首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To compare the image quality of dynamic lung MRI with variations of steady-state free-precession (SSFP) and gradient echo (GRE) cine techniques at 1.5 T and 3 T. Ventilated porcine lungs with simulated lesions inside a chest phantom and four healthy human subjects were assessed with SSFP (TR/TE = 2.9/1.22 ms; 3 ima/s) and GRE sequences (TR/TE = 2.34/0.96 ms; 8 ima/s) as baseline at 1.5 and 3 T. Modified SSFPs were performed with nine to ten images/s (parallel imaging factors 2 and 3). Image quality for representative structures and artifacts was ranked by three observers independently. At 1.5 T, standard SSFP achieved the best image quality with superior spatial resolution and signal, but equal temporal resolution to GRE. SSFP with improved temporal resolution was ranked second best. Further acceleration (PI factor 3) was of no benefit, but increased artifacts. At 3 T, GRE outranged SSFP imaging with high lesion signal intensity, while artifacts on SSFP images increased visibly. At 1.5 T, a modified SSFP with moderate parallel imaging (PI factor 2) was considered the best compromise of temporal and spatial resolution. At 3 T, GRE sequences remain the best choice for dynamic lung MRI.  相似文献   

2.
Balanced steady-state free precession (SSFP) imaging is limited by off-resonance banding artifacts, which occur with periodicity 1/TR in the frequency spectrum. A novel balanced SSFP technique for widening the band spacing in the frequency response is described. This method, called wideband SSFP, utilizes two alternating repetition times with alternating RF phase, and maintains high SNR and T(2)/T(1) contrast. For a fixed band spacing, this method can enable improvements in spatial resolution compared to conventional SSFP. Alternatively, for a fixed readout duration this method can widen the band spacing, and potentially avoid the banding artifacts in conventional SSFP. The method is analyzed using simulations and phantom experiments, and is applied to the reduction of banding artifacts in cine cardiac imaging and high-resolution knee imaging at 3T.  相似文献   

3.
PURPOSE: To improve the performance of fat/water separation and reduce the sensitivity to susceptibility variation in balanced SSFP sequences. MATERIALS AND METHODS: Decreasing the repetition time (TR) reduces susceptibility artifacts in SSFP imaging. A shorter TR may also improve the spectral selectivity obtained when linearly combining data acquired using different radiofrequency phase cycling schedules. The desired short TR is achieved by using an angularly undersampled three-dimensional radial acquisition sequence that achieves a near zero echo time (TE) and also a short TR. RESULTS: Images from human volunteers demonstrate broad coverage of the cervical spine and knee with isotropic resolution. Excellent fat/water separation is achieved in these studies. CONCLUSION: The short TR capability of the proposed sequence greatly improves the fat suppression in SSFP imaging. High-resolution volumetric T2-like contrast imaged with reduced susceptibility artifacts can be obtained from a single acquisition using this technique.  相似文献   

4.

Purpose

To investigate a new approach for more completely accounting for off‐resonance affects in the DESPOT2 (driven equilibrium single pulse observation of T2) mapping technique.

Materials and Methods

The DESPOT2 method derives T2 information from fully balanced steady‐state free precession (bSSFP) images acquired over multiple flip angles. Off‐resonance affects, which present as bands of altered signal intensity throughout the bSSFP images, results in erroneous T2 values in the corresponding calculated maps. Radiofrequency (RF) phase‐cycling, in which the phase of the RF pulse is incremented along the pulse train, offers a potential method for eliminating these artifacts. In this work we present a general method, referred to as DESPOT2, with full modeling (DESPOT2‐FM), for deriving T2, as well as off‐resonance frequency, from dual flip angle bSSFP data acquired with two RF phase increments.

Results

The method is demonstrated in vivo through the acquisition of whole‐brain, 1 mm3 isotropic T2 maps at 3T and shown to provide near artifact‐free maps, even in areas with steep susceptibility‐induced gradients.

Conclusion

DESPOT2‐FM offers an efficient method for acquiring high spatial resolution, whole‐brain T2 maps at 3T with high precision and free of artifact. J. Magn. Reson. Imaging 2009;30:411–417. © 2009 Wiley‐Liss, Inc.  相似文献   

5.

Purpose:

To minimize image artifacts in long TR cardiac phase‐resolved steady state free precession (SSFP) based blood‐oxygen‐level‐dependent (BOLD) imaging.

Materials and Methods:

Nine healthy dogs (four male, five female, 20–25 kg) were studied in a clinical 1.5 Tesla MRI scanner to investigate the effect of temporal resolution, readout bandwidth, and motion compensation on long repetition time (TR) SSFP images. Breath‐held 2D SSFP cine sequences with various temporal resolutions (10–204 ms), bandwidths (239–930 Hz/pixel), with and without first‐order motion compensation were prescribed in the basal, mid‐ventricular, and apical along the short axis. Preliminary myocardial BOLD studies in dogs with controllable coronary stenosis were performed to assess the benefits of artifact‐reduction strategies.

Results:

Shortening the readout time by means of increasing readout bandwidth had no observable reduction in image artifacts. However, increasing the temporal resolution in the presence of first‐order motion compensation led to significant reduction in image artifacts. Preliminary studies demonstrated that BOLD signal changes can be reliably detected throughout the cardiac cycle.

Conclusion:

Artifact‐reduction methods used in this study provide significant improvement in image quality compared with conventional long TR SSFP BOLD MRI. It is envisioned that the methods proposed here may enable reliable detection of myocardial oxygenation changes throughout the cardiac cycle with long TR SSFP‐based myocardial BOLD MRI. J. Magn. Reson. Imaging 2010;31:863–871. ©2010 Wiley‐Liss, Inc.  相似文献   

6.

Purpose:

To suppress off‐resonance artifacts in coronary artery imaging at 3 Tesla (T), and therefore improve spatial resolution.

Materials and Methods:

Wideband steady state free precession (SSFP) sequences use an oscillating steady state to reduce banding artifacts. Coronary artery images were obtained at 3T using three‐dimensional navigated gradient echo, balanced SSFP, and wideband SSFP sequences.

Results:

The highest in‐plane resolution of left coronary artery images was 0.68 mm in the frequency‐encoding direction. Wideband SSFP produced an average SNR efficiency of 70% relative to conventional balanced SSFP and suppressed off‐resonance artifacts.

Conclusion:

Wideband SSFP was found to be a promising approach for obtaining noncontrast, high‐resolution coronary artery images at 3 Tesla with reliable image quality. J. Magn. Reson. Imaging 2010;31:1224–1229. © 2010 Wiley‐Liss, Inc.  相似文献   

7.

Purpose

To evaluate the feasibility of improving 3.0T steady‐state free precession (SSFP) whole‐heart coronary magnetic resonance angiography (MRA) using short‐TR (repetition time) VIPR (vastly undersampled isotropic projection reconstruction).

Materials and Methods

SSFP is highly sensitive to field inhomogeneity. VIPR imaging uses nonselective radiofrequency pulses, allowing short TR and reduced banding artifacts, while achieving isotropic 3D resolution. Coronary artery imaging was performed in nine healthy volunteers using SSFP VIPR. TR was reduced to 3.0 msec with an isotropic spatial resolution of 1.3 × 1.3 × 1.3 mm3. Image quality, vessel sharpness, and lengths of major coronary arteries were measured. Comparison between SSFP using Cartesian trajectory and SSFP using VIPR trajectory was performed in all volunteers.

Results

Short‐TR SSFP VIPR resulted in whole‐heart images without any banding artifacts, leading to excellent coronary artery visualization. The average image quality score for VIPR‐SSFP was 3.12 ± 0.42 out of four while that for Cartesian SSFP was 0.92 ± 0.61. A significant improvement (P < 0.05) in image quality was shown by Wilcoxon comparison. The visualized coronary artery lengths for VIPR‐SSFP were: 10.13 ± 0.79 cm for the left anterior descending artery (LAD), 7.90 ± 0.91 cm for the left circumflex artery (LCX), 7.50 ± 1.65 cm for the right coronary artery (RCA), and 1.84 ± 0.23 cm for the left main artery (LM). The lengths statistics for Cartesian SSFP were 1.57 ± 2.02 cm, 1.54 ± 1.93 cm, 0.94 ± 1.17 cm, 0.46 ± 0.53 cm, respectively. The image sharpness was also increased from 0.61 ± 0.13 (mm?1) in Cartesian‐SSFP to 0.81 ± 0.11 (mm?1) in VIPR‐SSFP.

Conclusion

With VIPR trajectory the TR is substantially decreased, reducing the sensitivity of SSFP to field inhomogeneity and resulting in whole‐heart images without banding artifacts at 3.0T. Image quality improved significantly over Cartesian sampling. J. Magn. Reson. Imaging 2010; 31:1230–1235. © 2010 Wiley‐Liss, Inc.
  相似文献   

8.
Refocused steady-state free precession (SSFP), or fast imaging with steady precession (FISP or TrueFISP), has recently proven valuable for cardiac imaging because of its high signal-to-noise ratio (SNR) and excellent blood-myocardium contrast. In this study, various implementations of multiecho SSFP or EPI-SSFP for imaging in the heart are presented. EPI-SSFP has higher scan-time efficiency than single-echo SSFP, as two or more phase-encode lines are acquired per repetition time (TR) at the cost of a modest increase in TR. To minimize TR, a noninterleaved phase-encode order in conjunction with a phased-array ghost elimination (PAGE) technique was employed, removing the need for echo time shifting (ETS). The multishot implementation of EPI-SSFP was used to decrease the breath-hold duration for cine acquisitions or to increase the temporal or spatial resolution for a fixed breath-hold duration. The greatest gain in efficiency was obtained with the use of a three-echo acquisition. Image quality for cardiac cine applications using multishot EPI-SSFP was comparable to that of single-echo SSFP in terms of blood-myocardium contrast and contrast-to-noise ratio (CNR). The PAGE method considerably reduced flow artifacts due to both the inherent ghost suppression and the concomitant reduction in phase-encode blip size. The increased TR of multishot EPI-SSFP led to a reduced specific absorption rate (SAR) for a fixed RF flip angle, and allowed the use of a larger flip angle without increasing the SAR above the FDA-approved limits.  相似文献   

9.
Balanced steady-state free precession (SSFP) sequences are useful in cardiac imaging because they achieve high signal efficiency and excellent blood-myocardium contrast. Spiral imaging enables the efficient acquisition of cardiac images with reduced flow and motion artifacts. Balanced SSFP has been combined with spiral imaging for real-time interactive cardiac MRI. New features of this method to enable scanning in a clinical setting include short, first-moment nulled spiral trajectories and interactive control over the spatial location of banding artifacts (SSFP-specific signal variations). The feasibility of spiral balanced SSFP cardiac imaging at 1.5 T is demonstrated. In observations from over 40 volunteer and patient studies, spiral balanced SSFP imaging shows significantly improved contrast compared to spiral gradient-spoiled imaging, producing better visualization of cardiac function, improved localization, and reduced flow artifacts from blood.  相似文献   

10.
Cine balanced steady‐state free precession (SSFP) is the most widely used sequence for assessing cardiac ventricular function at 1.5 T because it provides high signal‐to‐noise ratio efficiency and strong contrast between myocardium and blood. At 3 T, the use of SSFP is limited by susceptibility‐induced off‐resonance, resulting in either banding artifacts or the need to use a short‐sequence pulse repetition time that limits the readout duration and hence the achievable spatial resolution. In this work, we apply wideband SSFP, a variant of SSFP that uses two alternating pulse repetition times to establish a steady state with wider band spacing in its frequency response and overcome the key limitations of SSFP. Prospectively gated cine two‐dimensional imaging with wideband SSFP is evaluated in healthy volunteers and compared to conventional balanced SSFP, using quantitative metrics and qualitative interpretation by experienced clinicians. We demonstrate that by trading off temporal resolution and signal‐to‐noise ratio efficiency, wideband SSFP mitigates banding artifacts and enables imaging with approximately 30% higher spatial resolution compared to conventional SSFP with the same effective band spacing. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Resolution enhanced T(1)-insensitive steady-state imaging (RE-TOSSI) is a new MRI pulse sequence for the generation of rapid T(2) contrast with high spatial resolution. TOSSI provides T(2) contrast by using nonequally spaced inversion pulses throughout a balanced steady-state free precession (SSFP) acquisition. In RE-TOSSI, these energy and time intensive adiabatic inversion pulses and associated magnetization preparation are removed from TOSSI after acquisition of the data around the center of k-space. Magnetization evolution simulations demonstrate T(2) contrast in TOSSI as well as reduction in the widening of the point spread function width (by up to a factor of 4) to a near ideal case for RE-TOSSI. Phantom experimentation is used to characterize and compare the contrast and spatial resolution properties of TOSSI, RE-TOSSI, balanced SSFP, Half-Fourier Acquisition Single-Shot Turbo Spin Echo (HASTE), and turbo spin echo and to optimize the fraction of k-space acquired using TOSSI. Comparison images in the abdomen and brain demonstrate similar contrast and improved spatial resolution in RE-TOSSI compared with TOSSI; comparison balanced SSFP, HASTE, and turbo spin echo images are provided. RE-TOSSI is capable of providing high spatial resolution T(2)-weighted images in 1 s or less per image.  相似文献   

12.
Gradient and spin echo (GRASE) imaging is an echo train imaging sequence that combines gradient and RF refocusing. This combination introduces phase modulations into the echo train. If the phase encoding order is linear with echo time, these modulations cause severe ghosting artifacts. Changing the order of phase encoding can greatly reduce these artifacts. Several phase encoding orders for T2-weighted sequences are compared in this paper: linear, partially randomized, standard GRASE ordering, and k-banded (kb) GRASE ordering. Different possible implementations of GRASE and kbGRASE are also considered. Computer simulation is used to compare resolution and artifact levels. Phantom and volunteer images are presented. The linear order is most sensitive to ghosting artifacts associated with chemical shift, susceptibility differences and static field inhomogeneities. The standard GRASE order is least sensitive to these but most vulnerable to artifacts associated with short T2 signals. kbGRASE is a good intermediate between linear and standard GRASE and generally shows the lowest artifact levels. The partially randomized order gives the most diffuse artifacts. Computer simulations show that spatial resolution and contrast with all phase encoding orders are similar.  相似文献   

13.
PURPOSE: To reduce undersampling artifacts for a given number of repetitions of the projection reconstruction (PR) sequence by modifying its k-space trajectory to sample more mid-frequencies while reducing the sampling coverage of the peripheral spatial frequencies. MATERIALS AND METHODS: The single k-space spoke measured per repetition in the standard PR was modified so that one complete and two partial spokes were measured per repetition but with decreased k-space extent. The point spread functions (PSFs) and undersampling artifacts of the modified PR were compared with those of the standard PR for various numbers of projections. Phantom and in vivo images were used to assess the relative performance. RESULTS: PSF analysis indicated that the modified PR method provided reduced undersampling artifacts with somewhat reduced spatial resolution. The phantom and in vivo images corroborated this. CONCLUSION: The modified PR trajectory provides reduced undersampling artifact vs. the standard PR, particularly when the number of projections is limited and the artifact level is high.  相似文献   

14.
Coronary artery data acquisition with steady-state free precession (SSFP) is typically performed in a single frame in mid-diastole with a spectrally selective pulse to suppress epicardial fat signal. Data are acquired while the signal approaches steady state, which may lead to artifacts from the SSFP transient response. To avoid sensitivity to cardiac motion, an accurate trigger delay and data acquisition window must be determined. Cine data acquisition is an alternative approach for resolving these limitations. However, it is challenging to use conventional fat saturation with cine imaging because it interrupts the steady-state condition. The purpose of this study was to develop a 4D coronary artery imaging technique, termed "cine angiography with phase-sensitive fat suppression" (CAPS), that would result in high temporal and spatial resolution simultaneously. A 3D radial stacked k-space was acquired over the entire cardiac cycle and then interleaved with a sliding window. Sensitivity-encoded (SENSE) reconstruction with rescaling was developed to reduce streak artifact and noise. Phase-sensitive SSFP was employed for fat suppression using phase detection. Experimental studies were performed on volunteers. The proposed technique provides high-resolution coronary artery imaging for all cardiac phases, and allows multiple images at mid-diastole to be averaged, thus enhancing the signal-to-noise ratio (SNR) and vessel delineation.  相似文献   

15.
The authors compared radial steady-state free precession (SSFP) coronary magnetic resonance (MR) angiography, cartesian k-space sampling SSFP coronary MR angiography, and gradient-echo coronary MR angiography in 16 healthy adults and four pilot study patients. Standard gradient-echo MR imaging with a T2 preparatory pulse and cartesian k-space sampling was the reference technique. Image quality was compared by using subjective motion artifact level and objective contrast-to-noise ratio and vessel sharpness. Radial SSFP, compared with cartesian SSFP and gradient-echo MR angiography, resulted in reduced motion artifacts and superior vessel sharpness. Cartesian SSFP resulted in increased motion artifacts (P <.05). Contrast-to-noise ratio with radial SSFP was lower than that with cartesian SSFP and similar to that with the reference technique. Radial SSFP coronary MR angiography appears preferable because of improved definition of vessel borders.  相似文献   

16.
Various pulse sequences for fast proton spectroscopic imaging (SI) using the steady-state free precession (SSFP) condition are proposed. The sequences use either only the FID-like signal S(1), only the echo-like signal S(2), or both signals in separate but adjacent acquisition windows. As in SSFP imaging, S(1) and S(2) are separated by spoiler gradients. RF excitation is performed by slice-selective or chemical shift-selective pulses. The signals are detected in absence of a B(0) gradient. Spatial localization is achieved by phase-encoding gradients which are applied prior to and rewound after each signal acquisition. Measurements with 2D or 3D spatial resolution were performed at 4.7 T on phantoms and healthy rat brain in vivo allowing the detection of uncoupled and J-coupled spins. The main advantages of SSFP based SI are the short minimum total measurement time (T(min)) and the high signal-to-noise ratio per unit measurement time (SNR(t)). The methods are of particular interest at higher magnetic field strength B(0), as TR can be reduced with increasing B(0) leading to a reduced T(min) and an increased SNR(t). Drawbacks consist of the limited spectral resolution, particularly at lower B(0), and the dependence of the signal intensities on T(1) and T(2). Further improvements are discussed including optimized data processing and signal detection under oscillating B(0) gradients leading to a further reduction in T(min).  相似文献   

17.
Signal-to-noise ratio behavior of steady-state free precession.   总被引:2,自引:0,他引:2  
Steady-state free precession (SSFP) is a rapid gradient-echo imaging technique that has recently gained popularity and is used in a variety of applications, including cardiac and real-time imaging, because of its high signal and favorable contrast between blood and myocardium. The purpose of this work was to examine the signal-to-noise ratio (SNR) behavior of images acquired with SSFP, and the dependence of SNR on imaging parameters such as TR, bandwidth, and image resolution, and the use of multi-echo sequences. In this work it is shown that the SNR of SSFP sequences is dependent only on pulse sequence efficiency, voxel dimensions, and relaxation parameters (T1 and T2). Notably, SNR is insensitive to bandwidth unless increases in bandwidth significantly decrease efficiency. Finally, we examined the relationship between pulse sequence performance (TR and efficiency) and gradient performance (maximum gradient strength and slew rate) for several imaging scenarios, including multi-echo sequences, to determine the optimum matching of maximum gradient strength and slew rate for gradient hardware designs. For standard modern gradient hardware (40 mT/m and 150 mT/m/ms), we found that the maximum gradient strength is more than adequate for the imaging resolution that is commonly encountered with rapid scouting (3 mm x 4 mm x 10 mm voxel). It is well matched for typical CINE and real-time cardiac imaging applications (1.5 mm x 2 mm x 6 mm voxel), and is inadequate for optimal matching with slew rate for high-resolution applications such as musculoskeletal imaging (0.5 x 0.8 x 3 mm voxel). For the lower-resolution methods, efficiency could be improved with higher slew rates; this provokes interest in designing methods for limiting dB/dt peripherally while achieving high switching rates in the imaging field of view. The use of multi-echo SSFP acquisitions leads to substantial improvements in sequence performance (i.e., increased efficiency and shorter TR).  相似文献   

18.
Steady-state free precession (SSFP) pulse sequences employing gradient reversal echoes and short repetition time (TR) between successive rf excitation pulses offer high signal-to-noise ratio per unit time. However, SSFP sequences are very sensitive to motion. A new SSFP method is presented which avoids the image artifacts and loss of signal intensity due to motion. The pulse sequence is designed so that the time integral of each of the three gradients is zero over each TR time interval. The signal then consists of numerous echoes which are superimposed. These echoes are isolated by combining the data from N different scans. In each scan a specific phase shift is added during every TR interval. Each of these N isolated echoes produces a motion-insensitive, artifact-free image. Because all the echoes are sampled simultaneously, the signal-to-noise ratio per unit time in this SSFP method is higher than in existing SSFP techniques which sample only one echo at a time. The new method was implemented and used to produce both two- and three-dimensional images of the head and cervical spin of a human patient. In these images the high signal intensity of cerebrospinal fluid is preserved regardless of its motion. Further work is required to evaluate the imaging parameters (TR, TE, rf tip angle) so as to give optimal tissue contrast for the various echoes.  相似文献   

19.
Balanced steady-state free precession (SSFP) imaging is sensitive to off-resonance effects, which can lead to considerable artifacts during a transient phase following magnetization preparation or steady-state interruption. In addition, nonlinear k-space encoding is required if contrast-relevant k-space regions need to be acquired at specific delays following magnetization preparation or for transient artifact reduction in cardiac-gated k-space segmented CINE imaging. Such trajectories are problematic for balanced SSFP imaging due to nonconstant eddy current effects and resulting disruption of the steady state.In this work, a novel acquisition strategy for balanced SSFP imaging is presented that utilizes scan time reduction by parallel imaging for optimized "double average" eddy current compensation and artifact reduction during the transient phase following steady-state storage and magnetization preparation. Double average parallel SSFP imaging was applied to k-space segmented CINE SSFP tagging as well as nongated centrically encoded SSFP imaging. Phantom and human studies exhibit substantial reduction in steady-state storage and eddy current artifacts while maintaining spatial resolution, signal-to-noise ratio, and similar total scan time of a standard SSFP acquisition. The proposed technique can easily be extended to other acquisition schemes that would benefit from nonlinear reordering schemes and/or rely on interruption of the balanced SSFP steady state.  相似文献   

20.
PURPOSE: To investigate the effect of chemical exchange and multicomponent relaxation on the rapid T(2) mapping method, DESPOT2 (driven equilibrium single pulse observation of T(2)) and the steady-state free precession (SSFP) sequence upon which it is based. Although capable of rapid T(2) determination, an assumption implicit of the method is single-component relaxation. In many biological tissues (such as white and gray matter), it is well established that the T(2) decay curve is more accurately described by the summation of more than one relaxation species. MATERIALS AND METHODS: The effects of exchange were first incorporated into the general SSFP magnetization expressions and its effect on the measured SSFP signal investigated using Bloch-McConnell simulations. Corresponding imaging experiments were performed to support the presented theory. RESULTS: Simulations show the measured multicomponent SSFP signal may be expressed as a linear summation of signal from each species under usual imaging conditions where the repetition time is much less than T(2). Imaging experiments performed using dairy cream demonstrate strong agreement with the presented theory. Finally, using a dairy cream model, we demonstrate quantification of multicomponent relaxation from multiangle SSFP data for the first time, showing good agreement with reference spin-echo values. CONCLUSION: SSFP and DESPOT2 may provide a new method for investigating multicomponent systems, such as human brain, and disease processes, such as multiple sclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号