首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
2.
3.

Background

Blood platelet numbers are correlated with growth and aggressiveness of several tumor types, including hepatocellular carcinoma (HCC). We previously found that platelet lysates (hPLs) both stimulated HCC cell growth and migration, and antagonized the growth-inhibitory and apoptotic effects of Regorafenib, multikinase growth inhibitor, on HCC cell lines. We evaluated the effects of human insulin-like growth factor-1 (IGF1), a mitogen contained in platelets, on the Regorafenib-mediated growth inhibition.

Methods

An Elisa kit was used to evaluate hPL IGF1 concentrations. The effects of IGF1 on cell proliferation were assessed with MTT assay and analysis of cell cycle progression. Apoptosis assays, scratch assay and Transwell assay were performed to measure apoptosis, cell migration and invasion respectively. Western blots were performed by standard protocols.

Results

IGF1 antagonized growth inhibition exerted by Regorafenib on HCC cell lines. Moreover the mitogen blocked Regorafenib-induced apoptosis and decreased the rate of cell migration and invasion. The IGF1 effects were in turn antagonized by actions of a potent IGF1 receptor inhibitor, GSK1838705A, showing that the IGF1 receptor was involved in the mechanisms of IGF1-mediated blocking of Regorafenib action. GSK1838705A also partially blocked the effects of hPLs in antagonizing Regorafenib-mediated growth inhibition, showing that IGF1 was an important component of hPL actions.

Conclusions

These results show that IGF1 antagonized Regorafenib-mediated growth, migration and invasion inhibition, as well as the drug-mediated induction of apoptosis in HCC cells and reinforce the idea that microenvironmental factors can influence cancer drug actions.  相似文献   

4.

Background

Hepatocellular carcinoma (HCC) represents one of the most lethal cancers worldwide due to therapy resistance and disease recurrence. Tumor relapse following treatment could be driven by the persistence of liver cancer stem-like cells (CSCs). The protein BMI1 is a member of the polycomb epigenetic factors governing cellular self-renewal, proliferation, and stemness maintenance. BMI1 expression also correlates with poor patient survival in various cancer types.

Objective

We aimed to elucidate the extent to which BMI1 can be used as a potential therapeutic target for CSC eradication in HCC.

Methods

We have recently participated in characterizing the first known pharmacological small molecule inhibitor of BMI1. Here, we synthesized a panel of novel BMI1 inhibitors and examined their ability to alter cellular growth and eliminate cancer progenitor/stem-like cells in HCC with different p53 backgrounds.

Results

Among various molecules examined, RU-A1 particularly downregulated BMI1 expression, impaired cell viability, reduced cell migration, and sensitized HCC cells to 5-fluorouracil (5-FU) in vitro. Notably, long-term analysis of HCC survival showed that, unlike chemotherapy, RU-A1 effectively reduced CSC content, even as monotherapy. BMI1 inhibition with RU-A1 diminished the number of stem-like cells in vitro more efficiently than the model compound C-209, as demonstrated by clonogenic assays and impairment of CSC marker expression. Furthermore, xenograft assays in zebrafish showed that RU-A1 abrogated tumor growth in vivo.

Conclusions

This study demonstrates the ability to identify agents with the propensity for targeting CSCs in HCC that could be explored as novel treatments in the clinical setting.
  相似文献   

5.

Purpose

Although hepatocellular carcinoma (HCC) is one of the most common malignant tumors, its molecular mechanism is still unknown. Dishevelled 2 (Dvl2) is one of the downstream targets of non-canonical Wnt signaling, which has been demonstrated to be of great importance in the progression of cancers. Nevertheless, the expression mechanisms and physiological significance of Dvl2 in HCC remain unclear.

Methods

Western blotting and immunohistochemistry were used to measure Dvl2 protein expression in HCC and adjacent normal tissues of 101 patients. Wound healing and transwell assays were used to determine cell migration and invasion.

Results

Dvl2 expression was upregulated in HCC tissues compared to the adjacent normal tissues. Moreover, its expression level was significantly correlated with histological grade (P = 0.042), metastasis (P = 0.005) and vein invasion (P = 0.009) in patients with HCC. Wound healing and transwell assays showed that knockdown of Dvl2 reduced cell migration and invasion in HepG2 cells. Finally, we confirmed that Dvl2 could regulate the migration and invasion of HCC cells by interacting with P62 in non-canonical Wnt signaling.

Conclusions

Our data showed that Dvl2 was overexpressed in HCC tissues and was also correlated with poor prognosis, suggesting that Dvl2 is a novel therapeutic target for HCC.
  相似文献   

6.

Background

IGF1 is a key regulator of tissue growth and development and has been implicated in the initiation and progression of various cancers, including breast cancer. Through IGF1 mRNA splicing different precursor pro-peptides, i.e., the IGF1Ea, IGF1Eb and IGF1Ec pro-forms, are formed whose biological roles in the pathogenesis of breast cancer have not been established yet. The objective of this study was to assess the biological activity of the IGF1 pro-forms in human breast cancer-derived cells.

Methods

The different IGF1 pro-forms were generated through transient transfection of HEK293 cells with the respective vector constructs. The resulting conditioned media were applied in vitro to MCF7, T47D and ZR751 breast cancer-derived cell cultures. The recombinant human IGF1 pro-forms were also tested for their binding affinity to an anti-IGF1 specific antibody by immunoprecipitation. To determine whether the IGF1 pro-forms induce cell proliferation, mature IGF1 was neutralised in HEK293-derived conditioned media.

Results

We found that the IGF1 pro-forms were the only forms that were produced intra-cellularly, whereas both mature IGF1 and the IGF1 pro-forms were detected extra-cellularly. We also found that E peptides can impair the IGF1 pro-form binding affinity for the anti-IGF1 antibody and, thus, hamper an accurate measurement of the IGF1 pro-forms. Additionally, we found that the IGF1 antibody can completely inhibit IGF1-induced breast cancer cell proliferation and IGF1 receptor (IGF1R) phosphorylation, wheras the same antibody was found to only partially inhibit the biological activity of the pro-forms. Moreover, we found that the IGF1 pro-form activities can completely be inhibited by neutralising the IGF1R. Finally, we compared the bioactivity of the IGF1 pro-forms to that of mature IGF1, and found that the IGF1 pro-forms were less capable of phosphorylating the IGF1R in the breast cancer-derived cells tested.

Conclusions

Our data indicate that IGF1 pro-forms can induce breast cancer cell proliferation via the IGF1R, independent from the mature IGF1 form. These results underline the importance of an accurate assessment of the presence of IGF1 pro-forms within the breast cancer microenvironment.
  相似文献   

7.

Background

Sorafenib is a standard of care for advanced hepatocellular carcinoma (HCC). An in vitro study showed the synergistic effects of sorafenib and interferon for HCC. To clarify the efficacy, combination therapy with sorafenib and interferon was performed for patients with advanced HCC.

Methods

Pegylated interferon α-2a was administered every 2 weeks for the initial 4 weeks. Subsequently, it was combined with sorafenib. We evaluated the anti-tumor effect and biomarkers during treatment period.

Results

The subjects were 13 patients with advanced HCC complicated by hepatitis C virus (HCV)-related liver cirrhosis. A partial response, stable disease and progressive disease were noted in 4, 6, and 3 patients, respectively. The response rate, the disease control rate, the mean time to progression and the median survival time (MST) were 30.8 % (4/13), 76.9 % (10/13), 12.2 months, and 17.5 months, respectively. In 8 Child-Pugh class A and 5 Child-Pugh class B patients, the MST was 22.0 and 11.0 months, respectively (p = 0.001). In plasma vascular endothelial growth factor (VEGF), serum alpha-fetoprotein (AFP), AFP-L3, a protein induced by vitamin K absence or antagonist-II (PIVKA II), and hepatocyte growth factor (HGF), there was no pretreatment factor and no biomarker during the combination therapy to predict therapeutic effect in the present study.

Conclusions

The results of this study suggest that combination therapy with sorafenib and interferon could be effective and safe in advanced HCC patients with HCV-related liver cirrhosis.
  相似文献   

8.

Background

Recently, Glypican-3 (GPC3) has been identified as a potential hepatocellular carcinoma (HCC) diagnostic and/or therapeutic target. GPC3 has been found to be up-regulated in HCC and to be absent in normal and cirrhotic liver. As yet, however, the molecular characteristics of GPC3 and its role in HCC cell physiology and development are still undefined.

Methods

Human hepatocyte cultures were established from 10 HCC patients. Additional liver samples were obtained from 5 patients without cirrhosis and/or HCC. Soft agar colony formation, (co-)immunofluorescence and Western blot assays were used to characterize the hapatocyte cultures. The expression of GPC3 in the hepatocytes was silenced using siRNA, after which, apoptosis, scratch wound migration and transwell invasion assays were performed.

Results

We found that in HCC precursor hepatocytes GPC3 is increasingly expressed in different forms and at different locations, i.e., a non-cleaved form (70 kDa) was found to be localized in the cytoplasm while a N-terminal cleaved form (N-GPC3: 40 kDa) was fond to be localized in the cytoplasm and at the extracellular side of hepatocyte membranes. In addition, we found that the non-cleaved form of GPC3 co-localizes with Furin-Convertase in the Golgi apparatus. We also found that, similar to GPC3, Furin-Convertase is expressed in HCC precursor cells, suggesting a role in GPC3 processing. Subsequent siRNA-mediated GPC3 silencing resulted in a temporary inhibition of cell proliferation, migration and ivasion, while inducing apoptosis in transformed hepatocytes.

Conclusion

Our data reveal new aspects of the role of GPC3 in early hepatocyte transformation. In addition we conclude that GPC3 may serve as a new HCC immune-therapeutic target.
  相似文献   

9.
10.
11.

Background

Non-coding RNAs (ncRNAs) have been reported to participate in tumor progression by regulating gene expression. Previous studies showed that protein phosphatase Mg2+/Mn2+ dependent 1F (PPM1F) acts a dual role in cancer growth and metastasis. But, the underlying mechanisms by which ncRNAs regulate PPM1F expression in hepatocellular carcinoma (HCC) are poorly understood.

Methods

The association between PPM1F or miR-490-3p expression and clinicopathological features and prognosis in patients with HCC was analyzed by TCGA RNA-sequencing data. CircSLC3A2 was identified to bind with miR-490-3p by bioinformatic analysis, and the binding sites between miR-490-3p and PPM1F or circSLC3A2 were confirmed by dual luciferase report and RNA immunoprecipitation (RIP) assays. The localization and clinical significance of miR-490-3p and circSLC3A2 in patients with HCC were investigated by fluorescence in situ hybridization (FISH). MTT, Agar, and Transwell assays were conducted to evaluate the effects of miR-490-3p or circSLC3A2 on cell proliferation and invasive potential.

Results

The expression of PPM1F or miR-490-3p was associated with poor survival and tumor recurrence, and acted as an independent prognostic factor in patients with HCC. Re-expression of miR-490-3p inhibited HCC cell proliferation and invasion by targeting PPM1F, but its inhibitor reversed these effects. Moreover, circSLC3A2, predominantly localized in the cytoplasm, exhibited an oncogenic role by sponging miR-490-3p and regulating PPM1F expression, and harbored a positive correlation with poor survival in patients with HCC.

Conclusion

CircSLC3A2 acts as an oncogenic factor in HCC by sponging miR-490-3p and regulating PPM1F expression.
  相似文献   

12.

Background

We recently constructed a liver index (LI) from four liver parameters, namely: blood total bilirubin, gamma glutamyl transpeptidase (GGTP), albumin, and platelet levels (a cirrhosis surrogate). We found that the scores for the liver index related significantly to a four-parameter HCC aggressiveness index (maximum tumor diameter, multifocality, percent portal vein invasion, and blood AFP levels).

Aims

To validate the relationship of liver parameters to tumor aggressiveness parameters in a larger, different HCC dataset.

Results

We now confirm these associations in another large HCC cohort. Furthermore, this liver index showed significant trends with the individual HCC aggressiveness parameters.

Conclusions

These results provide further support for the idea that liver microenvironment, as reflected in liver function tests, may relate to HCC behavior.
  相似文献   

13.
14.

Background

Exploratory biomarker analysis was conducted to identify factors related to the outcomes of patients with stage II/III gastric cancer using data from the Adjuvant Chemotherapy Trial of S-1 for Gastric Cancer, which was a randomized controlled study comparing the administration of an orally active combination of tegafur, gimeracil, and oteracil with surgery alone.

Methods

Formalin-fixed paraffin-embedded surgical specimens from 829 patients were retrospectively examined, and 63 genes were analyzed by quantitative real-time RT-PCR after TaqMan assay-based pre-amplification. Gene expression was normalized to the geometric mean of GAPDH, ACTB, and RPLP0 as reference genes, and categorized into low and high values based on the median. The impact of gene expression on survival was analyzed using 5-year survival data. The Benjamini and Hochberg procedure was used to control the false discovery rate.

Results

IGF1R and AREG were most strongly correlated with overall survival, which was significantly worse in high IGF1R patients than low IGF1R patients, but better in high AREG patients than low AREG patients. The hazard ratio for death in the analysis of overall survival (S-1 vs. surgery alone) was reduced in the high IGF1R group compared with the low IGF1R group and in the low AREG group compared with the high AREG group. There were no significant interaction effects.

Conclusion

IGF1R gene expression was associated with poor outcomes after curative resection of stage II/III gastric cancer, whereas AREG gene expression was associated with good outcomes. No significant interaction effect on survival was evident between S-1 treatment and gene expression.
  相似文献   

15.

Purpose

Interactions between HER2, estrogen receptor (ER), and insulin-like growth factor I receptor (IGF1R) are implicated in resistance to monotherapies targeting these receptors. We have previously shown in pre-clinical studies synergistic anti-tumor effects for co-targeting each pairwise combination of HER2, IGF1R, and ER. Strikingly, synergy for HER2/IGF1R targeting occurred not only in a HER2+ model, but also in a HER2-normal model. The purpose of the current study was therefore to determine the generalizability of synergistic anti-tumor effects of co-targeting HER2/IGF1R, the anti-tumor activity of triple-targeting HER2/IGF1R/ER in hormone-dependent cell lines, and the effect of using the multi-targeting drugs neratinib (pan-HER) and BMS-754807 (dual IGF1R/insulin receptor).

Methods

Proliferation and apoptosis assays were performed in a large panel of cell lines representing varying receptor expression levels. Mechanistic effects were studied using phospho-protein immunoblotting. Analyses of drug interaction effects were performed using linear mixed-effects regression models.

Results

Enhanced anti-proliferative effects of HER/IGF-insulin co-targeting were seen in most, though not all, cell lines, including HER2-normal lines. For ER+ lines, triple targeting with inclusion of anti-estrogen generally resulted in the greatest anti-tumor effects. Double or triple targeting generally resulted in marked increases in apoptosis in the sensitive lines. Mechanistic studies demonstrated that the synergy between drugs was correlated with maximal inhibition of Akt and ERK pathway signaling.

Conclusions

Dual HER/IGF-insulin targeting, and triple targeting with inclusion of anti-estrogen drugs, shows striking anti-tumor activity across breast cancer types, and drugs with broader receptor specificity may be more effective than single receptor selective drugs, particularly for ER? cells.
  相似文献   

16.

Background

Patients with diabetes are at increased risk of developing hepatocellular carcinoma (HCC) and have a poorer prognosis as compared to non-diabetics when HCC occurs. Diabetics with non-HCC cancers are at higher risk of toxicity related to systemic therapy, but data on HCC are lacking.

Objective

The aim of this study was to evaluate safety and effectiveness of sorafenib in HCC patients according to the presence/absence of diabetes.

Patients and Methods

From October 2008 to June 2014, 313 patients with HCC treated with sorafenib were enrolled. The patients were staged according to the BCLC system. Treatment response was evaluated according to the mRECIST criteria. The main evaluated outcomes were the overall survival and the safety in the two groups.

Results

Patients were divided in two groups: 80 diabetics (DIAB) and 233 nondiabetics (nDIAB). The median treatment duration was 4 months in DIAB and 3 months in nDIAB. Main adverse events occurred with comparable frequency in both groups, with the exception of rash, that was more frequent among DIAB than in nDIAB: 27.5 % vs 17.6 % (P?=?.047). The median overall survival was 9 months in nDIAB and 10 months in DIAB group (P?=?.535). Median time-to-progression (TTP) was longer the in DIAB than the nDIAB group (P?=?.038).

Conclusions

Sorafenib was as safe as effective in DIAB and in nDIAB patients. The longer TTP observed among DIAB than in nDIAB patients might suggest a better anticancer effect of sorafenib in patients with diabetes.
  相似文献   

17.
18.

Background

There is an urgent need to identify new molecular targets for treatment of osteosarcoma. Circular RNAs are a class of endogenous RNAs that are extensively found in mammalian cells and exert critical functions in the regulation of gene expression, but in osteosarcoma the underlying molecular mechanism of circular RNAs remain poorly understood. Here we assessed the tumorigenesis properties of a circular RNA, circFAT1 in osteosarcoma.

Methods

The effects of circFAT1/miR-375/YAP1 was evaluated on human osteosarcoma cells growth, apoptosis, migration, invasion and tumorigenesis. Signaling pathways were analyzed by western blotting, qRT-PCR, fluorescence in situ hybridization, chromogenic in situ hybridization,RNA Binding Protein Immunoprecipitation and immunofluorescence. The consequence of circFAT1 short hairpin RNA combined or not with miR-375 sponge was evaluated in mice bearing 143B xenografts on tumor growth.

Results

In this study, we observed significant upregulation of circFAT1 originating from exon 2 of the FAT1 gene in human osteosarcoma tissues and cell lines. Inhibition of circFAT1 effectively prevented the migration, invasion, and tumorigenesis of osteosarcoma cells in vitro and repressed osteosarcoma growth in vivo. Mechanistic studies revealed that circFAT1 contains a binding site for the microRNA-375 (miR-375) and can abundantly sponge miR-375 to upregulate the expression of Yes-associated protein 1. Moreover, inhibition of miR-375 reversed attenuation of cell proliferation, migration, and invasion, which was induced by circFAT1 knockdown, and therefore promoted tumorigenesis.

Conclusions

Our findings demonstrate a novel function of circFAT1 in tumorigenesis and suggest a new therapeutic target for the treatment of osteosarcoma.
  相似文献   

19.

Background

Hepatocellular carcinoma (HCC) remains a global challenge due to its high morbidity and mortality rates as well as poor response to treatment. The communication between tumor-derived elements and stroma plays a critical role in facilitating cancer progression of HCC. Exosomes are small extracellular vesicles (EVs) that are released from the cells upon fusion of multivesicular bodies with the plasma membrane. There is emerging evidence indicating that exosomes play a central role in cell-to-cell communication. Much attention has been paid to exosomes since they are found to transport bioactive proteins, messenger RNA (mRNAs) and microRNA (miRNAs) that can be transferred in active form to adjacent cells or to distant organs. However, the mechanisms underlying such cancer progression remain largely unexplored.

Methods

Exosomes were isolated by differential ultracentrifugation from conditioned medium of HCC cells and identified by electron microscopy and Western blotting analysis. Hepatic stellate cells (HSCs) were treated with different concentrations of exosomes, and the activation of HSCs was analyzed by Western blotting analysis, wound healing, migration assay, Edu assay, CCK-8 assay and flow cytometry. Moreover, the different miRNA levels of exosomes were tested by real-time quantitative PCR (RT-PCR). The angiogenic ability of activated HSCs was analyzed by qRT-PCR, CCK-8 assay and tube formation assay. In addition, the abnormal lipid metabolism of activated HSCs was analyzed by Western blotting analysis and Oil Red staining. Finally, the relationship between serum exosomal miRNA-21 and prognosis of HCC patients was evaluated.

Results

We showed that HCC cells exhibited a great capacity to convert normal HSCs to cancer-associated fibroblasts (CAFs). Moreover, our data revealed that HCC cells secreted exosomal miRNA-21 that directly targeted PTEN, leading to activation of PDK1/AKT signaling in HSCs. Activated CAFs further promoted cancer progression by secreting angiogenic cytokines, including VEGF, MMP2, MMP9, bFGF and TGF-β. Clinical data indicated that high level of serum exosomal miRNA-21 was correlated with greater activation of CAFs and higher vessel density in HCC patients.

Conclusions

Intercellular crosstalk between tumor cells and HSCs was mediated by tumor-derived exosomes that controlled progression of HCC. Our findings provided potential targets for prevention and treatment of live cancer.
  相似文献   

20.

Purpose

G protein-coupled receptors (GPCRs) represent the largest family of druggable targets in human genome. Although several GPCRs can cross-talk with the human epidermal growth factor receptors (HERs), the expression and function of most GPCRs remain unknown in HER2+ breast cancer (BC). In this study, we aimed to evaluate gene expression of GPCRs in tumorigenic or anti-HER2 drug-resistant cells and to understand the potential role of candidate GPCRs in HER2+ BC.

Methods

Gene expression of 352 GPCRs was profiled in Aldeflur+ tumorigenic versus Aldeflur? population and anti-HER2 therapy-resistant derivatives versus parental cells of HER2+ BT474 cells. The GPCR candidates were confirmed in 7 additional HER2+ BC cell line models and publicly available patient dataset. Anchorage-dependent and anchorage-independent cell growth, mammosphere formation, and migration/invasion were evaluated upon GPR110 knockdown by siRNA in BT474 and SKBR3 parental and lapatinib+ trastuzumab-resistant (LTR) cells.

Results

Adhesion and class A GPCRs were overexpressed in Aldeflur+ and anti-HER2 therapy-resistant population of BT474 cells, respectively. GPR110 was the only GPCR overexpressed in Aldeflur+ and anti-HER2 therapy-resistant population in BT474, SKBR3, HCC1569, MDA-MB-361, AU565, and/or HCC202 cells and in HER2+ BC subtype in patient tumors. Using BT474 and SKBR3 parental and LTR cells, we found that GPR110 knockdown significantly reduced anchorage-dependent/independent cell growth as well as migration/invasion of parental and LTR cells and mammosphere formation in LTR derivatives and not in parental cells.

Conclusion

Our data suggest a potential role of GPR110 in tumorigenicity and in tumor cell dissemination in HER2+ BC.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号