首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reinforced concrete (RC) structures necessitate strengthening for various reasons. These include ageing, deterioration of materials due to environmental effects, trivial initial design and construction, deficiency of maintenance, the advancement of design loads, and functional changes. RC structures strengthening with the carbon fiber reinforced polymer (CFRP) has been used extensively during the last few decades due to their advantages over steel reinforcement. This paper introduces an experimental approach for flexural strengthening of RC beams with Externally-Side Bonded Reinforcement (E-SBR) using CFRP fabrics. The experimental program comprises eight full-scale RC beams tested under a four-point flexural test up to failure. The parameters investigated include the main tensile steel reinforcing ratio and the width of CFRP fabrics. The experimental outcomes show that an increase in the tensile reinforcement ratio and width of the CFRP laminates enhanced the first cracking and ultimate load-bearing capacities of the strengthened beams up to 141 and 174%, respectively, compared to the control beam. The strengthened RC beams exhibited superior energy absorption capacity, stiffness, and ductile response. The comparison of the experimental and predicted values shows that these two are in good agreement.  相似文献   

2.
The combination of superelastic shape memory alloy fibers and ECC materials can form a new SMA fiber reinforced ECC composite material (SMAF-ECC) with good self-centering performance. In order to study the self-centering performance of the new composite material, 6 groups of pre-notch beam specimens were made for three-point bending cyclic loading tests, and the failure phenomenon, hysteresis curve, self-centering effect and influencing factors of the specimens were analyzed. The research results show that when the SMA fibers are effectively anchored in the ECC matrix, the SMA fibers can exert the superelastic properties to provide the ECC beams with recoverying force, and realize the crack self-closure and deflection self-recovery function for the beams, with the minimum residual crack width and deflection is only 0.9 mm and 1.3 mm respectively. Increasing fiber content can cause a small increase in the self-centering ability of the beams. However, only when the fiber diameter is appropriate, better self-centering effect can be achieved, but the difference caused by fiber diameter in the test was only 5%. SMA Fiber end forms have significant influence on self-centering performance. The knotted end beam can get a more than 70% self-centering ratio, while the straight end beams and bended end beams have no self-centering ability. The research results provide important reference for the research and application of this new self-centering materials and their structures.  相似文献   

3.
Through proper arranging of a hybrid combination of longitudinal fiber reinforced polymer (FRP) bars and steel bars in the tensile region of the beam, the advantages of both FRP and steel materials can be sufficiently exploited to enhance the flexural capacity and ductility of a concrete beam. In this paper, a methodology for the flexural strength design of hybrid FRP-steel reinforced concrete (RC) beams is proposed. Firstly, based on the mechanical features of reinforcement and concrete and according to the latest codified provisions of longitudinal reinforcement conditions to ensure ductility level, the design-oriented allowable ranges of reinforcement ratio corresponding to three common flexural failure modes are specified. Subsequently, the calculation approach of nominal flexural strength of hybrid FRP-steel RC beams is established following the fundamental principles of equilibrium and compatibility. In addition to the common moderately-reinforced beams, the proposed general calculation approach is also applicable to lightly-reinforced beams and heavily-reinforced beams, which are widely used but rarely studied. Furthermore, the calculation process is properly simplified and the calculation accuracy is validated by the experimental results of hybrid FRP-steel RC beams in the literature. Finally, with the ductility analysis, a novel strength reduction factor represented by net tensile steel strain and reinforcement ratio is proposed for hybrid FRP-steel RC beams.  相似文献   

4.
Corrosion creates a significant degradation mechanism in reinforced concrete (RC) structures, which would require a high cost of maintenance and repair in affected buildings. However, as the cost of repairing corrosion-damaged structures is high, it is therefore pertinent to develop alternative eco-friendly and sustainable methods. In this study, structural retrofitting of corroded reinforced concrete beams was performed using bamboo fiber laminate. Three reinforced normal weight concrete beams were produced, two of which were exposed to laboratory simulated corrosion medium, and the remaining one sample served as control. Upon completion of the corrosion cycle, one of the two corroded beams was retrofitted externally with a prefabricated bamboo fiber laminate by bonding the laminate to the beam surface with the aid of an epoxy resin. The three beams were subjected to loading on a four-point ultimate testing machine, and the loads with corresponding deflections were recorded through the entire load cycle of the beams. Finally, the mass loss of embedded steel reinforcements was determined to measure the effect of corrosion on the beams and the steel. The result showed that corroded beams strengthened with bamboo laminates increase the bearing capacity. Using a single bamboo laminate in the tensile region of the corroded beam increased the ultimate load capacity of the beam up to 21.1% than the corroded beam without retrofit. It was demonstrated in this study that the use of bamboo fiber polymer for strengthening destressed RC beams is a more sustainable approach than the conventional synthetic fibers.  相似文献   

5.
Shape memory alloys (SMAs) have been widely used in civil engineering applications including active and passive control of structures, sensors and actuators and strengthening of reinforced concrete (RC) structures owing to unique features such as the shape memory effect and pseudo-elasticity. Iron-based shape memory alloys (Fe-SMAs) have become popular in recent years. Use of iron-based SMAs for strengthening RC structures has received attention in the recent decade due to the advantages it presents, that is, no ducts or anchor heads are required, friction losses do not occur and no space is needed for a hydraulic device to exert force. Accordingly, Fe-SMAs embedded in a shotcrete layer have been used for pre-stressing RC beams at Empa. The aim of this study is to present an approach to model and analyze the behavior of RC members strengthened and pre-stressed with Fe-SMA rebars embedded in a shotcrete layer. The lack of research on developing finite element models for studying the behavior of concrete structures strengthened by iron-based shape memory alloys is addressed. Three-dimensional finite element models were developed in the commercial finite element code ABAQUS, using the concrete damaged plasticity model to predict the studied beams’ load–displacement response. The results of the finite element analyses show a considerably good agreement with the experimental data in terms of the beams’ cracking load and ultimate load capacity. The effects of different strengthening parameters, including SMA rebar diameter, steel rebar diameter and pre-stressing force level on the beam behavior, were investigated based on the verified finite element models. The results were compared. The load-displacement response of an 18-m concrete girder strengthened and pre-stressed with iron-based SMA bars was examined by the developed finite element model as a case study.  相似文献   

6.
This paper shows a theoretical model for predicting the moment–curvature/load–deflection relationships and debonding failure of reinforced concrete (RC) beams externally strengthened with steel reinforced geopolymeric matrix (SRGM) or steel reinforced grout (SRG) systems. Force equilibrium and strain compatibility equations for a beam section divided into several segments are numerically solved using non-linear behaviour of concrete and internal steel bars. The deflection is then obtained from the flexural stiffness at a mid-span section. Considering the appropriate SRGM-concrete bond–slip law, calibrated on single-lap shear bond tests, both end and intermediate debonding failures are analysed. To predict the end debonding, an anchorage strength model is adopted. To predict intermediate debonding, at each pair of flexural cracks a shear stress limitation is placed at concrete–matrix interface and the differential problem is solved at steel strip–matrix interface. Based on the theoretical predictions, the comparisons with experimental data show that the proposed model can accurately predict the structural response of SRGM/SRG strengthened RC beams. It can be a useful tool for evaluating the behaviour of externally strengthened RC beams, avoiding experimental tests.  相似文献   

7.
Fibric reinforced cementitious matrix (FRCM) composites have been used to improve the mechanical performance of reinforced concrete beams subjected to degradation in the past decades. Recently, dual-functional carbon fibres have been explored to provide both structural strengthening to RC beams and cathodic protection to reinforcement bars. This paper investigates the loading responses and structural behaviour of RC beams subjected to different levels of corrosion, protected by impressed current cathodic protection and structurally strengthened by external bonded FRCM. A numerical model is developed for the corroded RC beams under impressed current cathodic protection and structural strengthening by the FRCM composite. Upon validation against experimental results collected from the literature, the finite element model is then used for parametric study. A number of numerical results are generated to analyse the effects of key parameters, including the corrosion rate, degradation level of interfacial bonding properties due to anode acidification, and end anchorage, followed by detailed discussions. It is found that the significance of the corrosion of steel reinforcement bars significantly affects the load-carrying capacity of the beams. Increasing the corrosion rate from 0 to 40% reduces the load-carrying capacity of un-strengthened beams to 45% of the original capacity. Therefore, the cathodic protection provided by the C-FRCM plate is important to the reinforcement bars as it can avoid the cross-section area reduction of reinforcement bars and, thus, the main loading capacities of the beams. In this study, the degradation of the bonding properties at the interface of carbon fibre and the cementitious matrix due to anode acidification during impressed current cathodic protection is also considered. It is found that the bond strength of the C-FRCM plate has a slight effect on the load-carrying capacity of the beam. In addition, the application of end anchorage can significantly enhance both the load-carrying capacity and ductility of the beams. The rates of enhancement, if compared to the beams with no end anchorage, can reach up to 60%.  相似文献   

8.
A textile reinforced concrete (TRC) system has been widely used for repair and strengthening of deteriorated reinforced concrete (RC) structures. This paper proposes an accelerated on-site installation method of a TRC system by grouting to strengthen deteriorated RC structures. Four RC slabs were strengthened with one ply of carbon textile grid and 20 mm-thick cementitious grout. The TRC strengthened slab specimens were tested under flexure and the test results were compared with those of an unstrengthened specimen and theoretical solutions. Furthermore, the TRC strengthened specimens experienced longer plastic deformation after steel yield than the unstrengthened specimen. The TRC strengthened specimens exhibited many fine cracks and finally failed by rupture of the textile. Therefore, TRC system with the proposed installation method can effectively be used for strengthening of deteriorated RC structural elements. The theoretically computed steel yield and ultimate loads overestimate the test data by 11% and 5%, respectively.  相似文献   

9.
To accommodate utilities in buildings, different sizes of openings are provided in the web of reinforced concrete deep beams, which cause reductions in the beam strength and stiffness. This paper aims to investigate experimentally and numerically the effectiveness of using carbon fiber reinforced polymer (CFRP) strips, as a strengthening technique, to externally strengthen reinforced concrete continuous deep beams (RCCDBs) with large openings. The experimental work included testing three RCCDBs under five-point bending. A reference specimen was prepared without openings to explore the reductions in strength and stiffness after providing large openings. Openings were created symmetrically at the center of spans of the other specimens to represent 40% of the overall beam depth. Moreover, finite elements (FE) analysis was validated using the experimental results to conduct a parametric study on RCCDBs strengthened with CFRP strips. The results confirmed reductions in the ultimate load by 21% and 7% for the un-strengthened and strengthened specimens, respectively, due to the large openings. Although the large openings caused reductions in capacities, the CFRP strips limited the deterioration by enhancing the specimen capacity by 17% relative to the un-strengthened one.  相似文献   

10.
For the investigation of fatigue damage behavior of textile reinforced concrete (TRC)-strengthened RC beams, in this study, eight RC beams were fabricated, and five of them were strengthened with TRC and tested under fatigue loading until failure, using a four-point bending setup. Research parameters included reinforcement ratio, textile ratio, and strengthening methods (single-side and U-wrapped). The failure mode, fatigue life, fatigue deformation, and other properties of TRC-strengthened beams were analyzed. Experimental results revealed that there were two fatigue failure modes for TRC-strengthened RC beams. In the first mode, the textile was snapped, but the steel bars did not rupture. In the second mode, both the textile and steel bars broke. Fatigue failure modes depended on the textile ratio. The TRC-strengthened beam’s fatigue life was significantly higher than the non-strengthened RC beam. At the same textile ratio, the TRC-strengthened beam’s fatigue life using the single-side method was longer than that using the U-wrapped method. With the increase in fatigue loading time, the midspan deflection of the TRC-strengthened beam was developed in three stages, namely rapid development stage, stable development stage, and destabilized development stage. The residual deflection and strain damage accumulation of tensile steel bars of TRC-strengthened beams were significantly reduced with the increase in textile or reinforcement ratios; thus, the beam’s fatigue life was prolonged.  相似文献   

11.
In order to improve the deformation energy consumption and self-centering ability of reinforced concrete (RC) frame beam-column joints for main buildings of conventional islands in nuclear power plants, a new type of self-centering joint equipped with super-elastic shape memory alloy (SMA) bars and a steel plate as kernel components in the core area of the joint is proposed in this study. Four 1/5-scale frame joints were designed and manufactured, including two contrast joints (a normal reinforced concrete joint and a concrete joint that replaces steel bars with SMA bars) and two new model joints with different SMA reinforcement ratios. Subsequently, the residual deformation, energy dissipation capacity, stiffness degradation and self-centering performance of the novel frame joints were studied through a low-frequency cyclic loading test. Finally, based on the OpenSees finite element software platform, an effective numerical model of the new joint was established and verified. On this basis, varying two main parameters, the SMA reinforcement ratio and the axial compression ratio, a simulation was systematically conducted to demonstrate the effectiveness of the proposed joint in seismic performance. The results show that replacing ordinary steel bars in the beam with SMA bars not only greatly reduces the bearing capacity and stiffness of the joint, but also makes the failure mode of the joint brittle. The construction of a new type of joint with consideration of the SMA reinforcement and the steel plate can improve the bearing capacity, delay the stiffness degradation and improve the ductility and self-centering capability of the joints. Within a certain range, increasing the ratio of the SMA bars can further improve the ultimate bearing capacity and energy dissipation capacity of the new joint. Increasing or decreasing the axial compression ratio of column ends has little effect on the overall seismic performance of new joints.  相似文献   

12.
Generally, the concrete with higher strength appears to produce brittle failure more easily. However, the use of mineral admixture can help in enhancing the ductility, energy dissipation, and seismic energy in the designed concrete. This paper presents energy absorption capacity, stiffness degradation, and ductility of the copper slag (CS) admixed reinforced concrete with fly ash (FA) beams subjected to forward cyclic load. The forward cyclic load was applied with the help of servo-hydraulic universal testing machines with 250 kN capacity. Twenty-four beams with a size of 100 mm × 150 mm × 1700 mm made with CS replaced for natural sand from 0% to 100% at an increment of 20%, and FA was replaced for cement from 0% to 30% with an increment of 10% were cast. Beams are designed for the grade of M30 concrete. Based on the preliminary investigation results, compressive strength of the concrete greatly increased when adding these two materials in the concrete. Normally, Grade of concrete can change the behaviour of the beam from a brittle manner to be more ductile manner. So, in this work, flexural behaviour of RC beams are studied with varying compressive strength of concrete. Experimental results showed that the RC beam made with 20% FA and 80% CS (FA20CS80) possesses higher ultimate load-carrying capacity than the control concrete beam. It withstands up to 18 cycles of loading with an ultimate deflection of 60 mm. The CS and FA admixed reinforced concrete composite beams have excellent ultimate load carrying capacity, stiffness, energy absorption capacity, and ductility indices compared to the control concrete beam.  相似文献   

13.
This paper describes a study on finite element modeling (FEM) carried out on the ABAQUS platform for the prediction of flexural strength of corrosion-damaged reinforced concrete (RC) beams strengthened using layers of ultra-high-performance concrete (UHPC). Considering different combinations of the degree of reinforcement corrosion and thickness and configuration of UHPC layers, a total of twenty-two corroded, un-strengthened, and strengthened RC beam specimens were tested to record their flexural behavior. Following the flexural testing, the FEM was carried out considering the degradation in the diameter and the yielding strength of the corroded reinforcing bars. The cohesive surface bonding approach was used to simulate the interfacial bond stress slip between the corroded bars and surrounding concrete. The results of the FEM were validated using the experimental test results of the respective beam specimens. The FEM results (including crack pattern, flexural strength, stiffness, and linear and nonlinear behavior of the strengthened RC beams) were found to be in close agreement with the corresponding experimental test results. This indicates that the proposed FEMs can capture the flexural behavior of the corroded RC beams strengthened using layers of UHPC with high accuracy. Furthermore, a parametric study was carried out using the validated FEMs to investigate the effects of varying the compressive strength and thickness of UHPC layers on the flexural strength of the corroded strengthened RC beams.  相似文献   

14.
This research investigates the performance of Steel Fiber Reinforced Rubberized Concrete (SFRRC) that incorporates high volumes of End-of-life tire materials, (i.e., both rubber particles and recycled tire steel fibers) in strengthening existing reinforced concrete (RC) beams. The mechanical and durability properties were determined for an environmentally friendly SFRRC mixture that incorporates a large volume (60% by volume aggregate replacement) of rubber particles and is solely reinforced by recycled tire steel fibers. The material was assessed experimentally under flexural, compressive and impact loading, and thus results led to the development of a numerical model using the Finite Element Method. Furthermore, a numerical study on full-scale structural members was conducted, focusing on conventional RC beams strengthened with SFRRC layers. This research presents the first study where SFRRC is examined for structural strengthening of existing RC beams, aiming to enable the use of such novel materials in structural applications. The results were compared to respective results of beams strengthened with conventional RC layers. The study reveals that incorporation of End-of-life tire materials in concrete not only serves the purpose of recycling End-of-life tire products, but can also contribute to unique properties such as energy dissipation not attained by conventional concrete and therefore leading to superior performance as flexural strengthening material. It was found that by incorporating 60% by volume rubber particles in combination with recycled steel fibers, it increased the damping ratio of concrete by 75.4%. Furthermore, SFRRC was proven effective in enhancing the energy dissipation of existing structural members.  相似文献   

15.
Although carbon textile reinforcement widely used to replace the steel reinforcing bars but the bonding strength of carbon textile is generally much smaller than that of common steel bars. This study examines the strengthening effect of concrete slab-type elements strengthened in flexure by carbon textile reinforcement according to the surface coating of textile and the amount of reinforcement. The effect of the surface coating of textile on the bond strength was evaluated through a direct pullout test with four different sizes of coating material. The surface coated specimens developed bond strength approximately twice that of the uncoated specimen. The flexural strengthening effect with respect to the amount of reinforcement was investigated by a series of flexural failure tests on full-scale reinforced concrete (RC) slab specimens strengthened by textile reinforced concrete (TRC) system. The flexural failure test results revealed that the TRC system-strengthened specimens develop load-carrying capacity that is improved to at least 150% compared to the non-strengthened specimen. The strengthening performance was not significantly influenced by the textile coating and was not proportional to the amount of reinforcement when this amount was increased, owing to the change in the failure mode. The outstanding constructability afforded by TRC strengthening was verified through field applications executing TRC strengthening by shotcreting on a concrete box culvert.  相似文献   

16.
Based on the project of the Guansheng Qujiang Bridge, the flexural mechanical properties of an ultrahigh strength concrete filled steel tube (UHSCFST) were discussed. A total of six UHSCFST beam specimens were tested, and the cube strength (fcu) of the core concrete reached 80.3–115.2 MPa. The effects of concrete strength on flexural bearing capacity, deformation characteristics, and failure modes of UHSCFST specimens were discussed. Test results showed that the bending failure modes of UHSCFST specimens were the same as those of ordinary ones. The failure of UHSCFST specimens was attributed to excessive deflection, and local buckling occurred in the compression zone. Moreover, the bending capacity of the specimens did not decrease, even if they had yielded. Although ultrahigh strength concrete was poured, all of the specimens displayed outstanding bending ductility. The main function of core concrete was to provide radial restraint for the steel tube to avoid premature buckling. When the steel content of the specimen section was constant, the strength increases of core concrete had a slight impact on the bending failure mode, bearing capacity and ductility of UHSCFST specimen. The research results can deepen the understanding of the mechanical behaviors of the UHSCFST composite truss structure.  相似文献   

17.
This paper presents an investigation of the bond mechanism between carbon fibre reinforced polymer (CFRP) laminates, concrete and steel in the near-surface mounted (NSM) CFRP-strengthened reinforced concrete (RC) beam-bond tests. The experimental program consisting of thirty modified concrete beams flexurally strengthened with NSM CFRP strips was published in. The effects of five parameters and their interactions on the ultimate load carrying capacities and the associated bond mechanisms of the beams are investigated in this paper with consideration of the following investigated parameters: beam span, beam depth, longitudinal tensile steel reinforcement ratio, the bond length of the CFRP strips and compressive concrete strength. The longitudinal steel reinforcement was cut at the beam mid-span in four beams to investigate a better assessment of the influence of the steel reinforcement ratio on the bond behaviour of CFRP to concrete bond behaviour. The numerical analysis implemented in this paper is based on a nonlinear micromechanical finite element model (FEM) that was used for investigation of the flexural behaviour of NSM CFRP-strengthened members. The 3D model based on advanced CFRP to concrete bond responses was introduced to modelling of tested specimens. The FEM procedure presents the orthotropic behaviour of the CFRP strips and the bond response between the CFRP and concrete. Comparison of the experimental and numerical results revealed an excellent agreement that confirms the suitability of the proposed FE model.  相似文献   

18.
This paper presents an experimental investigation on the effects of the replacement length of concrete with engineered cementitious composites (ECC) on the cyclic behavior of a reinforced concrete (RC) column. A conventional RC column specimen and two RC composite columns designed with ECC were fabricated. To investigate the cyclic behavior of each specimen, a series of cyclic loading tests was performed under a reversed cyclic loading condition with a constant axial load. Test results showed that ECC columns exhibited higher cyclic behavior in terms of load carrying capacity, ductility, and energy dissipation capacity compared to the RC column. It was also found that when applying ECC to the column specimen with a length of 3.6d or more, the energy dissipation capacity was greatly increased.  相似文献   

19.
Reinforced concrete (RC) frame beams are subject to axial restriction at the ends, which plays an important role in the nonlinear behavior of these beams. This paper presents a numerical and theoretical investigation into the flexural behavior of RC beams axially restricted with external steel or fiber reinforced polymer (FRP) reinforcement. A numerical procedure for RC beams axially restricted with external reinforcement has been developed and it is verified against available experimental results. A numerical parametric study is then performed on axially restricted RC beams, focusing on the effect of type, area, and depth of external reinforcement. The results show that axial restriction increases the post-cracking stiffness and ultimate load-carrying capacity but reduces the flexural ductility. The ultimate stress in external reinforcement is substantially impacted by reinforcement type, area, and depth. A simplified model is developed to predict the ultimate load of RC beams axially restricted with external steel/FRP reinforcement. The predictions of the proposed simplified model agree favorably with the numerical results. The correlation coefficient for the ultimate load is 0.984, and the mean difference is −2.11% with a standard deviation of 3.62%.  相似文献   

20.
“Polyurea coatings as a possible structural reinforcement system” is a research investigation that aims to explore the possible applications of polyurea coatings for improving structural performance (including steel, concrete, timber and other structures used in the construction industry). As part of the research in this field, this paper focuses on evaluating the performance of bending polyurea-coated reinforced concrete (RC) beams with a low reinforcement ratio. The easy application and numerous advantages of polyurea can prove very useful when existing RC structural elements are repaired or retrofitted. Laboratory tests of RC beams were performed for the purpose of this paper. The failure mechanisms and cracking patterns of these specimens are described, and their bending strengths were compared. On this basis, the effect of the coating on bending strength and the performance of the reinforced beams at the serviceability limit state (SLS) was examined and analyzed. The results showed that the use of a polyurea coating has a positive impact on the cracking and deflection state of RC beams and makes it possible to safely use RC elements on a continuous basis under high levels of load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号