首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alterations occurring in the antioxidant enzymes, copper, zinc-dependent superoxide dismutase (Cu,Zn-SOD) and glutathione peroxidase (GPX) following nigral dopaminergic denervation are unclear. We now report on the distribution and levels of m-RNA for Cu,Zn-SOD and GPX in basal ganglia of normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated common marmosets, and in normal individuals and patients with Parkinson's disease (PD) using in situ hybridization histochemistry and oligodeoxynucleotide (single-stranded DNA) probes. Cu,Zn-SOD and GPX m-RNA was present throughout basal ganglia (nucleus accumbens, caudate-putamen, globus pallidus, substantia nigra) in the common marmoset, with the highest levels being in substantia nigra (SN). Following MPTP induced nigral cell loss, Cu,Zn-SOD m-RNA levels were decreased in all areas but the SNr, and particularly in SNc (71%, P<0.001). MPTP-treatment had no effect on GPX m-RNA expression in any area of basal ganglia. Cu,Zn-SOD and GPX m-RNA was also present in the normal human SN. In PD, however, Cu,Zn-SOD m-RNA was significantly decreased (89%, P<0.005) in SNc, and there was a near-complete loss of GPX m-RNA in both SNc (100%, P<0.005) and SNr (88%, P<0.005). The loss of Cu,Zn-SOD m-RNA in SNc in MPTP-treated marmosets and patients with PD suggests that it is primarily located in dopaminergic neuronal cell bodies. The loss of GPX m-RNA in SNc in PD also suggests a localisation to dopaminergic cell bodies, but the similar change in SNr may indicate its presence in dopaminergic neurites. In contrast, the absence of change in GPX m-RNA in MPTP-treated primates appears to rule out its presence in dopaminergic cells in this species, but this may only be apparent and may reflect increased expression in glial cells following acute toxin treatment.  相似文献   

2.
Neurodegenerative effects of 1-methyl-4-phenylpyridinium (MPP+), the main metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) include enhancement of lipid peroxidation in the striatum of mice, associated to overproduction of free radicals. Copper acts as a prosthetic group of several copper-dependent antioxidant enzymes, and we previously showed the neuroprotective effect of CuSO4 pretreatment against the MPP+-induced neurotoxicity. In those studies, acute administration of CuSO4 (2.5 mg/kg) blocked MPP+-induced striatal lipid peroxidation, suggesting the activation of Cu-dependent proteins that defend neurons from damage elicited by free radicals. In the present study, we evaluated the activity of superoxide dismutase in mice pretreated with CuSO4 16 h or 24 h prior to MPP+ administration. Copper administration produced a specific and significant increase in manganese superoxide dismutase activity in both the CuSO4/saline (fivefold increase) and the CuSO4/MPP+ groups of animals (sevenfold increase). The Na2SO4/MPP+ group showed a twofold increase in manganese superoxide dismutase activity versus control levels. The results suggest that the load of copper activating manganese-dependent superoxide dismutase could be responsible for neuroprotection against the MPP+ insult.  相似文献   

3.
Chung YH  Shin CM  Kim MJ  Cha CI 《Brain research》2000,875(1-2):164-170
The differential expression of specialized voltage-gated potassium (Kv) channel subtypes in the nervous system probably reflects the wide range of functions. Although there have been previous reports in the cellular and subcellular localizations of various Kv mRNAs and proteins, the comprehensive study described here is the first in which the expression of six Kv1 channel subunits have been directly compared in the rat basal ganglia. In the present study, we have found that staining patterns of the six Kv1 channel subunits overlap in some areas of the basal ganglia, but each has a unique pattern of expression. It was noted that Kv 1.4 subunit had a strikingly high level of expression in the globus pallidus compared to the caudate-putamen. This distinct distribution formed the clear demarcations between caudate-putamen and globus pallidus. The dot-like staining pattern of Kv1 subunits was observed through the accumbens nucleus. Strong staining for Kv1.4 was observed in the cerebral peduncle, not in the subthalamic nucleus. In the substantia nigra, immunoreactivity for Kv1.4 subunit was prominent in the pars reticulata of the substantia nigra. The staining intensity for Kv1.2 was high in the pars compacta of the substantia nigra. Our immunohistochemical results may support the notion that the formation of heteromultimeric Kv channels possibly represents an important contribution to the generation of Kv channel diversity in the brain, especially in the basal ganglia.  相似文献   

4.
We have previously demonstrated that intranigral transplantation of fetal ventral mesencephalic (VM) tissue and nigrostriatal administration of glial cell line-derived neurotrophic factor (GDNF) restores striatal dopamine input in hemiparkinsonian rats. Since it has been found that GDNF is highly expressed in fetal kidney, we examined the possibility that fetal kidney tissue may provide trophic support, similar to GDNF, to an intranigral dopamine (DA) transplant and restore the nigrostriatal pathway. Adult Sprague-Dawley rats were anesthetized and unilaterally injected with 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. Completeness of the lesion was evaluated by measuring amphetamine-induced rotation. One month after 6-OHDA lesioning, fetal VM cells were grafted into the lesioned nigral area followed by transplantation of fetal kidney tissue or vehicle along a pathway from nigra to striatum. Animals receiving these transplants showed a significant decrease both in amphetamine-induced rotation and in postural asymmetry 1 to 3 months after grafting. Immunocytochemical studies demonstrated tyrosine hydroxylase (TH) positive fiber tracts in the lesioned striatum. Control animals that received vehicle injection after the intranigral graft or no transplantation showed no alterations in amphetamine-induced turning and no TH-positive fibers in the lesioned striatum. These results indicate that combinations of fetal nigral and kidney transplants may restore the nigrostriatal DA pathway in Parkinsonian rats. As fetal kidney contains a variety of trophic proteins, it may provide a synergistic admixture to optimally promote DA fiber outgrowth.  相似文献   

5.
The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) continues to be expressed in the adult hippocampus, mainly in a subset of neurons located in the innermost portion of the granule cell layer. PSA-NCAM immunoreactive neurons have also been described outside this layer in humans, where they are severely reduced in schizophrenic brains. Given this important clinical implication, we were interested in finding whether similar neurons existed in the adult rat hippocampus and to characterize their distribution, morphology and phenotype. PSA-NCAM immunocytochemistry reveals labeled neurons in the subiculum, fimbria, alveus, hilus, and stratum oriens, lucidum and radiatum of CA3 and CA1. They are mainly distributed in the ventral hippocampus, and have polygonal or fusiform somata with multipolar or bipolar morphology. These neurons show long straight dendrites, which reach several strata and even enter the fimbria and the alveus. These dendrites are often varicose, appear devoid of excrescences and apparently do not show spines. Most of these neurons display GABA immunoreactivity and further analysis has shown that a subpopulation expresses calretinin, but not somatostatin, neuropeptide Y, parvalbumin, calbindin or NADPH diaphorase. Our study demonstrates that there is an important subpopulation of PSA-NCAM immunoreactive neurons, many of which can be considered interneurons, outside the rat granule cell layer, probably homologous to those described in the human hippocampus. The presence of the polysialylated form of NCAM in these neurons could indicate that they are undergoing continuous remodeling during adulthood and may have an important role in hippocampal structural plasticity.  相似文献   

6.
7.
Gender differences in brain dopaminergic activity have been variably reported in the literature. We performed an evaluation for gender effects on striatal dopamine transporter (DAT) binding in a group of normal subjects. Community-dwelling adults (n = 85, 50F/35M, mean age 62.7 ± 16.2 SD, range 20-85) underwent DAT [11C]2-β-carbomethoxy-3β-(4-fluorophenyl) tropane (β-CFT) positron emission tomography (PET) imaging. Gender effects for DAT binding were compared using ANCOVA for two subgroups; young-to-middle aged adults and older adults, using an age threshold of 60 years. There were 54 subjects (24M/30F; mean age 72.9 ± 7.3) 60 years and older and 31 (11M/20F; mean age 45.0 ± 11.4) subjects younger than 60. Age-adjusted striatal DAT gender effects were present in the young-to-middle (F = 10.4, P = 0.003) but not in the elderly age group (F = 0.5, ns). Gender differences in nigrostriatal dopaminergic innervation are present, with higher levels of DAT binding in young-to-middle age women compared to men, but not present in the elderly.  相似文献   

8.
An extensive literature suggests that melatonin may protect from the degenerative effects of central neurotoxins by acting as a free radical scavenger. The purpose of this study was to determine if melatonin would protect male C57BL6 mice from the toxicity of methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to nigral dopamine (DA) neurons. Melatonin was initially dissolved in dimethyl sulfoxide (DMSO), diluted to 16 microg/ml and then provided in the drinking water for 4 weeks. Control mice drank the same final concentration of the DMSO diluent. One week before the termination of the experiment, randomly selected mice from the melatonin-treated and the DMSO-treated groups received two, three or four doses of 2.5 mg/kg MPTP free base administered subcutaneously at 2-h intervals. Additional DMSO-treated and melatonin-treated mice did not receive MPTP. Following tissue collection, melatonin concentration was measured in blood plasma collected from each animal and found to be 20-fold higher in melatonin-treated compared to DMSO-treated mice. Tyrosine hydroxylase (TH) activity and the levels of DA and dihydroxyphenylacetic acid (DOPAC) were not different in striata collected from melatonin-treated versus DMSO-treated mice which did not receive MPTP. Treatment with MPTP significantly reduced striatal TH activity, DA and DOPAC, but there were no significant differences in the reductions in any of these parameters observed in the melatonin-treated versus the DMSO-treated control mice that received the same total dosage of MPTP. These results show that the long-term administration of a high pharmacological dose of melatonin was ineffective in protecting nigral dopaminergic neurons from the neurotoxic effects of MPTP.  相似文献   

9.
The subthalamic nucleus (STN) receives dopamine inputs from the substantia nigra but their implication in the pathophysiology of parkinsonism is still debated. Extracellular microrecordings were used to study the effect of microiontophoretic injection of dopamine and the D1 receptor agonist SKF 38393 on the activity of STN neurons in normal and 6-hydroxydopamine-lesioned rats under urethane anaesthesia. Dopamine and SKF induced an increase in the firing rate of the majority of STN neurons in both normal and 6-OHDA rats. In rats with 6-OHDA lesions, the percentage of firing rate increase did not differ from that of controls. When GABA, glutamate and dopamine were all applied to the same individual STN neurons, GABA induced an inhibitory effect and glutamate and dopamine caused an excitatory effect in both groups. This excitatory response was suppressed by the application of GABA. Systemic administration of apomorphine provoked a decrease in the firing rate of STN neurons in rats with 6-OHDA lesions. These results show that dopamine exerts an excitatory influence on STN neurons, suggesting that the inhibitory effect induced by the systemic injection of apomorphine is due to the GABAergic inputs from the globus pallidus as predicted by the current model of basal ganglia organization. In addition, we show that dopamine, GABA and glutamate can act on the same STN neuron and that GABA can reverse the excitatory effect of dopamine and glutamate, suggesting the predominant influence of GABAergic inputs to the subthalamic nucleus.  相似文献   

10.
Changes in ionotropic glutamate NMDA, AMPA and KA receptor binding in rat caudate-putamen were examined by quantitative in vitro receptor autoradiography 5 weeks after lesioning nigrostriatal dopaminergic projections. In this animal model of Parkinson's disease, density of binding in caudate-putamen increased at KA, but not NMDA or AMPA receptors. The findings indicate that nigrostriatal dopamine denervation can selectively enhance KA receptor levels in rat basal ganglia, suggest that KA receptors contribute to the pathophysiology of Parkinson's disease, and may suggest innovative treatments.  相似文献   

11.
The subthalamic nucleus (STN) plays a key role in motor control. Disorganization of its neuronal activity is implicated in the manifestation of parkinsonian motor symptoms. The aim of the present work was to study the time-course of changes in the firing activity of STN neurons in a rat model of parkinsonism. Electrophysiological recordings were done in normal rats and four groups of rats at different time points after 6-hydroxydopamine (6-OHDA) microinjection into the pars compacta of substantia nigra (SNc). Results showed a significant decrease in firing rate during the first and second weeks post lesion (5.53+/-0.56 and 7.66+/-0.73 spikes/s, respectively) compared to normal rats (11.13+/-0.59 spikes/s). From the 3rd week after 6-OHDA injection the firing rates returned toward baseline, with an average of 9.71+/-0.51 spikes/s during the 3rd week and 11.13+/-0.71 spikes/s during the 4th week. With regard to firing pattern, the majority of STN cells (90%) discharged regularly or slightly irregularly in normal animals. Only 4% exhibited burst activity and 6% had mixed firing patterns. After SNc-lesion, the percentage of cells exhibiting burst and mixed patterns increased progressively from 35% during the first week to 56% at week 4 post-lesion. In sum, these experiments revealed that the firing rate of STN neurons was altered only transiently following nigral lesions, whereas a progressive and stable change in the firing pattern was observed up to 4 weeks post lesion, suggesting that the persistence of bursts firing more closely relates to the motor pathologies of this rat model of parkinsonism.  相似文献   

12.
Disshon KA  Dluzen DE 《Brain research》2000,868(1):1570-104
The effects of in vivo estrogen treatment upon MPP+-induced dopamine (DA) release were determined using in vivo microdialysis in female and male rats. Ovariectomized female rats were implanted or not with an estrogen pellet (0.1 mg, 17β estradiol) and subjected to microdialysis 6 days later. After baseline DA release was determined, 5 mM MPP+ was infused through the microdialysis probe for one 20-min interval. Perfusion resumed with normal medium for the duration of the experiment. A significant attenuation of MPP+-induced DA release was obtained in estrogen-treated females. One week later, striatal DA and dihydroxyphenylacetic acid (DOPAC) concentrations were determined for the lesioned and non-lesioned striata of each animal. MPP+ infusion significantly decreased striatal DA concentrations, however, there was no effect of estrogen treatment on striatal DA depletion. This experiment was repeated using orchidectomized male rats treated with 0, 0.1, or 5 mg estradiol. In contrast to the females, no differences in MPP+-induced DA release were seen among these males, and there was no significant effect of the varying estrogen treatments on striatal DA or DOPAC concentrations. These results demonstrate that in vivo estrogen treatment attenuates MPP+-induced striatal DA release in gonadectomized female, but not male, rats.  相似文献   

13.
Striatal neurons which are immunoreactive (ir) to aromatic L-amino-acid decarboxylase (AADC) or tyrosine hydrodroxylase (TH) may play a role in the decarboxylation of L-DOPA to dopamine (DA) in advanced stages of Parkinson's disease (PD). However, the functional significance of these neurons and the mechanisms responsible for their induction remain to be clarified. In this study, rats were subjected to different types of dopaminergic or serotonergic denervation and L-DOPA injection to study the effects on these neurons. AADC-ir neurons were found in both normal and DA-denervated striata, and no significant differences in their number and distribution were induced following different types of denervation or L-DOPA administration. TH-ir neurons were only found in DA-denervated striata. However, TH-ir neurons did not appear in those areas with maximal DA depletion, but rather were observed near spared or partially lesioned DA terminals. The population of AADC-ir neurons may make a significant contribution to the effects of exogenous L-DOPA in advanced stages of PD. In addition, TH-ir neurons may contribute to these effects, since we have detected AADC-ir in TH-ir neurons using confocal laser scanning microscopy. Finally, neither L-DOPA therapy nor serotonergic denervation induces significant changes in the number or distribution of these neurons.  相似文献   

14.
Tinuvin 123, a compound used in the manufacture of plastics, has recently been suggested to possibly cause Parkinson's disease (PD). Herein, we revisited this issue by assessing the effect of Tinuvin 123 on dopaminergic neurons of the substantia nigra following its stereotaxic injection in the rat. Twenty-one days post unilateral stereotaxic injection of Tinuvin 123, systemic injection of both apomorphine and amphetamine caused rotations toward the side of the lesion in these rats. Tinuvin 123 produced a small to moderate dose-dependent reduction in striatal levels of dopamine and metabolites on the side of the lesion. This compound also produced dramatic cell loss in the substantia nigra on the side of the lesion. However, the loss of cells lacked the phenotypic specificity for tyrosine hydroxylase (TH)-positive neurons that is expected with a dopaminergic neurotoxin. Indeed, aside from a robust glial reaction, both TH-positive and glutamic acid dehydrogenase (GAD)-positive neurons were destroyed, and near the site of the injection, there was complete tissue destruction. This study indicates that, using this mode of injection, Tinuvin 123 exerts a dramatic tissue toxicity without any evidence of specificity for dopaminergic neurons. Thus, our data argues against a role for Tinuvin 123 as an environmental toxin causing a clinical condition characterized by the selective loss of dopaminergic neurons as seen in PD.  相似文献   

15.
We studied the synergistic effects of pergolide and bromocriptine with caffeine on turning behavior in 6-OHDA denervated rats. Both pergolide and bromocriptine were synergistic with caffeine, and prevented tolerance to caffeine-induced turning. When caffeine was removed, tolerance to bromocriptine effects was observed for 1 day only, while no tolerance was observed to pergolide. These results suggest that caffeine could be useful in the treatment of Parkinson's disease, preferentially as an adjuvant of mixed dopaminergic agonists like pergolide.  相似文献   

16.
Summary The prevalance and severity of calcification in the basal ganglia (BGC) has been examined histopathologically in 194 patients divided into ten diagnostic categories. The prevalence and severity of BGC was greater (for age) in Down's syndrome and in patients under 75 years of age with Alzheimer's disease. The severity, but not the prevalance, of BGC was greater in Down's syndrome than in patients of similar age with Alzheimer's disease. Both the prevalence and the severity of BGC in patients over 75 years of age with Alzheimer's disease were as expected for age alone. The increased prevalence and severity of BGC in Down's syndrome and in younger patients with Alzheimer's disease appeared not to be related to the presence of dementia or degenerative disease per se, nor was it affected by the presence of cerebral infarction. BGC may result from an age-related disturbance of the structure of arteries within the globus pallidus, which is accelerated (or occurs prematurely) in Down's syndrome and in younger patients with Alzheimer's disease, but probably does not form part of that spectrum of changes that constitutes the pathological basis of Alzheimer's disease.  相似文献   

17.
Animal studies investigating the efficacy of neurotrophic factors as treatments for Parkinson's disease (PD) ideally require partial dopamine (DA) lesion models. The intrastriatal 6-hydroxydopamine (6-OHDA) lesion model may be suitable for this purpose. Although this model has been well characterized in rodents, it has not previously been used in monkeys. The goal of the present study was to characterize the behavioral effects of unilateral injections of 6-OHDA in the basal ganglia of common marmoset monkeys (Callithrix jacchus). Cell counts from tyrosine hydroxylase immunochemistry 5 months postlesion revealed DA cell loss in the substantia nigra on the lesioned side to approximately 46% of relative to the unlesioned side. 6-OHDA lesioned monkeys showed a variety of behavioral deficits. Apomorphine induced rotation and simple sensorimotor measures (head position bias and PD disability rating score) were most affected by the lesion. The largest deficits were seen at 1 or 2 weeks postsurgery but had recovered by week 10. 6-OHDA lesioned monkeys took longer to complete a more complex sensorimotor staircase task. At 3.5 months postlesion, 6-OHDA monkeys also showed deficits on an object retrieval task designed to measure sensorimotor planning and skilled hand use. alpha-Methyl-p-tyrosine, a tyrosine hydroxylase inhibitor, reinstated those deficits which had undergone recovery in the lesioned animals and also exacerbated the deficits on the staircase task. This model has potential in assessing treatments for PD aimed at curtailing disease progression such as continuous delivery of neurotrophic factors.  相似文献   

18.
The position of the caudal intralaminar nuclei within basal ganglia circuitry has largely been neglected in most studies dealing with basal ganglia function. During the past few years, there has been a growing body of evidence suggesting that the thalamic parafascicular nucleus in rodents (PF) exerts a multifaceted modulation of basal ganglia nuclei, at different levels. Our aim was to study the activity of the thalamostriatal pathway in rats with unilateral dopaminergic depletion. The experimental approach comprised first unilateral delivery of 6-OHDA in the medial forebrain bundle. Thirty days post-lesioning, animals showing a clear asymmetry were then subjected to bilateral injection of Fluoro-Gold (FG) within the striatum. Subsequently, expression of the mRNA encoding the vesicular glutamate transporter 2 (vGLUT2) was detected within thalamostriatal-projecting neurons (FG-labeled) by in situ hybridization and the results were confirmed by laser-guided capture microdissection microscopy followed by real-time PCR. The data showed that there was a marked neuronal loss restricted to PF neurons projecting to the dopamine-depleted striatum. Moreover, PF neurons innervating the dopamine-depleted striatum were intensely hyperactive. These neurons showed a marked increase on the expression of vGLUT2 mRNA as well as for the mRNA encoding the subunit I of cytochrome oxidase as compared with those neurons projecting to the striatum with normal dopamine content. Thus, the selective neurodegeneration of PF neurons innervating the striatum together with the increased activity of the thalamostriatal pathway coexist after nigrostriatal denervation.  相似文献   

19.
We recently found that human amniotic epithelial (HAE) cells secrete biologically active neurotrophins such as brain-derived neurotrophic factor and neurotrophin-3, both of which exhibit trophic activities on dopamine (DA) neurons. The present study explored whether implantation of HAE cells can be a possible means to deliver trophic factors into the brain to prevent the death of DA neurons in a rat model of Parkinson's disease. We first investigated the ability of HAE cells to produce factors capable of promoting DA cell survival in vitro, and then tested whether HAE cell grafts survive and prevent the death of nigral DA neurons in rats with 6-hydroxydopamine lesions. A treatment with conditioned medium derived from HAE cell cultures enhanced the survival of tyrosine hydroxylase (TH)-immunopositive DA cells in serum-free cultures. The conditioned medium also protected the morphological integrity of TH-positive neurons against toxic insult with 6-hydroxydopamine. HAE cells were grafted into the midbrain of immunosuppressed rats. The rats were then subjected to a unilateral nigrostriatal lesion induced by intrastriatal infusions of 6-hydroxydopamine. HAE cell transplants were found to survive without evidence for overgrowth 2 weeks postgrafting. The number of nigral DA cells, detected with either TH-immunohistochemistry or retrograde labelling with fluorogold, was significantly increased in rats given the grafts as compared to that in control animals without the grafts. The results indicate that HAE cells produce diffusible molecules that can enhance the survival of DA neurons. Although the factors that contribute to the currently observed effects remain to be fully determined, implantation of HAE cells could be a viable strategy to counteract the loss of DA neurons in Parkinson's disease.  相似文献   

20.
The main objective of this study was to determine if levels of α-, β- and/or γ-synuclein mRNAs are differentially affected in brains of Lewy body disease (LBD) and Alzheimer’s disease (AD) patients, compared to controls. In control cases, highest levels of expression were observed in the neocortex and the lowest in basal ganglia and substantia nigra. β-Synuclein was the most abundant message (75–80%), followed by γ-synuclein (10–15%) and α-synuclein (8–10%). Analysis of the superior temporal cortex, a region selectively affected in LBD and AD, showed that compared to controls, levels of α-synuclein were increased in cases of diffuse LBD (DLBD), levels of β-synuclein were decreased in AD and DLBD, and levels of γ-synuclein were increased in AD cases. This study suggests that a critical balance among products of the synuclein gene is important to maintain normal brain function and that alterations in this balance might be associated with neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号