties, physical, and chemical structure of viscoelastic polyurethane foams (VEF). For this purpose, the polyurethane foams containing EG, BCP, and EG with BCP were obtained. The content of EG varied in the range of 3–15 per hundred polyols (php), while the BCP content was 30 php. Based on the obtained results, it was found that the additional introduction of BCPs into EG-containing composites allows for an additive effect in improving the functional properties of viscoelastic polyurethane foams. As a result, the composite containing 30 php of BCP and 15 php of EG with the largest particle size and expanded volume shows the largest change in the studied parameters (hardness (H) = 2.65 kPa (+16.2%), limiting oxygen index (LOI) = 26% (+44.4%), and peak heat release rate (pHRR) = 15.5 kW/m2 (−87.4%)). In addition, this composite was characterized by the highest char yield (m600 = 17.9% (+44.1%)). In turn, the change in mechanical properties is related to a change in the physical and chemical structure of the foams as indicated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis.  相似文献   

9.
There is currently a growing demand for more effective thermal insulation materials with the best performance properties. This research paper presents the investigation results on the influence of two types of filler on the structure and properties of rigid polyurethane foam composites. Fly ash as a product of coal combustion in power plants and microspheres of 5, 10, 15, and 20 wt.%, were used as rigid polyurethane foams modifiers. The results of thermal analysis, mechanical properties testing, and cellular structure investigation performed for polyurethane composites show that the addition of fly ash, up to 10 wt.%, significantly improved the majority of the tested parameters. The use of up to 20 wt.% of microspheres improves the mechanical and thermal properties and thermal stability of rigid polyurethane foams.  相似文献   

10.
11.
The aim of the study was to assess the possibility of using polyurethane foams (PUF) as a filling of a foam-sand filter to directly treat domestic sewage with increased content of ammonium nitrogen and low organic carbon to nitrogen ratio (C/N). The study compared performance of two types of flexible foams: new, cylinder-shaped material (Novel Foams, NF) and waste, scrap foams (Waste Foams, WF). The foams serving as a filling of two segments of a foam-sand filter were assessed for their hydrophobic and physical properties and were tested for their cell structure, i.e., cell diameter, cell size distribution, porosity, and specific surface area. The study accounted also for selected application-related properties, such as hydrophobicity, water absorption, apparent density, dimensional stability, amount of adsorbed biomass, and the possibility of regeneration. Cell morphology was compared in reference foams, foams after 14 months of the filter operation, and regenerated foams. The experimental outcomes indicated WF as an innovative type of biomass carrier for treating domestic sewage with low C/N ratio. SEM images showed that immobilization of microorganisms in NF and WF matrices involved the formation of multi-cellular structures attached to the inner surface of the polyurethane and attachment of single bacterial cells to the foam surface. The amount of adsorbed biomass confirmed that the foam-sand filter made up of two upper layers of waste foams (with diameters and pore content of 0.50–1.53 mm and 53.0–63.5% respectively) provided highly favorable conditions for the development of active microorganisms.  相似文献   

12.
Rigid low-density plastic foams subjected to mechanical loads typically exhibit a nonlinear deformation stage preceding failure. At moderate strains, when the geometrical nonlinearity is negligible, such foam response is predominantly caused by the nonlinearity of deformation of their principal structural elements—foam struts. Orientational averaging of stresses in foam struts enables estimation of the stresses taken up by foams at a given applied strain. Based on a structural model of highly porous anisotropic cellular plastics filled with clay nanoplatelets and the orientational averaging, a method for calculating their nonlinear deformation is derived in terms of structural parameters of the porous material, the mechanical properties of the monolithic polymer, and filler particles and their spatial orientation. The method is applied to predicting the tensile stress-strain diagrams of organoclay-filled low-density rigid polyurethane foams, and reasonable agreement with experimental data is demonstrated.  相似文献   

13.
The suitability of a new type of polyurethane-based composite carbon foam for several possible usages is evaluated and reported. A comparison of the properties of the as-prepared carbon foams was performed with widely available commercial biomass-derived activated carbon. Carbon foams were synthesized from polyurethane foams with different graphite contents through one-step activation using CO2. In this work, a carbon catalyst was synthesized with a moderately active surface (SBET = 554 m2/g), a thermal conductivity of 0.09 W/mK, and a minimum metal ion content of 0.2 wt%, which can be recommended for phosgene production. The composite carbon foams exhibited better thermal stability, as there is a very little weight loss at temperatures below 500 °C, and weight loss is slower at temperatures above 500 °C (phosgene synthesis: 550–700 °C). Owing to the good surface and thermal properties and the negligible metallic impurities, composite carbon foam produced from polyurethane foams are the best alternative to the conventional coconut-based activated carbon catalyst used in phosgene gas production.  相似文献   

14.
In the current study, rigid polyurethane foam (PUR) was modified with 10–30 wt.% sunflower press cake (SFP) filler, and its effect on performance characteristics—i.e., rheology, characteristic foaming times, apparent density, thermal conductivity, compressive strength parallel and perpendicular to the foaming directions, tensile strength, and short-term water absorption by partial immersion—was evaluated. Microstructural and statistical analyses were implemented as well. During the study, it was determined that 10–20 wt.% SFP filler showed the greatest positive impact. For instance, the thermal conductivity value improved by 9% and 17%, respectively, while mechanical performance, i.e., compressive strength, increased by 11% and 28% in the perpendicular direction and by 43% and 67% in the parallel direction. Moreover, tensile strength showed 49% and 61% increments, respectively, at 10 wt.% and 20 wt.% SFP filler. Most importantly, SFP filler-modified PUR foams were characterised by two times lower water absorption values and improved microstructures with a reduced average cell size and increased content in closed cells.  相似文献   

15.
Polyurethanes are a very important group of polymers with an extensive range of applications in different branches of industry. In the form of foams, they are mainly used in bedding, furniture, building, construction, and automotive sectors. Due to human safety reasons, these applications require an appropriate level of flame retardance, often required by various law regulations. Nevertheless, without the proper modifications, polyurethane foams are easily ignitable, highly flammable, and generate an enormous amount of smoke during combustion. Therefore, proper modifications or additives should be introduced to reduce their flammability. Except for the most popular phosphorus-, halogen-, or nitrogen-containing flame retardants, promising results were noted for the application of clays. Due to their small particle size and flake-like shape, they induce a “labyrinth effect” inside the foam, resulting in the delay of decomposition onset, reduction of smoke generation, and inhibition of heat, gas, and mass transfer. Moreover, clays can be easily modified with different organic compounds or used along with conventional flame retardants. Such an approach may often result in the synergy effect, which provides the exceptional reduction of foams’ flammability. This paper summarizes the literature reports related to the applications of clays in the reduction of polyurethane foams’ flammability, either by their incorporation as a nanofiller or by preparation of coatings.  相似文献   

16.
Conventional polyurethane foam has non-tunable sound absorption properties. Here, a magneto-induced foam, called magnetorheological (MR) foam, was fabricated with the feature of being able to tune sound absorption properties, primarily from the middle- to higher-frequency ranges. Three different samples of MR foams were fabricated in situ by varying the concentration of Carbonyl Iron Particles (CIPs) (0, 35, and 75 wt.%). The magnetization properties and tunable sound absorption characteristics were evaluated. From the magnetic saturation properties, the results showed very narrow and small coercivity of hysteresis loops relative to the soft magnetic properties of the CIPs. MR foam with 75 wt.% CIPs showed a higher magnetic saturation at 91.350 emu/g compared to MR foam with 35 wt.% CIPs at 63.896 emu/g. For tunable sound absorption testing, the effect of ‘shifting’ to higher frequency was also observed when the magnetic field was applied, which was ~10 Hz for MR foam with 35 wt.% CIPs and ~130 Hz for MR foam with 75 wt.% CIPs. As the latest evolution of semi-active noise control materials, the results from this study are valuable guidance for the advancement of MR-based devices.  相似文献   

17.
The chewing of 22 subjects, with a total of 27 removable partial dentures (RPD) that had been used for more than 6 months, was analyzed by four different methods. The study design was an intraindividual comparison of chewing, with and without the RPDs. Chewing tests were a color mixture of two-colored gums, chewing gum bolus shaping, comminution of Optosil® silicone tablets, and number of chewing strokes to first swallow of an almond. The participants were also asked some standardized questions about their eating, biting, and chewing capacity. There was no significant difference in efficiency as measured by chewing gum color mixing, chewing gum shape, and pulverization of Optosil between chewing with and without the RPDs. Significantly more strokes were needed to swallow an almond without than with the RPD in place. With their RPDs in place, all subjects could chew a sandwich and an apple, and all but one could chew whole meat. The study shows that the chewing process should preferably not be analyzed by one method only.  相似文献   

18.
Hydrophilic, flexible polyurethane (FPU) foams made from Hypol prepolymers are capable of retaining large amounts of water and saline solutions. The addition of different catalysts and surfactant agents to Hypol JM 5008 prepolymer was assayed to obtain a foam with good structural stability and elasticity. The combination of three catalysts, stannous octoate and two amine-based ones (Tegoamin 33 and Tegoamin BDE), and the surfactant Niax silicone L-620LV allowed to synthesize a foam with a homogeneous cell size distribution, exhibiting the highest saline absorption capacity (2.4 g/gram of foam) and almost complete shape recovery, with up to a 20% of remaining deformation. Then, superabsorbent sodium acrylate polymer (PNaA) was added to the FPU foam up to 8 pph. The urine absorption capacity of the foam was increased about 24.8% by incorporating 6 pph of PNaA, absorbing 17.46 g of saline solution per foam gram, without any negative impact on the rest of the foam properties. All these properties make the synthesized foams suitable for corporal fluids absorption applications in which elasticity and low-density are required.  相似文献   

19.
Since rigid polyurethane (PU) foams are one of the most effective thermal insulation materials with widespread application, it is an urgent requirement to improve its fire retardancy and reduce the smoke emission. The current work assessed the fire behavior of PU foam with non-halogen fire retardants system, containing histidine (H) and modified graphene oxide (GOA). For investigated system, three loadings (10, 20, and 30 wt.%) were used. The Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetric analysis, cone calorimetry (CC) and smoke density chamber tests as well as pre- and post-burning morphological evaluation using scanning electron microscope (SEM) were performed. Moreover, TGA combined with FT-IR was conducted to determine the substances, which could be evolved during the thermal decomposition of the PU with fire retardant system. The results indicated a reduction in heat release rate (HRR), maximum average rate of heat emission (MAHRE), the total heat release (THR) as well as the total smoke release (TSR), and maximum specific optical density (Dsmax) compared to the polyurethane with commercial fire retardant, namely ammonium polyphosphate (APP). A significantly improvement, especially in smoke suppression, suggested that HGOA system may be a candidate as a fire retardant to reduce the flammability of PU foams.  相似文献   

20.
Rigid polyurethane foams were obtained using two types of renewable raw materials: bio-polyols and a cellulose filler (ARBOCEL® P 4000 X, JRS Rettenmaier, Rosenberg, Germany). A polyurethane system containing 40 wt.% of rapeseed oil-based polyols was modified with the cellulose filler in amounts of 1, 2, and 3 php (per hundred polyols). The cellulose was incorporated into the polyol premix as filler dispersion in a petrochemical polyol made using calenders. The cellulose filler was examined in terms of the degree of crystallinity using the powder X-ray diffraction PXRD -and the presence of bonds by means of the fourier transform infrared spectroscopy FT-IR. It was found that the addition of the cellulose filler increased the number of cells in the foams in both cross-sections—parallel and perpendicular to the direction of the foam growth—while reducing the sizes of those cells. Additionally, the foams had closed cell contents of more than 90% and initial thermal conductivity coefficients of 24.8 mW/m∙K. The insulation materials were dimensionally stable, especially at temperatures close to 0 °C, which qualifies them for use as insulation at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号