首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Introduction: The nuclear receptor pregnane X receptor (PXR) is a well-characterized hepatic xenobiotic sensor whose activation by chemically diverse compounds results in the induction of drug clearance pathways that rid the body of potentially toxic substances, thus conferring protection from foreign chemicals and endobiotics.

Areas covered: PXR activities are implicated in drug–drug interactions and endocrine disruption. Recent evidence supports a hepatoprotective role for PXR in chronic liver injury, inhibiting liver inflammation through suppression of the NF-κB pathway. However, PXR-mediated induction of CYP3A enhances APAP-induced acute liver injury by generating toxic metabolites. While these observations implicate PXR as a therapeutic target for liver injury, they also caution against PXR activation by pharmaceutical drugs.

Expert opinion: While evidence of PXR involvement in acute and chronic liver injuries identifies it as a possible therapeutic target, it raises additional concerns for all drug candidates. The in vitro and in vivo tests for human PXR activation should be incorporated into the FDA regulations for therapeutic drug approval to identify potential liver toxicities. In addition, PXR pharmacogenetic studies will facilitate the prediction of patient-specific drug reactivities and associated liver disorders.  相似文献   

8.
9.
孕烷受体的研究进展   总被引:2,自引:0,他引:2  
孕烷受体(PXR)是核受体亚家族的成员之一,PXR在机体适应外界环境、抵抗有毒物质侵袭中起重要作用,PXR能被多种处方药、中草药等亲脂性物质激活,调节下游靶基因的表达,PXR在药物代谢酶和转运体的调节中起重要作用,PXR在维持胆汁酸内环境的稳态、保护机体免受毒性胆汁酸的损害起关键作用。由于许多种处方药均可激活PXR,因此在多药联用时,可能产生药物相互作用。已建立测定PXR活性的方法,这对预测和防止药物相互作用有重要意义。  相似文献   

10.
11.
12.
13.
1. Factors which determine the acetaminophen glucuronidation capacity in the male rat have been examined.

2. Conditions previously shown to increase (streptozotocin diabetes) or decrease (a 24 h fast) the glucuronidation capacity in vivo did not alter the microsomal glucuronyl transferase activity, indicating that the amount of enzyme is not rate-limiting.

3. Acetaminophen caused a rapid depletion of hepatic levels of the co-substrate, UDPGA; both the extent of depletion and the time required for recovery back to pre-drug levels were dependent on the dose of acetaminophen administered.

4. The amount of UPDGA required for the glucuronidation of a therapeutic dose was nearly equal to the total content of UDPGA in the liver; after a toxic dose, the UDPGA demand was over 100-fold greater than the normal basal level.

5. It is concluded that the glucuronidation capacity of the animals is determined by their capacity to synthesize UDPGA, which in turn is dependent on flux through the glucuronic acid pathway.  相似文献   

14.
Factors which determine the acetaminophen glucuronidation capacity in the male rat have been examined. Conditions previously shown to increase (streptozotocin diabetes) or decrease (a 24 h fast) the glucuronidation capacity in vivo did not alter the microsomal glucuronyl transferase activity, indicating that the amount of enzyme is not rate-limiting. Acetaminophen caused a rapid depletion of hepatic levels of the co-substrate, UDPGA; both the extent of depletion and the time required for recovery back to pre-drug levels were dependent on the dose of acetaminophen administered. The amount of UPDGA required for the glucuronidation of a therapeutic dose was nearly equal to the total content of UDPGA in the liver; after a toxic dose, the UDPGA demand was over 100-fold greater than the normal basal level. It is concluded that the glucuronidation capacity of the animals is determined by their capacity to synthesize UDPGA, which in turn is dependent on flux through the glucuronic acid pathway.  相似文献   

15.
Hu BF  Bi HC  Huang M 《药学学报》2011,46(10):1173-1177
孕烷受体(pregnane X receptor,PXR)和组成性雄甾烷受体(constitutive androstane receptor,CAR)是核受体(nuclear receptor,NR)亚家族的重要成员;为配体活化的转录因子,能调控大量的靶基因。本文主要对其基本结构、机制及参与转录活化的辅助因子作简要介绍,重点讲述了它们在调节药物代谢与转运、糖异生及生酮作用、脂质代谢以及炎症反应等方面的意义。通过对PXR及CAR的研究,可以有效预测和防止药物相互作用;为寻找疾病治疗新靶标提供方向。  相似文献   

16.
Obesity is a complex metabolic disorder that is more prevalent among women. Until now, the only relevant rodent models of diet-induced obesity were via the use of ovariectomized (“postmenopausal”) females. However, recent reports suggest that the xenobiotic nuclear receptor pregnane X receptor (PXR) may contribute to obesity. Therefore, we compared the roles of mouse and human PXRs in diet-induced obesity between wild type (WT) and PXR-humanized (hPXR) transgenic female mice fed either control or high-fat diets (HFD) for 16 weeks. HFD-fed hPXR mice gained weight more rapidly than controls, exhibited hyperinsulinemia, and impaired glucose tolerance. Fundamental differences were observed between control-fed hPXR and WT females: hPXR mice possessed reduced estrogen receptor α (ERα) but enhanced uncoupling protein 1 (UCP1) protein expression in white adipose tissue (WAT); increased protein expression of the hepatic cytochrome P450 3A11 (CYP3A11) and key gluconeogenic enzymes phosphoenolpyruvate carboxykinase and glucose 6-phosphatase, and increased total cholesterol. Interestingly, HFD ingestion induced both UCP1 and glucokinase protein expression in WT mice, but inhibited these enzymes in hPXR females. Unlike WT mice, CYP3A11 protein, serum 17β-estradiol levels, and WAT ERα expression were unaffected by HFD in hPXR females. Together, these studies indicate that the hPXR gene promotes obesity and metabolic syndrome by dysregulating lipid and glucose homeostasis while inhibiting UCP1 expression. Furthermore, our studies indicate that the human PXR suppresses the protective role of estrogen in metabolic disorders. Finally, these data identify PXR-humanized mice as a promising in vivo research model for studying obesity and diabetes in women.  相似文献   

17.
Paclitaxel, a taxane anti-microtubule agent, is known to induce CYP3A in rat and human hepatocytes. Recent studies suggest that a member of the nuclear receptor family, pregnane X Receptor (PXR), is a key regulator of the expression of CYP3A in different species. We investigated the role of PXR activation, in vitro and in vivo, in mediating Cyp3a induction by paclitaxel. Pregnenolone 16 alpha-carbonitrile (PCN), an antiglucocorticoid, was employed as a positive control for mouse PXR (mPXR) activation in vitro, and Cyp3a induction in vivo. In cell based reporter gene assays paclitaxel and PCN activated mPXR with an EC(50) of 5.6 and 0.27 microM, respectively. Employing PXR wild-type and transgenic mice lacking functional PXR (-/-), we evaluated the expression and activity of CYP3A following treatment with paclitaxel and PCN. Paclitaxel significantly induced CYP3A11 mRNA and immunoreactive CYP3A protein in PXR wild-type mice. Consistent with kinetics of CYP3A induction, the V(max) of testosterone 6 beta-hydroxylation in microsomal fraction increased 15- and 30-fold in paclitaxel- and PCN-treated mice, respectively. The Cyp3a induction response was completely abolished in paclitaxel- and PCN-treated PXR-null mice. This suggests that paclitaxel-mediated CYP3A induction in vivo requires an intact PXR-signaling mechanism. Our study validates the use of PXR activation assays in screening newer taxanes for potential drug interactions that may be related to PXR-target gene induction.  相似文献   

18.
目的研究中国健康汉族人孕烷X受体的基因突变情况,并与高加索人和非洲裔美国人突变频率进行比较。方法PCR扩增后直接测序。结果在中国汉族人未发现已报道的PXR*2,3,4突变,与非洲裔美国人的PXR*2,3的基因型频率比较有显著性差异;A11156C与T11193C突变基因频率分别为45.5%,41.5%,与高加索人和非洲裔美国人的基因频率比较有显著性差异。结论中国健康汉族人与高加索人、非洲裔美国人比较,突变基因频率均有明显种族差异。  相似文献   

19.
Vitamin E activates gene expression via the pregnane X receptor   总被引:15,自引:0,他引:15  
Tocopherols and tocotrienols are metabolized by side chain degradation via initial omega-oxidation and subsequent beta-oxidation. omega-Oxidation is performed by cytochrome P450 (CYP) enzymes which are often regulated by their substrates themselves. Results presented here show that all forms of Vitamin E are able to activate gene expression via the pregnane X receptor (PXR), a nuclear receptor regulating a variety of drug metabolizing enzymes. In HepG2 cells transfected with the human PXR and the chloramphenicol acetyl transferase (CAT) gene linked to two PXR responsive elements, CAT activity was most strongly induced by alpha- and gamma-tocotrienol followed by rifampicin, delta-, alpha- and gamma-tocopherol. The inductive efficacy was concentration-dependent; its specificity was underscored by a lower response when cotransfection with PXR was omitted. Up-regulation of endogenous CYP3A4 and CYP3A5 mRNA was obtained by gamma-tocotrienol, the most potent activator of PXR, with the same efficacy as with rifampicin. This points to a potential interference of individual forms of Vitamin E with the metabolism and efficacy of drugs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号