首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
ABSTRACT

Introduction: A radiation countermeasure that can be used prior to radiation exposure to protect the population from the harmful effects of radiation exposure remains a major unmet medical need and is recognized as an important area for research. Despite substantial advances in the research and development for finding nontoxic, safe, and effective prophylactic countermeasures for the acute radiation syndrome (ARS), no such agent has been approved by the United States Food and Drug Administration (FDA).

Area covered: Despite the progress made to improve the effectiveness of amifostine as a radioprotector for ARS, none of the strategies have resolved the issue of its toxicity/side effects. Thus, the FDA has approved amifostine for limited clinical indications, but not for non-clinical uses. This article reviews recent strategies and progress that have been made to move forward this potentially useful countermeasure for ARS.

Expert opinion: Although the recent investigations have been promising for fielding safe and effective radiation countermeasures, additional work is needed to improve and advance drug design and delivery strategies to get FDA approval for broadened, non-clinical use of amifostine during a radiological/nuclear scenario.  相似文献   

2.
Introduction: Despite significant scientific advances over the past six decades toward the development of safe and effective radiation countermeasures for humans using animal models, only two pharmaceutical agents have been approved by United States Food and Drug Administration (US FDA) for hematopoietic acute radiation syndrome (H-ARS). Additional research efforts are needed to further develop large animal models for improving the prediction of clinical safety and effectiveness of radiation countermeasures for ARS and delayed effects of acute radiation exposure (DEARE) in humans.

Area covered: The authors review the suitability of animal models for the development of radiation countermeasures for ARS following the FDA Animal Rule with a special focus on nonhuman primate (NHP) models of ARS. There are seven centers in the United States currently conducting studies with irradiated NHPs, with the majority of studies being conducted with rhesus monkeys.

Expert opinion: The NHP model is considered the gold standard animal model for drug development and approval by the FDA. The lack of suitable substitutes for NHP models for predicting response in humans serves as a bottleneck for the development of radiation countermeasures. Additional large animal models need to be characterized to support the development and FDA-approval of new radiation countermeasures.  相似文献   

3.
ABSTRACT

Introduction: Influenza continues to be a major public health concern. Antivirals play an important role in limiting the burden of disease and preventing infection and/or transmission. The developments of such agents are heavily dependent on pre-clinical evaluation where animal models are used to answer questions that cannot be easily addressed in human clinical trials. There are numerous animal models available to study the potential benefits of influenza antivirals but each animal model has its own pros and cons.

Areas covered: In this review, the authors describe the advantages and disadvantages of using mice, ferrets, guinea pigs, cotton rats, golden hamsters and non-human primates to evaluate influenza therapeutics.

Expert opinion: Animals used for evaluating influenza therapeutics differ in their susceptibility to influenza virus infection, their ability to display clinical signs of illness following viral infection and in their practical requirements such as housing. Therefore, defining the scientific question being asked and the data output required will assist in selecting the most appropriate animal model.  相似文献   

4.
Introduction: Although significant scientific advances have been made over the past six decades in developing safe, nontoxic and effective radiation/medical countermeasures (MCMs) for acute radiation syndrome (ARS), no drug has been approved by the US FDA. The availability of adequate animal models is a prime requisite under the criteria established by the FDA ‘animal rule’ for the development of novel MCMs for ARS and the discovery of biomarkers for radiation exposure.

Areas covered: This article reviews the developments of MCMs to combat ARS, with particular reference to the various animal models (rodents: mouse and rat; canine: beagle; minipigs and nonhuman primates [NHPs]) utilized for the in-depth evaluation. The objective, pathways and challenges of the FDA Animal Efficacy Rule are also discussed.

Expert opinion: There are a number of well-defined animal models, the mouse, canine and NHP, that are being used for the development of MCMs. Additional animal models, such as the minipig, are under development to further assist in the identification, efficacy testing and approval of MCMs under the FDA Animal Efficacy Rule.  相似文献   

5.
In polycystic kidney disease (PKD), a most common human genetic diseases, fluid-filled cysts displace normal renal tubules and cause end-stage renal failure. PKD is a serious and costly disorder. There is no available therapy that prevents or slows down the cystogenesis and cyst expansion in PKD. Numerous efforts have been made to find drug targets and the candidate drugs to treat PKD. Recent studies have defined the mechanisms underlying PKD and new therapies directed toward them. In this review article, we summarize the pathogenesis of PKD, possible drug targets, available PKD models for screening and evaluating new drugs as well as candidate drugs that are being developed.  相似文献   

6.
Introduction: The mouse is an important, though imperfect, organism with which to model human disease and to discover and test novel drugs in a preclinical setting. Many experimental strategies have been used to discover new biological and molecular targets in the mouse, with the hopes of translating these discoveries into novel drugs to treat prostate cancer in humans. Modeling prostate cancer in the mouse, however, has been challenging, and often drugs that work in mice have failed in human trials.

Areas covered: The authors discuss the similarities and differences between mice and men; the types of mouse models that exist to model prostate cancer; practical questions one must ask when using a mouse as a model; and potential reasons that drugs do not often translate to humans. They also discuss the current value in using mouse models for drug discovery to treat prostate cancer and what needs are still unmet in field.

Expert opinion: With proper planning and following practical guidelines by the researcher, the mouse is a powerful experimental tool. The field lacks genetically engineered metastatic models, and xenograft models do not allow for the study of the immune system during the metastatic process. There remain several important limitations to discovering and testing novel drugs in mice for eventual human use, but these can often be overcome. Overall, mouse modeling is an essential part of prostate cancer research and drug discovery. Emerging technologies and better and ever-increasing forms of communication are moving the field in a hopeful direction.  相似文献   

7.
Acute radiation exposure induces apoptosis of tissues in the hematopoietic, digestive, cutaneous, cardiovascular and nervous systems; extensive apoptosis of these tissues ultimately leads to acute radiation syndrome. A novel strategy for developing radiation countermeasures has been to imitate the genetic mechanisms acquired by radiation-resistant tumors. Two mechanisms that underlie this ability of tumor cells are the p53 and NF-κB pathways. The loss of p53 function results in the inactivation of pro-apoptotic control mechanisms, while constitutive activation of NF-κB results in the up-regulation of anti-apoptotic genes. Various Toll-like receptor ligands are capable of up regulating the NF-κB pathway, which increases radio-resistance and reduces radiation-induced apoptosis in various tissues. Several Toll-like receptor ligands have been patented and are currently under development as radiation countermeasures for acute radiation syndrome. Ongoing studies suggest that a few of these attractive agents are progressing well along the US FDA approval pathway to become radiation countermeasures.  相似文献   

8.
ABSTRACT

Introduction: Thrombosis is a common causal pathology for stroke, acute coronary syndrome and venous thromboembolism disorders, which are the leading cause of death worldwide. Anticoagulants have exhibited a crucial role in the prevention and treatment of thrombotic diseases. Factor Xa (FXa) is a serine protease with a central role in activating the complex blood coagulation cascade, and it is therefore regarded as an attractive target for antithrombotic agents.

Areas covered: The authors review the current status of medicinal chemistry strategies for the discovery of novel FXa inhibitors and provide their expert perspectives on their future development.

Expert opinion: Even if only a number of small-molecule FXa inhibitors have been reported to date, all currently available FXa inhibitors are associated with significant risk of bleeding, which may become life-threatening. There is, therefore, an urgent and unmet demand for potent novel FXa inhibitors that are potent treatments for thrombotic disorders, but which have a reduced risk of bleeding if their use is to be increasingly favored.  相似文献   

9.
Successful drug discovery requires the optimization of a large number of variables ranging from strictly physicochemical parameters such as molecular weight to more complex parameters related to toxicity and bioavailability. Presently, structure-based methodologies influence many aspects of the drug discovery process from lead discovery to the final preclinical characterization. However, critical biological issues along the path to the market have diminished the impact and power of this methodology. The physicochemical properties of the novel chemical entities designed and guided by structural methods have become the subject of intense scrutiny from lead discovery to drug candidate. The idea of ligand efficiency (binding energy/non-hydrogen atoms) has recently emerged as a useful guide to optimize fragment and lead selection in the discovery process. More generalized concepts of ligand efficiency, related to efficiency per dalton and per unit of polar surface area, have also been introduced and will be discussed in the broader context. Preliminary results and trends obtained using ligand efficiencies as guides are reviewed and their future application to guide drug discovery will be discussed, as well as their integration into the structure-based drug design methods to make them more effective and numerically robust.  相似文献   

10.
11.
Sturge–Weber Syndrome (SWS) is a neurocutaneous disease with clinical manifestations including ocular (glaucoma), cutaneous (port‐wine birthmark), neurologic (seizures), and vascular problems. Molecular mechanisms of SWS pathogenesis are initiated by the somatic mutation in GNAQ. Therefore, no definite treatments exist for SWS and treatment options only mitigate the intensity of its clinical manifestations. Biological assay design for drug discovery against this syndrome demands comprehensive knowledge on mechanisms which are involved in its pathogenesis. By analysis of the interrelated molecular targets of SWS, some in vitro bioassay systems can be allotted for drug screening against its progression. Development of such platforms of bioassay can bring along the implementation of high‐throughput screening of natural or synthetic compounds in drug discovery programs. Regarding the fact that study of molecular targets and their integration in biological assay design can facilitate the process of effective drug discovery; some potential biological targets and their respective biological assay for SWS drug discovery are propounded in this review. For this purpose, some biological targets for SWS drug discovery such as acetylcholinesterase, alkaline phosphatase, GABAergic receptors, Hypoxia‐Inducible Factor (HIF)‐1α and 2α are suggested.  相似文献   

12.
ABSTRACT

Introduction: Although there have been significant contributions from the pharmaceutical industry to clinical practice, several diseases remain unconquered, with the discovery of new drugs remaining a paramount objective. The actual process of drug discovery involves many steps including pre-clinical and clinical testing, which are highly time- and resource-consuming, driving researchers to improve the process efficiency. The shift of modelling technology from two-dimensions (2D) to three-dimensions (3D) is one of such advancements. 3D Models allow for close mimicry of cellular interactions and tissue microenvironments thereby improving the accuracy of results. The advent of bioprinting for fabrication of tissues has shown potential to improve 3D culture models.

Areas covered: The present review provides a comprehensive update on a wide range of bioprinted tissue models and appraise them for their potential use in drug discovery research.

Expert opinion: Efficiency, reproducibility, and standardization are some impediments of the bioprinted models. Vascularization of the constructs has to be addressed in the near future. While much progress has already been made with several seminal works, the next milestone will be the commercialization of these models after due regulatory approval.  相似文献   

13.
Introduction: Depression, anxiety and other affective disorders are globally widespread and severely debilitating human brain diseases. Despite their high prevalence and mental health impact, affective pathogenesis is poorly understood, and often remains recurrent and resistant to treatment. The lack of efficient antidepressants and presently limited conceptual innovation necessitate novel approaches and new drug targets in the field of antidepressant therapy.

Areas covered: Herein, the authors discuss the emerging role of neuro-immune interactions in affective pathogenesis, which can become useful targets for CNS drug discovery, including modulating neuroinflammatory pathways to alleviate affective pathogenesis.

Expert opinion: Mounting evidence implicates microglia, polyunsaturated fatty acids (PUFAs), glucocorticoids and gut microbiota in both inflammation and depression. It is suggested that novel antidepressants can be developed based on targeting microglia-, PUFAs-, glucocorticoid- and gut microbiota-mediated cellular pathways. In addition, the authors call for a wider application of novel model organisms, such as zebrafish, in studying shared, evolutionarily conserved (and therefore, core) neuro-immune mechanisms of depression.  相似文献   

14.
Introduction: Mathematical modeling enables: the in silico classification of cancers, the prediction of disease outcomes, optimization of therapy, identification of promising drug targets and prediction of resistance to anticancer drugs. In silico pre-screened drug targets can be validated by a small number of carefully selected experiments.

Areas covered: This review discusses the basics of mathematical modeling in cancer drug discovery and development. The topics include in silico discovery of novel molecular drug targets, optimization of immunotherapies, personalized medicine and guiding preclinical and clinical trials. Breast cancer has been used to demonstrate the applications of mathematical modeling in cancer diagnostics, the identification of high-risk population, cancer screening strategies, prediction of tumor growth and guiding cancer treatment.

Expert opinion: Mathematical models are the key components of the toolkit used in the fight against cancer. The combinatorial complexity of new drugs discovery is enormous, making systematic drug discovery, by experimentation, alone difficult if not impossible. The biggest challenges include seamless integration of growing data, information and knowledge, and making them available for a multiplicity of analyses. Mathematical models are essential for bringing cancer drug discovery into the era of Omics, Big Data and personalized medicine.  相似文献   

15.
急性冠脉综合征(ACS)是一组由急性心肌缺血引起的临床综合征,包括不稳定型心绞痛(UA)、非ST段抬高型心肌梗死(NSTEMI)和ST段抬高型心肌梗死(STEMI).ACS主要发病机制是动脉粥样硬化斑块破裂后,血小板激活和凝血酶的形成,最终导致血栓形成.目前抗血小板治疗和抗凝治疗是ACS患者抗栓治疗的两大重要组成部分.随着经皮冠状动脉介入治疗(PCI)的广泛应用,ACS患者PCI围手术期抗栓药物的安全性及有效性备受关注.本文就ACS患者有关接受PCI前后的抗血小板治疗策略的一些大型临床试验及抗血小板药物在当今早期侵入性冠状动脉治疗时代中的应用现状作一综述.  相似文献   

16.
Introduction: Macromolecular X-ray crystallography has been the primary methodology for determining the three-dimensional structures of proteins, nucleic acids and viruses. Structural information has paved the way for structure-guided drug discovery and laid the foundations for structural bioinformatics. However, X-ray crystallography still has a few fundamental limitations, some of which may be overcome and complemented using emerging methods and technologies in other areas of structural biology.

Areas covered: This review describes how structural knowledge gained from X-ray crystallography has been used to advance other biophysical methods for structure determination (and vice versa). This article also covers current practices for integrating data generated by other biochemical and biophysical methods with those obtained from X-ray crystallography. Finally, the authors articulate their vision about how a combination of structural and biochemical/biophysical methods may improve our understanding of biological processes and interactions.

Expert opinion: X-ray crystallography has been, and will continue to serve as, the central source of experimental structural biology data used in the discovery of new drugs. However, other structural biology techniques are useful not only to overcome the major limitation of X-ray crystallography, but also to provide complementary structural data that is useful in drug discovery. The use of recent advancements in biochemical, spectroscopy and bioinformatics methods may revolutionize drug discovery, albeit only when these data are combined and analyzed with effective data management systems. Accurate and complete data management is crucial for developing experimental procedures that are robust and reproducible.  相似文献   

17.
刘艾林  杜冠华 《药学学报》2020,(6):1073-1080
新型冠状病毒(SARS-CoV-2)引发的新冠病毒病(COVID-19),采取对症治疗不失为可行有效的治疗方案,但治疗药物大多缺乏针对性。基于病毒复制过程中的关键蛋白和病毒引发的病理机制,研制有针对性的治疗药物,将为临床提供更加有效的治疗方案。此外,由于新型冠状病毒是RNA病毒,而RNA病毒基因易于变异,因此针对新冠病毒病的新药研发将是一项长期而艰巨的任务。本文基于新型冠状病毒从吸附、进入宿主细胞到病毒复制过程中的关键蛋白及病毒感染引发的致病因素等多个环节的潜在靶点,利用分子模拟和机器学习等算法,探讨防治COVID-19新药发现的研究思路,并简述本课题组所开展的相关工作,为促进不同作用机制的新药发现提供可行性研究方法和策略。  相似文献   

18.
Introduction: Current Alzheimer's disease (AD) therapy is based on the administration of the drugs donepezil, galantamine, rivastigmine and memantine. Until disease-modifying therapies become available, further research is needed to develop new drug delivery strategies to ensure ease of administration and treatment persistence.

Areas covered: In addition to the conventional oral formulations, a variety of drug delivery strategies applied to the treatment of AD are reviewed in this paper, with a focus on strategies leading to simplified dosage regimens and to providing new pharmacological tools. Alternatives include extended release, orally disintegrating or sublingual formulations, intranasal or short- and long-acting intramuscular or transdermal forms, and nanotechnology-based delivery systems.

Expert opinion: The advent of new research on molecular mechanisms of AD pathogenesis has outlined new strategies for therapeutic intervention; these include the stimulation of α-secretase cleavage, the inhibition of γ-secretase activity, the use of non-steroidal anti-inflammatory drugs, neuroprotection based on antioxidant therapy, the use of estrogens, NO synthetase inhibitors, and natural agents such as polyphenols. Unfortunately, these compounds might not help patients with end stage AD, but might hopefully slow or stop the disease process in its early stage. Nanotechnologies may prove to be a promising contribution in future AD drug delivery strategies, in particular drug carrier nano- or microsystems, which can limit the side effects of anti-Alzheimer drugs.  相似文献   

19.
Introduction: Given the rising trend in medicinal chemistry strategy to reduce cytochrome P450-dependent metabolism, aldehyde oxidase (AOX) has recently gained increased attention in drug discovery programs and the number of drug candidates that are metabolized by AOX is steadily growing.

Areas covered: Despite the emerging importance of AOX in drug discovery, there are certain major recognized problems associated with AOX-mediated metabolism of drugs. Intra- and inter-species variations in AOX activity, the lack of reliable and predictive animal models using the common experimental animals, and failure in the predictions of in vivo metabolic activity of AOX using traditional in vitro methods are among these issues that are covered in this article. A comprehensive review of computational human AOX (hAOX) related studies are also provided.

Expert opinion: Following the recent progress in the stem cell field, the authors recommend the application of organoids technology as an effective tool to solve the fundamental problems associated with the evaluation of AOX in drug discovery. The recent success in resolving the hAOX crystal structure can too be another valuable data source for the study of AOX-catalyzed metabolism of new drug candidates, using computer-aided drug discovery methods.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号