首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to examine differences in muscle glycogen storage during three successive days of running or cycling. In a crossover design, seven male subjects performed two 3-d trials of either running (trial R) or cycling (trial C) for 60 min at 75% VO2max. Biopsy samples were obtained before and after each day's exercise from the gastrocnemius (trial R) or vastus lateralis (trial C) muscle. Diets in the 2 d preceding and during each trial contained 5 g carbohydrate.kg-1.d-1 and 14,475 +/- 402 kJ.d-1. Mean pre-exercise glycogen content (mmol.kg-1 wet wt.) was significantly reduced in both trials on day 3 (103.4 +/- 6.0) when compared to day 1 and day 2 (119.9 +/- 6.8 and 116.4 +/- 5.7, respectively). Day 1 glycogen reduction was significantly greater in trial C (P less than 0.03), and glycogen restorage was greater (P less than 0.02) only in trial C between the 1st and 2nd d. On day 3, spectrophotometric analysis of PAS strains showed that pre-exercise glycogen content in either muscle group was significantly (P less than 0.01) less in Type I as compared to Type II fibers. This difference in fiber glycogen storage did not appear to be attributable to muscle damage as negligible leukocyte infiltration and low blood CK levels were obtained. No difference between modes were observed for CK values throughout the trials. These data suggest that the depressed glycogen storage before the 3rd d of exercise was due to the moderate carbohydrate intake.  相似文献   

2.
PURPOSE: Although the autonomic and cardiovascular responses to arm and leg exercise have been studied, the sympathetic adjustments to exercise of the neck have not. The purpose of the present study was twofold: 1) to determine sympathetic and cardiovascular responses to isometric contractions of the neck extensors and 2) to compare sympathetic and cardiovascular responses to isometric exercise of the neck and forearm. METHODS: Muscle sympathetic nerve activity (MSNA), mean arterial pressure (MAP), and heart rate were measured in nine healthy subjects while performing isometric neck extension (INE) and isometric handgrip (IHG) in the prone position. After a 3-min baseline period, subjects performed three intensities of INE for 2.5 min each: 1) unloaded (supporting head alone), 2) 10% maximal voluntary contraction (MVC), and 3) 30% MVC, then subjects performed two intensities (10% and 30% MVC) of IHG for 2.5 min. RESULTS: Supporting the head by itself did not significantly change any of the variables. During [NE, MAP significantly increased by 10 +/- 2 and 31 +/- 4 mm Hg and MSNA increased by 67 +/- 46 and 168 +/- 36 units/30 s for 10% and 30% MVC, respectively. IHG and INE evoked similar responses at 10% MVC, but IHG elicited higher peak MAP and MSNA at 30% MVC (37 +/- 7 mm Hg (P < 0.05) and 300 +/- 48 units/30 s (P < 0.01) for IHG, respectively). CONCLUSIONS: The data indicate that INE can elicit marked increases in MSNA and cardiovascular responses but that it evokes lower peak responses as compared to IHG. We speculate that possible differences in muscle fiber type composition, muscle mass, and/or muscle architecture of the neck and forearm are responsible for these differences in peak responses.  相似文献   

3.
The purpose of this study was to determine whether or not losses of strength or endurance following eccentric and concentric exercise are associated with reduced excitation. The effects of eccentric and concentric work on maximal voluntary isometric contraction (MVC) and surface electromyogram (EMG) of the quadriceps were studied in 10 healthy male subjects following bench-stepping for 20 min with a constant leading leg. Prior to stepping and at 0, 0.25, 0.50, 0.75, 1, 3, 24 and 48 h afterwards the subjects performed a 30 s leg extension MVC with each leg during which the isometric force and the root mean square voltage of the EMG were recorded. In the eccentrically exercised muscles (ECC), MVC0-3 (force during the first 3 s of contraction) fell immediately after the bench-stepping exercise to 88+/-2% (mean+/-SE) of the pre-exercise value and remained significantly lower than the concentrically exercised muscles (p<0.05). The muscle weakness in the ECC could not be attributed to central fatigue as surface EMG amplitude at MVC0-3 increased during the recovery period. Muscle weakness after eccentric exercise appears to be due to contractile failure, which is not associated with a reduction in excitation as assessed by surface EMG. Muscular fatigue over 30 s did not change in the two muscle groups after exercise (p = 0.79), indicating that the ECC were weaker but not more fatiguable after exercise.  相似文献   

4.
Hemodynamic and cardiovascular responses were studied in 80 males (age: 30 +/- 2 years) at rest, and during separate three minute trials of upright and supine isometric deadlift exercise at 30% of maximum voluntary contraction (MVC). MVC did not differ significantly between supine and upright deadlift exercise. In comparison to values at rest, both forms of isometric exercise resulted in significant increases (p less than 0.05) in heart rate, systolic blood pressure, diastolic blood pressure, mean arterial blood pressure, oxygen uptake, oxygen pulse and double product. In the upright exercise, the values obtained for all of the physiological variables were found to be significantly higher (p less than 0.05) than in the supine exercise. These findings indicate that the upright isometric deadlift produces a higher after-load than the supine maneuver, and that this response may be a good indicator of cardiovascular functioning.  相似文献   

5.
The purpose of this study was to evaluate the effects of glycogen availability on short-term, high-intensity exercise performance. Eight males completed performance evaluation tasks (PET) consisting of maximum isokinetic strength and endurance, isometric strength, and electrically evoked force of the leg extensors, twice during each of two conditions. On day 1 (D1) of the control condition (C) subjects performed the PET, followed by strenuous exercise designed to deplete glycogen stores of the leg extensors. After consuming a mixed diet for 48h (days 2 and 3) they performed the PET again on day 4 (D4). The experimental condition (E) was identical to C, except that a strictly controlled low carbohydrate diet was consumed during Days 2 and 3. Biopsies from the vastus lateralis before the PET on D4 confirmed differences between conditions in intramuscular glycogen (426 +/- 43 vs 153 +/- 60 mmol glucose units.kg-1 d.w. for C and E respectively, P less than 0.001). Results obtained from the PET were not different between conditions on D4, nor within conditions when D1 and D4 were compared. Resting blood glucose, hematological variables indicative of hydration and acid-base status, and post PET blood lactate were similar for all trials. It is concluded that short-term, high-intensity exercise performance of glycogen depleted leg extensors is not impaired.  相似文献   

6.
BACKGROUND: 1) To examine the validity and accuracy of the CR-10 scale for evaluating perceived exertion, and 2) to assess gender differences in perceived exertion across different levels of contraction intensity. METHODS: Experimental design: cross-sectional, comparative design. Setting: Human Performance and Fatigue Laboratory, Eastern Washington University. Subjects: 30 healthy, college age volunteers (15 males, 15 females). Measures: All subjects were assessed for isometric torque and perceived exertion of the quadriceps femoris muscles, via the CR-10 scale. One low anchor was applied under resting conditions with the knee flexed to 60 degrees, and a high anchor was applied during a maximal voluntary muscle contraction (MVC). Subjects performed five-second isometric contractions equivalent to 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% of their MVC, in a random order, and were assessed for perceived exertion by visually observing the CR-10 scale. One sample "t"-tests and 95% confidence intervals were calculated for perceived exertion at each relative torque level. A single factor ANOVA with repeated measures was performed across al levels of exercise intensity. Linearity for perceived exertion was assessed via regression analysis. RESULTS: Perceived exertion at each exercise intensity were as follows: 10%: 1.87+/-1.14, 20%: 2.43+/-1.19, 30%: 3.5+/-1.36, 40%: 3.97+/-1.52, 50%: 4.73+/-1.28, 60%: 5.53+/-1.28, 70%: 6.73+/-1.62, 80%: 7.57+/-1.72, and 90%: 8.6+/-1.52. The increase in perceived exertion across the intensity spectrum was found to fit both linear and quadratic trends. There were no gender differences in perceived exertion across all levels of exercise intensity. CONCLUSIONS: The findings demonstrate that the CR-10 scale closely approximates perceived exertion of the quadriceps femoris muscles during sub-maximal, static contractions, and is not gender specific.  相似文献   

7.
This study examined the effect of carbohydrate (CHO) intake during a 4 h recovery from prolonged running on muscle glycogen metabolism during subsequent exercise. On 2 occasions, 7 male subjects ran for 90 min at 70 % maximum oxygen uptake VO(2 max) on a motorized treadmill (R1) followed by a 4 h rest period (REC) and a 15 min run (R2) consisting of 5 min at 60 % and 10 min at 70 % VO(2 max) During REC, each subject ingested a total of 2.7 l of an isotonic solution containing either 50 g of CHO (LOW) or 175 g of CHO (HIGH). Biopsy samples were obtained from the vastus lateralis immediately after R1, REC and R2. During REC, a higher muscle glycogen resynthesis was observed in HIGH when compared with LOW trial (75 +/- 20 vs. 31 +/- 11 mmol x kg dry matter (dm) -1, respectively; p < 0.01). Muscle glycogen utilization during R2 was similar between the HIGH and LOW trials (39 +/- 10 vs. 46 +/- 11 mmol x kg dm -1, respectively). These results suggest that ingestion of a large amount of CHO at frequent intervals during recovery from exercise does not affect the rate of muscle glycogen utilization during subsequent exercise.  相似文献   

8.
Fatigue after submaximal intensive stretch-shortening cycle exercise   总被引:5,自引:0,他引:5  
OBJECTIVE: The aim of the present study was to examine some sites of neuromuscular fatigue after submaximal intensity stretch-shortening cycle exercise. METHODS: Twelve male subjects performed consecutive sledge jumps at 60% of maximal height until exhaustion (mean duration 443.7 s +/- 304.9 s, mean +/- SD). RESULTS: During the exercise, the blood lactate increased from 1.8 +/- 0.6 mmol x L(-1) (before exercise) to 6.1 +/- 1.7 mmol x L(-1) (P < 0.001) and serum creatine-kinase from 248 +/- 142 IU x L(-1) to 584 +/- 344 IU x L(-1) (P < 0.001). Electrical stimulation of the vastus lateralis and quadriceps femoris muscles to induce isometric knee extension resulted in decreased peak torque during single and double twitch after workout (from 22.1 +/- 6.3 Nm to 17.3 +/- 8.0 Nm, P < 0.05, and from 96.6 +/- 15.4 Nm to 76.2 x 19.8 Nm, P < 0.001, respectively), whereas there were no significant changes in contraction and relaxation times. Torque during 20-Hz stimulation decreased significantly (from 23.7 +/- 9.2 to 16.1 +/- 7.8 Nm, P < 0.01) but not at 100-Hz stimulation. During maximal voluntary isometric knee extensions, the rate of torque development was significantly (P < 0.01) more impaired than maximal torque (from 1619 +/- 390 Nm x s(-1) to 1,004 +/- 360 Nm x s(-1) and from 185 +/- 30.7 Nm to 151 +/- 32.3 Nm, respectively, both P < 0.001). At the same time, the muscle activation level increased by 15.8 +/- 24.1% (P < 0.05). The mean EMG amplitude of vastus lateralis during MVC increased by 34.9 +/- 39.2% (P > 0.05). CONCLUSION: It was concluded that after submaximal stretch-shortening exercise, the low-frequency fatigue occurred, very likely caused by lower Ca2+ release per single action potential.  相似文献   

9.
Morphological evidence suggests that fast-twitch fibers are prone to disruption of their membrane structures by eccentric exercise. However, it is unclear how this is reflected in the discharge rate and action potential propagation of individual motor units, especially at high contraction levels. High-density surface electromyograms were recorded from biceps brachii muscle and decomposed to individual motor unit action potentials at isometric contraction levels between 10% and 75% of maximal voluntary contraction (MVC) before intermittent maximal elbow flexor eccentric exercise, and two hours (2H), two days (2D) and four days (4D) post-exercise. Maximal voluntary force decreased by 21.3±5.6% 2H and by 12.6±11.1% 2D post-exercise. Motor unit discharge rate increased and mean muscle fiber conduction velocity decreased, at the highest isometric contraction levels only (50% and 75% of MVC) at 2H post-exercise. These results indicate that eccentric exercise can disturb the function of motor units active at high contraction levels in the early stages after exercise, which seems to be compensated by the central nervous system with an increase in neural drive during submaximal isometric contractions.  相似文献   

10.
Increases in circulating interleukin-6 (IL-6) during exhaustive exercise have been suggested to be related to declining muscle glycogen. We addressed two hypotheses: (a) exhaustive exercise on two occasions will result in similar decreases in glycogen and increases in circulating IL-6 and its muscle mRNA; (b) increasing the rate of glycogen restoration via high-carbohydrate feeding in recovery will be associated with more rapid declines in muscle mRNA and circulating IL-6. Ten male subjects (22.6+/-0.8 year) cycled to exhaustion (65% VO(2 max)) on two occasions (117.8+/-2.9 min). Carbohydrate (1 g/kg bw) or water was ingested at exhaustion, 60, 120, 180, and 240 min post-exercise. Muscle biopsies were taken at rest, exhaustion, 30, 60, 120 and 300 min of recovery. Exercise resulted in a 14.5-fold increase (P<0.05) in IL-6 mRNA, 14.4-fold increase (P<0.05) in circulating IL-6, and a 80% decrease (P<0.05) in muscle glycogen from rest. The decline in glycogen was not correlated with the increase in IL-6 or IL-6 mRNA. During recovery, circulating IL-6 and its muscle mRNA decreased similarly in both trials; however, glycogen increased 150% (P<0.05) and 40% in the carbohydrate and water trials, respectively. Therefore, the declining IL-6 mRNA and IL-6 plasma concentrations during recovery were not related to carbohydrate availability or changes in glycogen.  相似文献   

11.
PURPOSE: To determine the effect of water, carbohydrate, and caffeine ingestion on fatigue during prolonged exercise in the heat. METHODS: Seven endurance-trained cyclists (V O2max = 61 +/- 8 mL.kg.min) pedaled for 120 min at 63% V O2max in a hot-dry environment (36 degrees C; 29% humidity), ingesting either no fluid (NF), water (WAT) to replace 97% fluid losses, the same volume of a 6% carbohydrate-electrolyte solution (CES), or each of these treatments along with ingestion of 6 mg of caffeine per kilogram of body weight (NF + CAFF, WAT + CAFF, and CES + CAFF). At regular intervals during exercise, maximal cycling power (PMAX) was measured. Before and after exercise, maximal voluntary contraction (MVC), voluntary activation (VA), and electrically evoked contractile properties of the quadriceps were determined. RESULTS: Without fluid replacement (NF and NF + CAFF), subjects were dehydrated by 3.8 +/- 0.3%, and rectal temperature reached 39.4 +/- 0.3 degrees C, while it was maintained at 38.7 +/- 0.3 degrees C in trials with rehydration (P < 0.05). Trials with caffeine ingestion increased PMAX by 3% above trials without caffeine (P < 0.05). MVC reductions after exercise were larger with NF (-11 +/- 5%) than for the rest of the trials (P < 0.05). MVC was reduced in WAT compared with CES + CAFF (-6 +/- 4 vs 2 +/- 4%; P < 0.05). However, NF + CAFF maintained MVC at the level of the CES trial. VA showed the same treatment response pattern as MVC. There were no differences in electrically evoked contractile properties among trials. CONCLUSION: During prolonged exercise in the heat, caffeine ingestion (6 mg.kg body weight) maintains MVC and increases PMAX despite dehydration and hyperthermia. When combined with water and carbohydrate, caffeine ingestion increases maximal leg force by increasing VA (i.e., reducing central fatigue).  相似文献   

12.
This study investigated whether the ingestion of a carbohydrate-electrolyte solution during running would influence muscle glycogen utilisation in subjects who had consumed a carbohydrate meal 3 hours before exercise. Eight men completed two 60-min treadmill runs at 70% VO(2)max. Before each run they consumed a carbohydrate meal (183 +/- 7 g) 3 hours before exercise and either 1) a carbohydrate-electrolyte solution during the run (46 +/- 1 g) (M+C), or 2) water during the run (M + W). Biopsy samples were obtained from the vastus lateralis muscle at rest and after 60 min of running. Serum insulin concentrations were higher (p < 0.01) in both trials at the start of exercise compared with fasting values, whereas blood glucose concentrations were higher (p < 0.01) after 60 min of running in the M+C trial. Pre-exercise muscle glycogen concentrations were similar in both trials (M+C: 321.9 +/- 27.2 vs M+W: 338.8 +/- 32.8 mmol x kg x dry weight (-1) [dw]; NS). There was no difference in the amount of glycogen used during exercise (M+C: 96.1 +/- 22.1 vs M+W: 77.9 +/- 11.7 mmol x kg x dw (-1); NS). In conclusion, a carbohydrate-electrolyte solution ingested during treadmill running at 70 % VO(2)max does not influence muscle glycogen use during the first hour of exercise when a carbohydrate meal is consumed 3 hours before exercise.  相似文献   

13.
Prolonged exercise in the fasted state frequently results in a lowering of blood glucose concentration, and when the intensity is moderate (i.e. 60-80% of VO2 max), muscle often becomes depleted of glycogen. The extent to which carbohydrate feedings contribute to energy production, and their effectiveness for improving endurance during prolonged exercise, are reviewed in this article. Prolonged exercise (i.e. greater than 2 hours) results in a failure of hepatic glucose output to keep pace with muscle glucose uptake. As a result, blood glucose concentration frequently declines below 2.5 mmol/L. Despite this hypoglycaemia, fewer than 25% of subjects display symptoms suggestive of central nervous system dysfunction. Since fatigue rarely results from hypoglycaemia alone, the effectiveness of carbohydrate feeding should be judged by its potential for muscle glycogen sparing. Carbohydrate feeding during moderate intensity exercise postpones the development of fatigue by approximately 15 to 30 minutes, yet it does not prevent fatigue. This observation agrees with data suggesting that carbohydrate supplementation reduces muscle glycogen depletion. It is not certain whether carbohydrate feeding increases muscle glucose uptake throughout moderate exercise or if glucose uptake is higher only during the latter stages of exercise. In contrast to moderate intensity exercise, carbohydrate feeding during low intensity exercise (i.e. less than 45% of VO2 max) results in hyperinsulinaemia. Consequently, muscle glucose uptake and total carbohydrate oxidation are increased by approximately the same amount. The amount of ingested glucose which is oxidised is greater than the increase in total carbohydrate oxidation and therefore endogenous carbohydrate is spared. The majority of sparing appears to occur in the liver, which is reasonable since muscle glycogen is not utilised to a large extent during mild exercise. Although carbohydrate feedings prevent hypoglycaemia and are readily used for energy during mild exercise, there is little data indicating that feedings improve endurance during low intensity exercise. When the reliance on carbohydrate for fuel is greater, as during moderate intensity exercise, carbohydrate feedings delay fatigue by apparently slowing the depletion of muscle glycogen.  相似文献   

14.
Resistance training at low loads with blood flow restriction (BFR) (also known as Kaatsu) has been shown to stimulate increases in muscle size and strength. It is unclear how occlusion pressure, exercise intensity, and occlusion duration interact, or which combination of these factors results in the most potent muscle stimulus. PURPOSE: To determine the effect of eight BFR protocols on muscle fatigue (decrement in maximal voluntary contraction (MVC) after the performance of exercise), and to compare the decrement in MVC with the currently recommended resistance exercise intensity (~80% MVC). METHODS: During five test sessions, 21 subjects (14 males and 7 females, 27.7 +/- 4.9 yr) completed nine protocols, each consisting of three sets of knee extensions (KE) to failure. One protocol was high-load (HL) exercise (80% MVC) with no BFR, and the other eight were BFR at varying levels of contraction intensity (20 or 40% MVC), occlusion pressure (partial (~160 mm Hg) or complete (~300 mm Hg)), and occlusion duration (off during the rest between sets or continuously applied). To evaluate each protocol, MVC were performed before and after exercise, and the decrement in force was calculated. RESULTS: Three sets of KE at 20% MVC with continuous partial occlusion (20%(ConPar)) resulted in a greater decrement in MVC compared with HL (31 vs 19%, P = 0.001). None of the other BFR protocols were different from the HL protocol, nor were they different from 20%(ConPar) (P > 0.05). CONCLUSION: All BFR protocols elicited at least as much fatigue as HL, even though lower loads were used. The 20%(ConPar) protocol was the only one that elicited significantly more fatigue than HL. Future research should evaluate protocol training effectiveness and overall safety of BFR exercise.  相似文献   

15.
Experiments were conducted to quantify the cardiovascular response (blood pressure and heart rate) elicited by sustained isometric contractions of the neck muscles. The response was secondary to dynamic exercise with various headgear loading combinations. The neck muscles were loaded by the head itself (CON), the standard U.S. Army SPH-4 helmet (HEL), and a combination of the SPH-4 helmet with Night Vision Goggles (H/NVG). During two exercise periods of 5 min and 35 min, each of the five subjects would rotate the head from side-to-side in the CON, HEL, or H/NVG configuration. Immediately thereafter, the subject would position his head in an isometric head dynamometer and exert a sustained right lateral (LAT) neck contraction or forward (FOR) neck contraction at 70% of a maximal voluntary contraction (MVC). During this isometric neck muscle contraction, the subject's endurance time to fatigue was recorded, the blood pressure was manually recorded, and the heart rate was continuously recorded. Characteristic increases in the systolic and diastolic blood pressure and heart rate occurred with sustained isometric neck muscle contractions. There was an average 40% increase in the systolic blood pressure, an average 50% increase in the diastolic blood pressure, and an average 45% increase in the heart rate from resting to the end of a fatiguing 70% MVC (p less than 0.05). These responses appear to be relatively independent of the duration of the exercise period, the loading during the exercise period, and the specific muscle mass involved. The mechanisms for the pressor response and the heart rate response are reviewed.  相似文献   

16.
PURPOSE: This study examined the relationship between muscle glutamine, muscle glycogen, and plasma glutamine concentrations over 3 d of high-intensity exercise during which dietary carbohydrate (CHO) intake varied. METHODS: Five endurance-trained men completed two exercise trials in randomized order, over a 14-d period. Each trial required subjects to perform 50 min of high-intensity continuous and interval exercise on three consecutive days while consuming a diet that provided 45% of the energy as CHO or a diet in which CHO provided 70% of the total energy. Four days of inactivity and consumption of a 55% CHO diet separated the two randomized trials. Menus and food were provided for the subjects and all food and drink consumed were weighed and recorded for later analysis. Before exercise on the first day of each trial, at the start of exercise on day 3 and on completion of exercise on day 3, muscle was biopsied from the vastus lateralis for the analysis of glutamine and glycogen concentrations. Venous blood was sampled before and twice after exercise on each day for the analysis of plasma glutamine and cortisol concentrations. RESULTS: Mean plasma glutamine concentration was significantly higher during the 70% CHO exercise trial when compared with the 45% CHO trial (P < 0.05). Glycogen decreased by the same magnitude during both trials and there was no relationship between changes in plasma glutamine and changes in muscle glycogen concentration. Muscle glutamine concentration did not change in either trial. CONCLUSIONS: These data suggest that the influence of carbohydrate intake upon the concentration of plasma glutamine is not mediated through the concentration of intramuscular glycogen.  相似文献   

17.
This study measured muscle glycogen during a 7-day carbohydrate loading protocol. Twenty healthy subjects (12 male, 8 female) performed 1 hr treadmill/toe-raise exercise immediately before a 3-day low carbohydrate (LoCHO) diet (20 % carbohydrate, 60 % fat, 20 % protein). On day 3 they repeated the exercise and began a 4-day high carbohydrate (HiCHO) diet (90 % carbohydrate, 2 % fat, 8 % protein). The order of administration of the diet was reversed in a subpopulation (n = 3). Interleaved natural abundance 13C/ 31P NMR spectra were obtained before and immediately after exercise, and each day during the controlled diets in order to determine concentrations of glycogen (GLY), glucose-6-phosphate (G6P), and muscle pH. Following exercise, muscle GLY and pH were reduced (p < 0.001) while muscle G6P was elevated (p 相似文献   

18.
During constant intensity treadmill or cycle exercise, progressive muscle fatigue is not readily quantified and endurance time is poorly reproducible. However, integration of dynamic knee extension (DKE) exercise with serial measurement of maximal voluntary contraction (MVC) force of knee extensor muscles permits close tracking of leg fatigue. We studied reproducibility of four performance indices: MVC force of rested muscle (MVC(rest)) rate of MVC force fall, time to exhaustion, and percentage of MVC(rest) (%MVC(rest)) at exhaustion in 11 healthy women (22+/-1 yrs) during identical constant work rate 1-leg DKE (1 Hz) on 2 separate days at sea level (30 m). Means+/-SD for the two test days, and the correlations (r), standard estimate errors and coefficients of variation (CV%) between days were, respectively: a) MVC(rest)(N), 524+/-99 vs 517+/-111, 0.91, 43.0, 4.9%; b) MVC force fall (N x min(-1)), -10.77+/-9.3 vs -11.79+/-12.1, 0.94, 3.6, 26.5 %; c) Time to exhaustion (min), 22.6+/-12 vs 23.9+/-14, 0.98, 2.7, 7.5 %; and d) %MVC(rest) at exhaustion, 65+/-13 vs 62+/-14, 0.85, 7.8, 5.6%. There were no statistically significant mean differences between the two test days for any of the performance measures. To demonstrate the potential benefits of evaluating multiple effects of an experimental intervention, nine of the women were again tested within 24hr of arriving at 4,300 m altitude using the identical force, velocity, power output, and energy requirement during constant work rate dynamic leg exercise. Low variability of each performance index enhanced the ability to describe the effects of acute altitude exposure on voluntary muscle function.  相似文献   

19.
INTRODUCTION: Oral beta2-agonist administration improves muscle function in persons without asthma. We performed a double-blind, randomized, controlled crossover study to assess whether acute inhaled salbutamol administration improves muscle strength and fatigability in healthy moderately trained subjects. METHODS: Quadriceps muscle strength was measured during maximal voluntary contraction (MVC) and femoral nerve magnetic stimulation (potentiated single twitch, TwQpeak) before and after (i) a maximal incremental cycling test (n = 10) and (ii) 50 maximal isometric one-leg extensions (n = 9). Each exercise test was performed on three occasions, after salbutamol (200 and 800 microg) or placebo inhalation. RESULTS: Before exercise, treatments had no significant effect on MVC [(placebo) 597 +/- 146 N vs (200 microg) 629 +/- 151 N vs (800 microg) 610 +/- 148 N] and TwQpeak [(placebo) 215 +/- 83 N vs (200 microg) 227 +/- 69 N vs (800 microg) 250 +/- 84 N]. Maximal power during cycling and maximal force during leg extensions did not differ between treatments. Treatments had no effect on MVC and TwQpeak reductions at 30 min [MVC: (placebo) -8 +/- 9% vs (200 microg) -9 +/- 7% vs (800 microg) -8 +/- 5%; TwQpeak: (placebo) -29 +/- 13% vs (200 microg) -23 +/- 15% vs (800 microg) -20 +/- 8%] and 60 min [MVC: (placebo) -12 +/- 17% vs (200 microg) -6 +/- 9% vs (800 microg) -8 +/- 8%; TwQpeak: (placebo) -20 +/- 21% vs (200 microg) -19 +/- 23% vs (800 microg) -8 +/- 7%] after cycling. Similarly, reductions in MVC and TwQpeak were not significantly different between treatments at 30 [MVC: (placebo) -11 +/- 9% vs (200 microg) -12 +/- 7% vs (800 microg) -8+/- 16%; TwQpeak: (placebo) -37 +/- 12% vs (200 microg) -33 +/- 20% vs (800 microg) -32 +/- 16%] and 60 min [MVC: (placebo) -10 +/- 11% vs (200microg) -11 +/- 6% vs (800 microg) -8 +/- 20%; TwQpeak: (placebo) -30 +/- 11% vs (200 microg) -28 +/- 24% vs (800 microg) -27 +/- 15%] after leg extensions. Treatments did not modify maximal voluntary activation at any time of the protocol. CONCLUSION: Acute therapeutic or supratherapeutic doses of inhaled salbutamol have no effect on quadriceps strength, fatigue, and recovery in men without asthma.  相似文献   

20.
The effect of active recovery at a decreasing % of MVC following intense muscular exercise on intramuscular pH was investigated in vivo using 31P-MRS. Seven healthy men participated, and their right wrist flexor muscle group was examined. The subjects were asked to flex their right wrist at 60 % of the maximum voluntary contraction (MVC) every 2 s until the intracellular pH in the wrist flexor muscle decreased to 6.4. After the exercise period, the subjects underwent active or passive recovery for 10 min. For the active recovery (AR), the subject was asked to continue exercising at a decreasing % of MVC, decreasing from 25 to 5 % MVC every two min during AR. 31P-MR-spectra were obtained throughout the experiments, and from the spectra the intracellular pH (pHi) was calculated as an indicator of intracellular events. AR data were compared to data collected during passive recovery (PR). During AR, the pHi increased immediately after the exercise period; whereas in that of PR, it did not recover within 5 minutes after exercise. The results suggested that mild exercise was an effective manoeuver to promote recovery from intramuscular metabolic acidosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号