共查询到20条相似文献,搜索用时 10 毫秒
1.
Suzuki K Murakami T Kuwahara-Arai K Tamura H Hiramatsu K Nagaoka I 《International immunology》2011,23(3):185-193
Sepsis is a systemic disease resulting from harmful host response to bacterial infections. During the exacerbation of severe sepsis or septic shock, apoptosis of endothelial cells is induced in susceptible organs such as the lung and liver and triggers microcirculatory disorder and organ dysfunction. LPS, an outer membrane component of Gram-negative bacteria, is one of the major virulence factors for the pathogenesis. We previously reported that LL-37, a human anti-microbial cathelicidin peptide, potently neutralizes the biological activity of LPS and protects mice from lethal endotoxin shock. However, the effect of LL-37 on the LPS-induced endothelial cell apoptosis remains to be clarified. In this study, to further elucidate the action of LL-37 on severe sepsis/endotoxin shock, we investigated the effects of LL-37 on the LPS-induced endothelial cell apoptosis in vitro and in vivo using lung-derived normal human microvascular blood vessel endothelial cells (HMVEC-LBls) and D-galactosamine hydrochloride (D-GalN)-sensitized murine endotoxin shock model. LL-37 suppressed the LPS-induced apoptosis of HMVEC-LBls. In addition, LL-37 inhibited the binding of LPS possibly to the LPS receptors (CD14 and toll-like receptor 4) expressed on the cells. Thus, LL-37 can suppress the LPS-induced apoptosis of HMVEC-LBls via the inhibition of LPS binding to the cells. Furthermore, LL-37 drastically suppressed the apoptosis of hepatic endothelial cells as well as hepatocytes in the liver of murine endotoxin shock model. Together, these observations suggest that LL-37 could suppress the LPS-induced apoptosis of endothelial cells, thereby attenuating lethal sepsis/endotoxin shock. 相似文献
2.
Antimicrobial peptides form an important component of the innate immune system. The cathelicidin family, a key member of the
antimicrobial peptide defenses, has been highly conserved throughout evolution. Though widespread in mammals, there is currently
only one identified human example, hCAP-18/LL-37. The cathelicidins have been found to have multiple functions, in addition
to their known antimicrobial and lipopolysaccharide-neutralizing effects. As a result, they profoundly affect both innate
and adaptive immunity. Currently, antimicrobial peptides are being evaluated as therapeutic drugs in disease states as diverse
as oral mucositis, cystic fibrosis, and septic shock. One such peptide, the cathelicidin hCAP-18/LL-37, is reviewed in detail
in the context of its role in lung physiology and defense. 相似文献
3.
Nijnik A Pistolic J Cho P Filewod NC Falsafi R Ramin A Harder KW Hancock RE 《Journal of leukocyte biology》2012,91(4):599-607
Cathelicidin LL-37 is a multifunctional, immunomodulatory and antimicrobial host-defense peptide of the human immune system. Here, we identified the role of SFKs in mediating the chemokine induction activity of LL-37 in monocytic cells. LL-37 induced SFK phosphorylation; and chemical inhibitors of SFKs suppressed chemokine production in response to LL-37 stimulation. SFKs were required for the downstream activation of AKT, but Ca(2+)-flux and MAPK induction were SFK-independent. Through systematic siRNA knockdown of SFK members, a requirement for Lyn in mediating LL-37 activity was identified. The involvement of Lyn in cathelicidin activities was further confirmed using Lyn-knockout mouse BMDMs. The role of SFKs and Lyn was also demonstrated in the activities of the synthetic cationic IDR peptides, developed as novel, immunomodulatory therapeutics. These findings elucidate the common molecular mechanisms mediating the chemokine induction activity of natural and synthetic cationic peptides in monocytic cells and identify SFKs as a potential target for modulating peptide responses. 相似文献
4.
Leszczyńska K Namiot A Janmey PA Bucki R 《APMIS : acta pathologica, microbiologica, et immunologica Scandinavica》2010,118(11):830-836
The increasing number of infections caused by drug-resistant bacteria has spurred efforts to develop new therapeutic strategies. When applied locally, exogenous antibiotics work in an environment rich in endogenous antibacterial molecules such as the cathelicidin peptide LL-37, which has increased expression at infection sites because of the stimulatory effects of bacterial wall products on neutrophils and other cell types. To test for possible additive effects of exogenous and endogenous antibacterial agents, we evaluated the minimal inhibitory concentration (MIC) to assess the antibacterial activity of amoxicillin with clavulanic acid (AMC), tetracycline (T), erythromycin (E) and amikacin (AN) against different clinical isolates of Staphyloccocus aureus in combination with synthetic LL-37. These studies revealed that the antibacterial activity of AMC was strongly potentiated when added in combination with LL-37. However, in the presence of LL-37, we did not observe any decrease in the MIC values of T and E, particularly against methicillin-resistant S. aureus and macrolide-lincosamide-streptogramin B (MLS(B))(+)/β-lactamase (+) strains, indicating a lack of synergistic action between these molecules. Interaction between exogenous antibiotics and host antibacterial molecules should be considered to provide optimal treatment, especially in cases of topical infections accompanied by increasing expression of host antibacterial molecules. 相似文献
5.
6.
Leola N.Y. Chow Ka-Yee Choi Hadeesha Piyadasa Maike Bossert Jude Uzonna Thomas Klonisch Neeloffer Mookherjee 《Molecular immunology》2014
Current therapies for autoimmune chronic inflammatory diseases e.g. rheumatoid arthritis (RA) include inhibitors of inflammatory cytokines. However, these therapies can result in increased risk of infections. There is a need to explore alternate strategies that can control inflammation without compromising the innate ability to resolve infections. In this study, we examined the effect of small peptides derived from endogenous cathelicidin peptides in a murine model of collagen-induced arthritis (CIA). Cathelicidins are immunomodulatory peptides known to control infections. We demonstrate that the administration of the peptide IG-19, which represents an internal segment of the human cathelicidin LL-37, decreased disease severity and significantly reduced the serum levels of antibodies against collagen type II in the CIA model. IG-19 peptide reduced cellular infiltration in joints, prevented cartilage degradation and suppressed pro-inflammatory cytokines in the CIA mice. We also showed that not all cathelicidin-derived peptides exhibit similar functions. A bovine cathelicidin-derived peptide IDR-1018 did not exhibit the beneficial effects observed with the human cathelicidin LL-37-derived peptide IG-19, in the same murine model of CIA. This is the first study to provide evidence demonstrating the ability of a peptide derived from the human cathelicidin LL-37 to alleviate the arthritic disease process in a murine model of RA. Our results has lead us to propose a new approach for controlling autoimmune chronic inflammatory disorders such as RA, by using specific synthetic derivatives of endogenous host defence peptides. Cathelicidin-derived peptides are particularly attractive for their dual antimicrobial and anti-inflammatory actions. 相似文献
7.
Lau YE Bowdish DM Cosseau C Hancock RE Davidson DJ 《American journal of respiratory cell and molecular biology》2006,34(4):399-409
LL-37 is a human cationic host defense peptide that is present in the specific granules of neutrophils, produced by epithelial cells from a variety of tissues, and is upregulated during inflammation, infection, and injury. It has been proposed to have a variety of antimicrobial functions, including both direct antimicrobial activity and immunomodulatory functions. Using the TUNEL assay it was demonstrated that LL-37 induced apoptosis in vitro in the A549 human lung and 16 HBE4o- human airway epithelial cell lines, and in vivo in the murine airway. Peptide-induced apoptosis in vitro involved the activation of caspase pathways and was substantially inhibited by an inhibitor of caspase 3. Apoptosis was also inhibited by human serum, but not fetal bovine serum. Similarly, human but not fetal bovine serum inhibited the cellular internalization of LL-37 and the production of IL-8 in response to LL-37 treatment of epithelial cells. The protective effects of human serum were also observed with high-density lipoproteins but not by the core peptide apolipoprotein A1, providing one possible mechanism of human serum inhibition of apoptosis. We propose that LL-37-induced apoptosis of epithelial cells at low serum tissue sites may have a protective role against bacterial infection. 相似文献
8.
Neutrophils represent the most common granulocyte subtype present in blood. The short half-life of circulating neutrophils is regulated by spontaneous apoptosis, and tissue infiltrating neutrophils die by apoptosis and secondary necrosis. The mechanism of neutrophil apoptosis has been the subject of many studies; however, the mechanism of neutrophil secondary necrosis is less clear. Human cathelicidin cationic peptide 18, proteolytically processed to its active form, LL-37, is secreted by neutrophils and epithelial cells and shown to have effects in addition to bacterial lysis. We demonstrate here that LL-37 affects neutrophil lifespan by the pathway of secondary necrosis, rapidly converting annexin V-positive (AV(+)), propidium iodide-negative (PI(-); apoptotic) cells into PI(+) (necrotic) cells with the release of IL-8, IL-1R antagonist, ATP, and intact granules. The effects of LL-37 on apoptotic neutrophils are neither energy-dependent nor affected by pretreatment with G-CSF, GM-CSF, TNF-alpha, and LPS and are partially inhibited by human serum. Moreover, LL-37 decreases CXCR2 expression of AV(-)PI(-) (live) neutrophils, suggesting an effect on the neutrophil response to its chemotactic factors, including IL-8. Thus, the lifespan and inflammatory functions of neutrophils are directly affected by LL-37. 相似文献
9.
S. Kusaka A. Nishida K. Takahashi S. Bamba H. Yasui M. Kawahara O. Inatomi M. Sugimoto A. Andoh 《Clinical and experimental immunology》2018,191(1):96-106
Cathelicidin peptide LL‐37 plays an important role in the early host response against invading pathogens via its broad‐spectrum anti‐microbial activity. In this study, we investigated LL‐37 expression in the inflamed mucosa of inflammatory bowel disease (IBD) patients. Furthermore, the regulatory mechanism of LL‐37 induction was investigated in human colonic subepithelial myofibroblasts (SEMFs). LL‐37 mRNA expression and protein secretion were analysed using real‐time polymerase chain reaction and enzyme‐linked immunosorbent assay, respectively. Intracellular signalling pathways were analysed using immunoblotting and specific small interference RNA (siRNA). The expression of LL‐37 mRNA was increased significantly in the inflamed mucosa of ulcerative colitis and Crohn's disease. The Toll‐like receptor (TLR)‐3 ligand, polyinosinic‐polycytidylic acid (poly(I:C), induced LL‐37 mRNA expression and stimulated LL‐37 secretion in colonic SEMFs. The transfection of siRNAs specific for intracellular signalling proteins [Toll/IL‐1R domain‐containing adaptor‐inducing interferon (IFN) (TRIF), tumour necrosis factor receptor‐associated factor (TRAF)6, transforming growth factor β‐activated kinase (TAK)1] suppressed the poly(I:C)‐induced LL‐37 mRNA expression significantly. Poly(I:C)‐induced phosphorylation of mitogen‐activated protein kinases (MAPKs) and activated nuclear factor kappa B (NF‐κB) and activating factor protein (AP)‐1. siRNAs specific for NF‐κB and c‐Jun inhibited poly(I:C)‐induced LL‐37 mRNA expression. LL‐37 suppressed lipopolysaccharide (LPS)‐induced interleukin (IL)‐6 and IL‐8 expression significantly in colonic SEMFs. The expression of LL‐37 was up‐regulated in the inflamed mucosa of IBD patients. LL‐37 was induced by TLR‐3 stimulation and exhibited an anti‐microbial effect via interaction with lipopolysaccharide (LPS). 相似文献
10.
Bandholtz L Ekman GJ Vilhelmsson M Buentke E Agerberth B Scheynius A Gudmundsson GH 《Scandinavian journal of immunology》2006,63(6):410-419
The human cathelicidin LL-37 has been shown to be involved in the barrier function of the innate immunity, being released from specific cells upon challenge and exerting immunomodulatory effects. We here demonstrate that LL-37 affects immature dendritic cells, derived from human peripheral blood monocytes (MDDC). LL-37 is internalized by MDDC with subsequent localization primarily in the cytoplasmic compartment. However, LL-37 could also be detected in the nuclei of MDDC, suggesting that LL-37 may be transported into the nucleus. The uptake of LL-37 is dose, time and energy dependent, indicating that the observed internalization process involves an endocytic pathway. Incubation of immature MDDC with LL-37 caused phenotypic changes, characterized by an increased expression of the antigen-presenting molecule HLA-DR, and the costimulatory molecule CD86. Taken together, these findings suggest that LL-37 released upon triggering of the innate immunity, may affect cellular adaptive immunity through an interaction with immature dendritic cells. 相似文献
11.
Augmentation of the bactericidal activities of human cathelicidin CAP18/LL-37-derived antimicrobial peptides by amino acid substitutions 总被引:4,自引:0,他引:4
I. Nagaoka K. Kuwahara-Arai H. Tamura K. Hiramatsu M. Hirata 《Inflammation research》2005,54(2):66-73
Objective: Mammalian myeloid and epithelial cells express various peptide antibiotics (such as defensins and cathelicidins) that contribute to the innate host defense against invading micro-organisms. Among these, human cathelicidin CAP18/LL-37 (L1-S37) possesses potent antibacterial activities against Gram-positive and Gram-negative bacteria. In this study, to develop peptide derivatives with improved bactericidal actions, we utilized the amphipathic 18-mer peptide (K15–V32) of LL-37 as a template, and evaluated the activities of modified peptides.Methods: Antibacterial activities of the peptides (0.022 ~ 4.4 M corresponding to 0.1 ~ 10 g/ml) were assessed by alamarBlueTM assay using Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, Escherichia coli and Pseudomonas aeruginosa as target organisms. Furthermore, the membrane-permeabilization activities of the peptides were examined by using E. coli ML-35p as a target.Results: By substituting E16 and K25 with two L residues, the hydrophobicity of the peptide (18-mer LL) was increased, and by further substituting Q22, D26 and N30 with three K residues, the cationicity of the peptide (18-mer LLKKK) was enhanced. Among peptide derivatives, 18-mer LLKKK exhibited the most potent antibacterial actions against S. aureus (methicillin-resistant and -sensitive), S. pneumoniae, S. pyogenes, E. coli and P. aeruginosa, and possessed the most powerful membrane-permeabilizing activities against E. coli ML-35p at the effective concentrations (p < 0.05, 18-mer LLKKK vs. 18-mer LL, 18-mer K15-V32 and LL-37).Conclusions: Bactericidal activities of the amphipathic human CAP18/LL-37-derived 18-mer peptide can be augmented by modifying its hydrophobicity and cationicity, and 18-mer LLKKK is the most potent among peptide derivatives with therapeutic potential for Gram-positive and Gram-negative bacterial infections.Received 1 September 2004; returned for revision 1 October 2004; accepted by M. Katori 23 October 2004 相似文献
12.
Human cathelicidin LL-37 is a chemoattractant for eosinophils and neutrophils that acts via formyl-peptide receptors 总被引:3,自引:0,他引:3
Tjabringa GS Ninaber DK Drijfhout JW Rabe KF Hiemstra PS 《International archives of allergy and immunology》2006,140(2):103-112
BACKGROUND: Inflammatory lung diseases such as asthma and chronic obstructive pulmonary disease (COPD) are characterized by the presence of eosinophils and neutrophils. However, the mechanisms that mediate the influx of these cells are incompletely understood. Neutrophil products, including neutrophil elastase and antimicrobial peptides such as neutrophil defensins and LL-37, have been demonstrated to display chemotactic activity towards cells from both innate and adaptive immunity. However, chemotactic activity of LL-37 towards eosinophils has not been reported. Therefore, the aim of the present study was to investigate the chemotactic activity of LL-37 for eosinophils and to explore the mechanisms involved in LL-37-mediated attraction of neutrophils and eosinophils. METHODS: Neutrophils and eosinophils were obtained from venous blood of healthy donors. Chemotaxis was studied using a modified Boyden chamber technique. Involvement of formyl-peptide receptors (FPRs) was studied using the antagonistic peptide tBoc-MLP. Activation of the mitogen-activated protein kinase (MAPK) ERK1/2 was studied by Western blotting using antibodies directed against phosphorylated ERK1/2. RESULTS: Our results show that LL-37 chemoattracts both eosinophils and neutrophils. The FPR antagonistic peptide tBoc-MLP inhibited LL-37-induced chemotaxis. Whereas the FPR agonist fMLP activated ERK1/2 in neutrophils, LL-37 did not, indicating that fMLP and LL-37 deliver different signals through FPRs. CONCLUSIONS: LL-37 displays chemotactic activity for eosinophils and neutrophils, and this activity is mediated via an FPR. These results suggest that LL-37 may play a role in inflammatory lung diseases such as asthma and COPD. 相似文献
13.
Overhage J Campisano A Bains M Torfs EC Rehm BH Hancock RE 《Infection and immunity》2008,76(9):4176-4182
The ability to form biofilms is a critical factor in chronic infections by Pseudomonas aeruginosa and has made this bacterium a model organism with respect to biofilm formation. This study describes a new, previously unrecognized role for the human cationic host defense peptide LL-37. In addition to its key role in modulating the innate immune response and weak antimicrobial activity, LL-37 potently inhibited the formation of bacterial biofilms in vitro. This occurred at the very low and physiologically meaningful concentration of 0.5 microg/ml, far below that required to kill or inhibit growth (MIC = 64 microg/ml). LL-37 also affected existing, pregrown P. aeruginosa biofilms. Similar results were obtained using the bovine neutrophil peptide indolicidin, but no inhibitory effect on biofilm formation was detected using subinhibitory concentrations of the mouse peptide CRAMP, which shares 67% identity with LL-37, polymyxin B, or the bovine bactenecin homolog Bac2A. Using microarrays and follow-up studies, we were able to demonstrate that LL-37 affected biofilm formation by decreasing the attachment of bacterial cells, stimulating twitching motility, and influencing two major quorum sensing systems (Las and Rhl), leading to the downregulation of genes essential for biofilm development. 相似文献
14.
Rivas-Santiago B Hernandez-Pando R Carranza C Juarez E Contreras JL Aguilar-Leon D Torres M Sada E 《Infection and immunity》2008,76(3):935-941
The innate immune response in human tuberculosis is not completely understood. To improve our knowledge regarding the role of cathelicidin hCAP-18/LL37 in the innate immune response to tuberculosis infection, we used immunohistochemistry, immunoelectron microscopy, and gene expression to study the induction and production of the antimicrobial peptide in A549 epithelial cells, alveolar macrophages (AM), neutrophils, and monocyte-derived macrophages (MDM) after infection with Mycobacterium tuberculosis. We demonstrated that mycobacterial infection induced the expression and production of LL-37 in all cells studied, with AM being the most efficient. We did not detect peptide expression in tuberculous granulomas, suggesting that LL-37 participates only during early infection. Through the study of Toll-like receptors (TLR) in MDM, we showed that LL-37 can be induced by stimulation through TLR-2, TLR-4, and TLR-9. This last TLR was strongly stimulated by M. tuberculosis DNA. We concluded that LL-37 may have an important role in the innate immune response against M. tuberculosis. 相似文献
15.
Zuyderduyn S Ninaber DK Hiemstra PS Rabe KF 《The Journal of allergy and clinical immunology》2006,117(6):1328-1335
BACKGROUND: Human airway smooth muscle (HASM) cells release various chemokines that are involved in recruitment of inflammatory cells, which can be found within or in the vicinity of the airway smooth muscle layer in patients with inflammatory lung diseases. Inflammatory cells contain antimicrobial peptides including the cathelicidin LL-37 and neutrophil defensins (HNP1-3). OBJECTIVE: The aim of the study was to determine the effects of antimicrobial peptides on IL-8 (CXC chemokine ligand 8) release by HASM cells, and to study the underlying mechanisms. METHODS: Human airway smooth muscle cells were stimulated with LL-37 and HNP1-3, and IL-8 protein and mRNA levels were determined by sandwich ELISA and PCR. Phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was detected by using Western blot. RESULTS: LL-37 enhanced IL-8 release by HASM cells, which was dependent on ERK1/2 activation. Receptors known to be involved in LL-37-induced signaling, including the epidermal growth factor receptor and formyl peptide receptors, were not involved in LL-37 signaling in HASM cells. The purinergic receptor antagonist suramin did block LL-37-induced ERK1/2 phosphorylation and IL-8 release, and expression of mRNA for the purinergic receptor P2X(7) was detected in HASM cells. HNP1-3 did increase ERK1/2 phosphorylation, but did not enhance IL-8 release by HASM cells. CONCLUSION: These data show that HASM cells respond to the antimicrobial peptide LL-37 by releasing IL-8, suggesting that LL-37 is a regulator of the inflammatory process in various inflammatory lung diseases by enhancing IL-8 production. CLINICAL IMPLICATIONS: LL-37 released by inflammatory cells may amplify inflammation through induction of IL-8 release by airway smooth muscle. 相似文献
16.
Participation of mammalian defensins and cathelicidins in anti-microbial immunity: receptors and activities of human defensins and cathelicidin (LL-37) 总被引:11,自引:0,他引:11
Defensins and cathelicidins are the two major families of mammalian anti-microbial proteins. They contribute to host, innate, anti-microbial defense by disrupting the integrity of the bacterial cell membrane. However, several members of the mammalian anti-microbial proteins including defensins and cathelicidins have been shown recently to have chemotactic effects on host cells. Human neutrophil alpha-defensins are chemotactic for resting, na?ve CD45RA/CD4 T cells, CD8 T cells, and immature dendritic cells. Human beta-defensins are also chemotactic for immature dendritic cells but induce the migration of memory CD45RO/CD4 T cells. In contrast, cathelicidin/LL-37 is chemotactic for neutrophils, monocytes, and T cells but not for dendritic cells. Thus, these anti-microbial peptides have distinct, host-target cell spectra. The chemotactic activities of human beta-defensins and cathelicidin/LL-37 are mediated by human CC chemokine receptor 6 and formyl peptide receptor-like 1, respectively. The capacities of defensins and cathelicidins to mobilize various types of phagocytic leukocytes, immature dendritic cells, and lymphocytes, together with their other effects such as stimulating IL-8 production and mast cell degranulation, provide evidence for their participation in alerting, mobilizing, and amplifying innate and adaptive anti-microbial immunity of the host. 相似文献
17.
Interaction and cellular localization of the human host defense peptide LL-37 with lung epithelial cells 总被引:2,自引:0,他引:2
Lau YE Rozek A Scott MG Goosney DL Davidson DJ Hancock RE 《Infection and immunity》2005,73(1):583-591
LL-37 is a human cationic host defense peptide that is an essential component of innate immunity. In addition to its modest antimicrobial activity, LL-37 affects the gene expression and behavior of effector cells involved in the innate immune response, although its mode of interaction with eukaryotic cells remains unclear. The interaction of LL-37 with epithelial cells was characterized in tissue culture by using biotinylated LL-37 and confocal microscopy. It was demonstrated that LL-37 was actively taken up into A549 epithelial cells and eventually localized to the perinuclear region. Specific inhibitors were used to demonstrate that the uptake process was not mediated by actin but required elements normally involved in endocytosis and that trafficking to the perinuclear region was dependent on microtubules. By using nonlinear regression analysis, it was revealed that A549 epithelial cells have two receptors for LL-37B, with high and low affinity for LL-37, respectively. These results indicate the mode of interaction of LL-37 with epithelial cells and further our understanding of its role in modulating the innate immune response. 相似文献
18.
《Mucosal immunology》2014,7(1):177-187
Pleurocidins are a novel family of α-helical cationic antimicrobial peptides (CAPs) that are structurally and functionally similar to cathelicidins, one of the major CAP families. As cathelicidins stimulate mast cell chemotaxis and mediator release, we postulated that pleurocidins similarly activate mast cells. A screen of 20 pleurocidin peptides revealed that some were capable of degranulating the human mast cell line LAD2 (Laboratory of Allergic Diseases 2). Pleurocidin NRC-04 caused LAD2 to adhere, migrate, degranulate, and release cysteinyl leukotrienes and prostaglandin D2. Moreover, pleurocidin increased intracellular Ca2+ mobilization in mast cells and induced the production of proinflammatory chemokines such as monocyte chemotactic protein-1/C-C motif chemokine ligand 2 (CCL2) and macrophage inflammatory protein-1β/CCL4. Our evaluation of possible cellular mechanisms suggested that G proteins, phosphoinositol-3 kinase (PI3K), phospholipase C (PLC), and phosphokinase C (PKC) were involved in pleurocidin-induced mast cell activation as evidenced by the inhibitory effects of pertussis toxin (G protein inhibitor), wortmanin (PI3K inhibitor), U-73122 (PLC inhibitor), and Ro-31-8220 (PKC inhibitor), respectively. We also found that human mast cells expressed the N-formyl-peptide receptor 1 (FPRL1) receptor and FPRL1-specific inhibitor affected pleurocidin-mediated activation of mast cell. Our finding that the novel CAP pleurocidin activated human mast cell through G protein–coupled receptor signaling suggests that this peptide might have immunomodulatory functions. 相似文献
19.
Nagaoka I Hirota S Niyonsaba F Hirata M Adachi Y Tamura H Tanaka S Heumann D 《Clinical and diagnostic laboratory immunology》2002,9(5):972-982
Mammalian myeloid and epithelial cells express various peptide antibiotics (such as defensins and cathelicidins) that contribute to the innate host defense against invading microorganisms. Among these peptides, human cathelicidin CAP18/LL-37 (L(1) to S(37)) possesses not only potent antibacterial activity against gram-positive and gram-negative bacteria but also the ability to bind to gram-negative lipopolysaccharide (LPS) and neutralize its biological activities. In this study, to develop peptide derivatives with improved LPS-neutralizing activities, we utilized an 18-mer peptide (K(15) to V(32)) of LL-37 as a template and evaluated the activities of modified peptides by using the CD14(+) murine macrophage cell line RAW 264.7 and the murine endotoxin shock model. By replacement of E(16) and K(25) with two L residues, the hydrophobicity of the peptide (18-mer LL) was increased, and by further replacement of Q(22), D(26), and N(30) with three K residues, the cationicity of the peptide (18-mer LLKKK) was enhanced. Among peptide derivatives, 18-mer LLKKK displayed the most powerful LPS-neutralizing activity: it was most potent at binding to LPS, inhibiting the interaction between LPS and LPS-binding protein, and attaching to the CD14 molecule, thereby suppressing the binding of LPS to CD14(+) cells and attenuating production of tumor necrosis factor alpha (TNF-alpha) by these cells. Furthermore, in the murine endotoxin shock model, 18-mer LLKKK most effectively suppressed LPS-induced TNF-alpha production and protected mice from lethal endotoxin shock. Together, these observations indicate that the LPS-neutralizing activities of the amphipathic human CAP18/LL-37-derived 18-mer peptide can be augmented by modifying its hydrophobicity and cationicity, and that 18-mer LLKKK is the most potent of the peptide derivatives, with therapeutic potential for gram-negative bacterial endotoxin shock. 相似文献
20.
Cathelicidin LL-37: A Multitask Antimicrobial Peptide 总被引:1,自引:0,他引:1
Robert Bucki Katarzyna Leszczyńska Andrzej Namiot Wojciech Sokołowski 《Archivum immunologiae et therapiae experimentalis》2010,58(1):15-25
The antimicrobial peptide LL-37 is the only known member of the cathelicidin family of peptides expressed in humans. LL-37
is a multifunctional host defense molecule essential for normal immune responses to infection and tissue injury. LL-37 peptide
is a potent killer of different microorganisms with the ability to prevent immunostimulatory effects of bacterial wall molecules
such as lipopolysaccharide and can therefore protect against lethal endotoxemia. Additional reported activities of LL-37 include
chemoattractant function, inhibition of neutrophil apoptosis, and stimulation of angiogenesis, tissue regeneration, and cytokine
release (e.g. IL-8). Cellular production of LL-37 is affected by multiple factors, including bacterial products, host cytokines,
availability of oxygen, and sun exposure through the activation of CAP-18 gene expression by vitamin D3. At infection sites, the function of LL-37 can be inhibited by charge-driven interactions with DNA and F-actin released from
dead neutrophils and other cells lysed as the result of inflammation. A better understanding of LL-37’s biological properties
is necessary for its possible therapeutic application for immunomodulatory purposes as well as in treating bacterial infection. 相似文献