首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The goal of this work is to quantify the binding parameters of [(18)F]Fallypride in the striatal and extrastriatal regions of the rat brain using factor analysis (FA) to correct small animal PET kinetic imaging for spillover defluorination radioactivity. Eleven rats were employed for YAP-(S)PET acquisitions and metabolite studies. All kinetic parameters including B'(max) and K(d)V(R) were estimated with a three-tissue compartment seven-parameter model (3T-7k) on the basis of all the FA-corrected data from the multi-injection protocol. Binding potential (BP(ND)) was calculated with Logan's graphical analysis taking cerebellum as the reference region and using the first injection raw (BP(ND-RAW)) and FA-corrected (BP(ND-FA)) data. Three distinct factors corresponding to free+non-specific binding, specific binding and skull and gland accumulation were recovered from FA with their corresponding spatial distributions. The resulting reconstructed images without skull and gland accumulation were improved to provide a better contrast between specific and non-specific regions. Very bad fits were obtained when using time-activity curves (TACs) calculated from the raw [(18)F]Fallypride data, whereas all TACs were well fitted by the 3T-7k model after FA correction. FA-corrected data enables the cerebellar region to be used as reference for the Logan approach. The magnitude of the BP(ND-FA) values was increased from 21% to 108% across regions and the rank order of BP(ND-FA) values (Cx相似文献   

2.
[(11)C]Flumazenil is widely used in positron emission tomography (PET) studies to measure GABA(A) receptors in vivo in humans. Although several different methods have been applied for the quantification of [(11)C]flumazenil binding, the reproducibility of these methods has not been previously examined. The reproducibility of a single bolus [(11)C]flumazenil measurements was studied by scanning eight healthy volunteers twice during the same day. Grey matter regions were analyzed using both regions-of-interest (ROI) and voxel-based analysis methods. Compartmental kinetic modelling using both arterial and reference region input function were applied to derive the total tissue distribution volume (V(T)) and the binding potential (BP) (BP(P) and BP(ND)) of [(11)C]flumazenil. To measure the reproducibility and reliability of each [(11)C]flumazenil binding parameter, absolute variability values (VAR) and intraclass correlation coefficients (ICC) were calculated. Tissue radioactivity concentration over time was best modelled with a 2-tissue compartmental model. V(T) showed with all methods good to excellent reproducibility and reliability with low VARs (mean of all brain regions) (5.57%-6.26%) and high ICCs (mean of all brain regions) (0.83-0.88) when using conventional ROI analysis. Also voxel-based analysis methods yielded excellent reproducibility (VAR 5.75% and ICC 0.81). In contrast, the BP estimates using pons as the reference tissue yielded higher VARs (8.08%-9.08%) and lower ICCs (0.35-0.80). In conclusion, the reproducibility of [(11)C]flumazenil measurements is considerably better with outcome measures based on arterial input function than those using pons as the reference tissue. The voxel-based analysis methods are proper alternative as the reliability is preserved and analysis automated.  相似文献   

3.
We performed full modeling analysis of 5-HT(1A)-[(18)F]MPPF interactions using the beta-microprobe (beta P) and a YAP-(S)PET scanner. Sixteen Wistar rats were used for beta P (n=5) and YAP-(S)PET (n=5) acquisitions and metabolite studies (n=6). Time-concentration curves were obtained in the hippocampus, raphe dorsalis, frontal cortex and cerebellum, using three injections of [(18)F]MPPF at different specific activities. B'(max) values were estimated from a two (2T-5k)- and three (3T-7k)-tissue-compartment model with beta P and YAP-(S)PET time-concentration curves. The simplified reference tissue model (SRTM) was used to estimate binding potential (BP(SRTM)) values from data obtained with the first injection and the cerebellum as the reference region. Overall, the 3T-7k model provided a better fit than the 2T-5k model, as evaluated from AIC criteria in all experiments. The rank order of receptor density (B'max) values was as follows: hippocampus>raphe approximately frontal cortex>cerebellum. Non-negligible specific binding was observed in the cerebellum (B'max (beta P)=1.5+/-0.9 pmol/ml). Significant correlations (p<0.001) between B'max and BP(SRTM) values were evident with both beta P (r=0.895) and YAP-(S)PET (r=0.695). The YAP-(S)PET system underestimated the [18F]MPPF binding levels in brain due to limited resolution (i.e. partial volume), but led to similar conclusions.  相似文献   

4.
Olsson H  Halldin C  Farde L 《NeuroImage》2004,22(2):794-803
Dopaminergic neurotransmission in extrastriatal regions may play a crucial role in the pathophysiology and treatment of neuropsychiatric disorders. The high-affinity radioligands [(11)C]FLB 457, [(123)I]epidepride, and [(18)F]fallypride are now used in clinical studies to measure these low-density receptor populations in vivo. However, a single determination of the regional binding potential (BP) does not differentiate receptor density (B(max)) from the apparent affinity (K(D)). In this positron emission tomography (PET) study, we measured extrastriatal dopamine D2 receptor density (B(max)) and apparent affinity (K(D)) in 10 healthy subjects using an in vivo saturation approach. Each subject participated in two to three PET measurements with different specific radioactivity of [(11)C]FLB 457. The commonly used simplified reference tissue model (SRTM) was used in a comparison of BP values with the B(max) values obtained from the saturation analysis. The calculated regional receptor density values were of the same magnitude (0.33-1.68 nM) and showed the same rank order as reported from postmortem studies, that is, in descending order thalamus, lateral temporal cortex, anterior cinguli, and frontal cortex. The affinity ranged from 0.27 to 0.43 nM, that is, approximately 10-20 times the value found in vitro (20 pM). The area under the cerebellar time activity curve (TAC) was slightly lower (11 +/- 8%, mean +/- SD, P = 0.004, n = 10) after injection of low as compared with high specific radioactivity, indicating sensitivity to the minute density of dopamine D2 receptors in the this region. The results of the present study support that dopamine D2 receptor density and affinity can be differentiated in low-density regions using a saturation approach. There was a significant (P < 0.001) correlation between the binding potential calculated with SRTM and the receptor density (B(max)), which supports the use of BP in clinical studies where differentiation of B(max) and K(D) is not required. In such studies, the mass of FLB 457 has to be less than 0.5 microg injected to avoid a mass effect of the radioligand itself.  相似文献   

5.
Ito H  Sudo Y  Suhara T  Okubo Y  Halldin C  Farde L 《NeuroImage》2001,13(3):531-539
To estimate receptor binding of ligand by positron emission tomography (PET) without an arterial input function, several quantitative approaches based on the use of a reference region have been proposed. We compared three approaches for quantifying extrastriatal D(2) dopamine receptors using [(11)C]FLB 457. The PET measurements were performed on seven healthy men. Binding potential (BP) of [(11)C]FLB 457 was calculated by the reference tissue model method, transient equilibrium method, and late time method. The reference tissue model describes the time-activity curve in a brain region in terms of that in the reference region, assuming that the levels of nondisplaceable radioligand binding in both regions are the same. The transient equilibrium theoretically occurs when the derivative for specific binding is zero. With the late time method, BP is calculated by integrating a late part of the time-activity curve. BP values obtained by all methods were in good agreement with those obtained by the kinetic approach, and the highest coefficient of correlation was observed in the reference tissue model method. In the simulation study, the error of BP calculated by the reference tissue model method was smallest. Moreover, the effect of the difference in the influx rate constant K(1) between the brain and the reference regions on BP was nearly avoided as theoretically predicted. We concluded that the reference tissue model method is most suitable for calculating BP of extrastriatal D(2) dopamine receptors with [(11)C]FLB 457.  相似文献   

6.
The binding of PET radiotracer [(11)C]flumazenil to the GABA(A) receptors is described by the receptor density (B(max)) and binding affinity (K(D)). The estimation of B(max) and K(D) is usually based on Scatchard analysis including at least two PET scans at steady state of various specific activities. Recently, a novel full saturation method to estimate both B(max) and K(D) was proposed, in which a saturating dose of flumazenil is given to cover a wide range of different receptor occupancies within a single scan. The aim of the present study was a direct comparison of steady state and full saturation methods for determining B(max) and K(D) of [(11)C]flumazenil in the same group of male Sprague-Dawley rats. Fourteen rats underwent 3 consecutive [(11)C]flumazenil scans of 30 min duration each. A tracer dose was injected at the start of the first scan. Prior to the second scan the tracer was mixed with 5, 20, 100 or 500 μg unlabelled (cold) flumazenil to cover a wide range of receptor occupancies during the scan. The third scan was performed during a constant intravenous infusion of unlabelled flumazenil, resulting in ~50% GABA(A) receptor occupancy. The first and third scans were part of the steady state method, whilst the second scan was performed according to the full saturation method. For both methods, B(max) and K(D) were then derived by compartmental modelling. Both methods yielded similar B(max) and K(D) estimates. The full saturation method yielded B(max) values of 37 ± 5.8 ng · mL(-1) and K(D) values of 7.6 ± 2.0 ng · mL(-1), whilst the steady state method yielded B(max) values of 33 ± 5.4 ng · mL(-1) and K(D) values of 7.1 ± 0.8 ng · mL(-1). The main advantage of the full saturation method is that B(max) and K(D) can be obtained from a single PET scan.  相似文献   

7.
Extraction of arterial input functions from dynamic brain scans may obviate the need for arterial sampling and would increase the clinical applicability of quantitative PET studies. The aim of the present study was to evaluate applicability and accuracy of image derived input functions (IDIFs) following reconstruction based partial volume correction (PVC). Settings for the PVC ordered subset expectation maximization (PVC-OSEM) reconstruction algorithm were varied. In addition, different methods for defining arterial regions of interest (ROI) in order to extract IDIFs were evaluated. [(11)C]flumazenil data of 10 subjects were used in the present study. Results obtained with IDIFs were compared with those using standard on-line measured arterial input functions. These included areas under the curve (AUC) for peak (1-2 min) and tail (2-60 min), volume of distribution (V(T)) obtained using Logan analysis, and V(T) and K(1) obtained with a basis function implementation of a single tissue compartment model. Best results were obtained with PVC-OSEM using 4 iterations and 16 subsets. Based on (11)C point source measurements, a 4.5 mm FWHM (full width at half maximum) resolution kernel was used to correct for partial volume effects. A ROI consisting of the four hottest pixels per plane (over the carotid arteries) was the best method to extract IDIFs. Excellent peak AUC ratios (0.99+/-0.09) between IDIF and blood sampler input function (BSIF) were found. Furthermore, extracted IDIFs provided V(T) and K(1) values that were very similar to those obtained using BSIFs. The proposed method appears to be suitable for analysing [(11)C]flumazenil data without the need for online arterial sampling.  相似文献   

8.
PET studies of [(11)C]WAY-100635 binding are proving to be a useful tool to evaluate 5-HT(1A) receptor function in vivo in humans. We describe the pattern of [(11)C]WAY-100635 binding in 61 healthy male brains and examine its variability. For all PET scans, binding potential (BP) values for [(11)C]WAY-100635 in different regions were calculated using a simplified reference tissue model, with the cerebellum as reference region. Specifically we describe (1) region of interest and SPM databases of PET [(11)C]WAY-100635 binding, including test-retest variability; (2) the sensitivity of [(11)C]WAY-100635 binding to manipulations of endogenous 5-HT; and (3) correlations between [(11)C]WAY-100635 binding and radiochemical, demographic, physiological, and behavioral variables. The regional distribution of [(11)C]WAY-100635 binding in healthy human brain was similar to that reported in vitro. The test-retest variability was approximately 12% (range 9-16%) and was similar for all methods of regional sampling. The binding of [(11)C]WAY-100635 was insensitive to changes in brain 5-HT induced by tryptophan infusion and depletion. Although BP values varied greatly across subjects (range 2.9-6.8), there were no significant correlations of regional and global BP with common radiochemical, demographic, physiological, and personality variables. Specifically, in contrast with two recent small studies, we found no decline of [(11)C]WAY-100635 binding with age in our large cohort over the age range of 24 to 53 years. Assessment of 5-HT(1A) receptors in vivo using PET and [(11)C]WAY-100635 gives reliable measures of 5-HT(1A) binding. The large between-subject variability observed could not be explained by common methodological, physiological, or behavioral factors and hence the biological basis of this variability remains to be clarified.  相似文献   

9.
Recent studies of limbic cortical dopamine D(2) receptor occupancy by clozapine using high-affinity PET and SPET radioligands have produced conflicting findings. It has been suggested that these divergent findings are due to between-study differences in the method used to estimate D(2) receptor-binding potential. We compared different methods for estimating striatal and temporal cortical D(2) receptor occupancy with high-affinity tracers. In vivo experimental SPET data, obtained with [(123)I]epidepride were analysed with reference tissue kinetic modeling and with the ratio method, applied to data corresponding to short (60 min) and long (240 min) acquisition times. Dopamine D(2) receptor occupancy by the atypical antipsychotic drug risperidone was evaluated. Simulation experiments were also performed, comparing occupancy values obtained for different receptor densities in relation to different data acquisition times. The simulation results revealed that previously published data regarding errors in occupancy estimation by analysis of time activity data acquired for 60 min cannot be extrapolated to studies performed over 240 min. The ratio method provided accurate temporal cortical D(2) receptor occupancy values when applied to data from a late time period, but underestimated the occupancy with earlier data. In striatum, both the late data ratio method and reference tissue kinetic modeling using all data underestimated D(2) receptor occupancy. However, more accurate analyses of striatal D(2) occupancy still showed selective limbic/cortical occupancy by risperidone. Our results substantiate the previous [(123)I]epidepride findings of high temporal cortical occupancy by other atypical antipsychotic drugs and suggest that a potential source of conflicting findings might be short scanning times imposed by [(11)C]FLB 457, leading to underestimation of temporal cortical D(2) receptor occupancy by this method.  相似文献   

10.
The dopamine transporter (DAT) is of central interest in research on the pathophysiology and treatment of neuro-psychiatric disorders. [11C]PE2I is an established radioligand that provides high-contrast delineation of brain regions that are rich in DAT. The aim of the present PET study in eight patients with juvenile myoclonic epilepsy (JME) was to evaluate the kinetics of [11C]PE2I in the brain and to compare binding parameters with those of age-matched control subjects (n = 6). Each patient participated in 90-minute PET measurements with [11C]PE2I. Data were analyzed using kinetic compartment analyses with metabolite-corrected arterial plasma input and reference tissue models using the cerebellum as a reference region. The time-activity curves were well described by the two-tissue compartment model (2TCM) for the DAT-rich regions. The 2TCM with fixed K1/k2 ratio derived from the cerebellum provided robust and reliable estimates of binding potential (BPND) and total distribution volume (VT). The reference tissue models also provided robust estimates of BPND, although they gave lower BPND values than the kinetic analysis. Compared with those of control subjects, we found that BPND values obtained by all approaches were reduced in the midbrain of the patients with JME. The finding indicates impaired dopamine uptake in the midbrain of JME patients. The three-tissue compartment model could best describe uptake in the cerebellum, indicating that two kinetically distinguishable compartments exist in cerebellar tissue, which may correspond to nonspecific binding and the blood-brain barrier passing metabolite. The reference tissue models should be applied with better understanding of the biochemical nature of the radioligand and the reliability of these approaches.  相似文献   

11.
6-O-(2-[(18)F]fluoroethyl)-6-O-desmethyldiprenorphine ([(18)F]FDPN) is a nonselective opiate ligand that binds to postsynaptic micro, kappa and delta opiate receptors. Due to the longer half-life of F-18, compared to C-11, labeling DPN with F-18 allows for alternative experimental protocols and potentially the evaluation of endogenous opioid release. The applicability of this compound to assorted experimental protocols motivated the evaluation of [(18)F]FDPN kinetics with compartmental and non-compartmental models. The results indicate that a two-tissue compartmental model best characterizes the data obtained following a bolus injection of [(18)F]FDPN (120-min scanning protocol). Estimates of distribution volume (DV) were robust, being highly correlated for the one-tissue compartmental model as well as the invasive Logan model and the basis function method. Furthermore, the DV estimates were also stable under a shortened protocol of 60 min, showing a significant correlation with the full protocol. The binding potential (BP) values showed more variability between methods and in some cases were more sensitive to protocol length. In conclusion, this evaluation of [(18)F]FDPN kinetics illustrates that DV values can be estimated robustly using compartmental modeling, the basis function method or the invasive Logan modeling approach on a volume of interest level. BP values were also found to correlate with DV values; however, these results should be interpreted with the understanding that specific binding in the reference region (occipital region) may exist.  相似文献   

12.
In positron emission tomography (PET) studies with radioligands for neuroreceptors, tracer kinetics have been described by the standard two-tissue compartment model that includes the compartments of nondisplaceable binding and specific binding to receptors. In the present study, we have developed a new graphic plot analysis to determine the total distribution volume (VT) and nondisplaceable distribution volume (VND) independently, and therefore the binding potential (BPND). In this plot, Y(t) is the ratio of brain tissue activity to time-integrated arterial input function, and X(t) is the ratio of time-integrated brain tissue activity to time-integrated arterial input function. The x-intercept of linear regression of the plots for early phase represents VND, and the x-intercept of linear regression of the plots for delayed phase after the equilibrium time represents VT. BPND can be calculated by BPND = VT / VND − 1. Dynamic PET scanning with measurement of arterial input function was performed on six healthy men after intravenous rapid bolus injection of [11C]FLB457. The plot yielded a curve in regions with specific binding while it yielded a straight line through all plot data in regions with no specific binding. VND, VT, and BPND values calculated by the present method were in good agreement with those by conventional non-linear least-squares fitting procedure. This method can be used to distinguish graphically whether the radioligand binding includes specific binding or not.  相似文献   

13.
Zhou Y  Ye W  Brasić JR  Crabb AH  Hilton J  Wong DF 《NeuroImage》2009,44(3):661-670
The widely used Logan plot in radioligand receptor dynamic PET studies produces marked noise-induced negative biases in the estimates of total distribution volume (DV(T)) and binding potential (BP). To avoid the inconsistencies in the estimates from the Logan plot, a new graphical analysis method was proposed and characterized in this study. The new plot with plasma input and with reference tissue input was first derived to estimate DV(T) and BP. A condition was provided to ensure that the estimate from the new plot equals DV(T) or BP. It was demonstrated theoretically that 1) the statistical expectations of the estimates from the new plot with given input are independent of the noise of the target tissue concentration measured by PET; and 2) the estimates from the time activity curves of regions of interest are identical to those from the parametric images for the new plot. The theoretical results of the new plot were also confirmed by computer simulations and fifty-five human [(11)C]raclopride dynamic PET studies. By contrast, the marked noise-induced underestimation in the DV(T) and BP images and noise-induced negative bias in the estimates from the Logan plot were demonstrated by the same data sets used for the new plot. The computational time for generating DV(T) or BP images in the human studies was reduced by 80% on average by the new plot in contrast to the Logan plot. In conclusion, the new plot is a consistent and computationally efficient graphical analysis method to improve the quantification of reversible tracer binding in radioligand receptor dynamic PET studies.  相似文献   

14.
The study of human neuroreceptor systems by means of positron emission tomography (PET) and suitable radioligands has proven to be of great importance in research on normal brain functions and the pathophysiology and treatment of neuropsychiatric disorders. A for long identified goal is to produce detailed parametric maps of showing neuroreceptor binding parameters for the entire human brain in vivo. The application of wavelet filters has recently been proposed as a solution to handle the inherently low signal-to-noise ratio of PET images. In the present study we applied the wavelet approach to data obtained from 10 healthy subjects who were examined with [11C]FLB 457. This high affinity dopamine D2-receptor antagonist provides a signal from a range of regions with a hundredfold difference in receptor density and should thus be suitable for evaluation of the wavelet approach. For cross-validation purposes the data were analysed with four methods: a traditional region-of-interest (ROI) based analysis, a pixel-based analysis and two variants of wavelet-aided analyses. In both variants the wavelet filter was spatially applied, but a two-dimensional filter was used in one case and a three-dimensional one in the other. The same linear-graphical binding potential (BP) estimation step was used for all methods and the results of the three parametric mapping techniques were compared to the reference ROI-based method by calculating the average BP of representative ROIs. The pixel-based and the two-dimensional-wavelet-based methods yielded highly correlated but systematically lower values when compared to the reference ROI-based method. The approach utilising three-dimensional wavelet filters yielded BP maps with regional averages closely matching the values of the ROI-based method. The results show that the combination of three-dimensional spatial wavelet filtering with established parameter estimation procedures provides detailed, accurate maps of radioligand binding parameters. Such maps can be used for in inter-individual or multi-condition comparisons of binding parameters at subregional levels.  相似文献   

15.
(R)-[11C]PK11195 has been used for quantifying cerebral microglial activation in vivo. In previous studies, both plasma input and reference tissue methods have been used, usually in combination with a region of interest (ROI) approach. Definition of ROIs, however, can be labourious and prone to interobserver variation. In addition, results are only obtained for predefined areas and (unexpected) signals in undefined areas may be missed. On the other hand, standard pharmacokinetic models are too sensitive to noise to calculate (R)-[11C]PK11195 binding on a voxel-by-voxel basis. Linearised versions of both plasma input and reference tissue models have been described, and these are more suitable for parametric imaging. The purpose of this study was to compare the performance of these plasma input and reference tissue parametric methods on the outcome of statistical parametric mapping (SPM) analysis of (R)-[11C]PK11195 binding. Dynamic (R)-[11C]PK11195 PET scans with arterial blood sampling were performed in 7 younger and 11 elderly healthy subjects. Parametric images of volume of distribution (Vd) and binding potential (BP) were generated using linearised versions of plasma input (Logan) and reference tissue (Reference Parametric Mapping) models. Images were compared at the group level using SPM with a two-sample t-test per voxel, both with and without proportional scaling. Parametric BP images without scaling provided the most sensitive framework for determining differences in (R)-[11C]PK11195 binding between younger and elderly subjects. Vd images could only demonstrate differences in (R)-[11C]PK11195 binding when analysed with proportional scaling due to intersubject variation in K1/k2 (blood-brain barrier transport and non-specific binding).  相似文献   

16.
The highly diverse serotonergic system with at least 16 different receptor subtypes is implicated in the pathophysiology of most neuropsychiatric disorders including affective and anxiety disorders, obsessive compulsive disorder, post-traumatic stress disorder, eating disorders, sleep disturbance, attention deficit/hyperactivity disorder, drug addiction, suicidal behavior, schizophrenia, Alzheimer, etc. Alterations of the interplay between various pre- and postsynaptic receptor subtypes might be involved in the pathogenesis of these disorders. However, there is a lack of comprehensive in vivo values using standardized procedures. In the current PET study we quantified 3 receptor subtypes, including the major inhibitory (5-HT(1A) and 5-HT(1B)) and excitatory (5-HT(2A)) receptors, and the transporter (5-HTT) in the brain of healthy human subjects to provide a database of standard values. PET scans were performed on 95 healthy subjects (age=28.0±6.9years; 59% males) using the selective radioligands [carbonyl-(11)C]WAY-100635, [(11)C]P943, [(18)F]altanserin and [(11)C]DASB, respectively. A standard template in MNI stereotactic space served for region of interest delineation. This template follows two anatomical parcellation schemes: 1) Brodmann areas including 41 regions and 2) AAL (automated anatomical labeling) including 52 regions. Standard values (mean, SD, and range) for each receptor and region are presented. Mean cortical and subcortical binding potential (BP) values were in good agreement with previously published human in vivo and post-mortem data. By means of linear equations, PET binding potentials were translated to post-mortem binding (provided in pmol/g), yielding 5.89pmol/g (5-HT(1A)), 23.5pmol/g (5-HT(1B)), 31.44pmol/g (5-HT(2A)), and 11.33pmol/g (5-HTT) being equivalent to the BP of 1, respectively. Furthermore, we computed individual voxel-wise maps with BP values and generated average tracer-specific whole-brain binding maps. This knowledge might improve our interpretation of the alterations taking place in the serotonergic system during neuropsychiatric disorders.  相似文献   

17.
The objective of this study was to establish the kinetic analysis for mapping sigma(1) receptors (sigma1Rs) in the human brain by positron emission tomography (PET) with [(11)C]SA4503. The sigma1Rs are considered to be involved in various neurological and psychiatric diseases. [(11)C]SA4503 is a recently developed radioligand with high and selective affinity for sigma1Rs, and we have first applied it to clinical studies. Nine healthy male subjects each underwent a dynamic 90-min PET scan after injection of [(11)C]SA4503. In addition to the baseline measurement, three of the nine subjects underwent a second [(11)C]SA4503-PET after partial blockade of sigma1Rs by oral administration of haloperidol, a sigma receptor antagonist. Full kinetic analysis using two times nonlinear estimations was applied for fitting a two-tissue three-compartment model to determine the binding potential (BP) and total distribution volume (tDV) of [(11)C]SA4503. Graphical analysis with a Logan plot was also applied for estimations of tDV. The regional distribution patterns of BP and tDV in 11 regions were compatible with those of previously reported sigma1Rs in vitro. The reduced binding sites of sigma1Rs by haloperidol were appropriately evaluated. The tDVs derived from the two methods matched each other well. The Logan plot offered images of the tDV, which reflected sigma1R densities, and the tDV in the images decreased after haloperidol loading. Moreover, comparison of BPs calculated with and without metabolite correction for plasma input function indicated that the metabolite correction could be omitted. We concluded that this method enables the quantitative analysis of sigma1Rs in the human brain.  相似文献   

18.
Opioid agonists produce analgesia in mammals through the activation of mu, kappa, or delta opioid receptors. Previous behavioral and binding studies from our laboratory using an amphibian model suggested that mu, kappa, or delta opioid agonists may activate a single type of opioid receptor in the grass frog, Rana pipiens. In the present study, kinetic, saturation, and competitive binding profiles for three opioid radioligands, [(3)H]DAMGO ([D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin) (mu-selective), [(3)H]U65953 [(5 alpha, 7 alpha,8 beta)-(+)-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]-benzeneacetamide] (kappa-selective), and [(3)H]DPDPE ([D-Pen(2),D-Pen(5)]-enkephalin) (delta-selective) were determined using frog whole brain homogenates. Kinetic analyses and experimentally derived values from saturation experiments gave affinity constants (K(D)) in the low nanomolar range. The density of opioid binding sites (B(max)) was 224.4, 118.6, and 268.9 fmol/mg for mu, kappa, and delta opioid radioligands, respectively. The affinity values did not significantly differ among the three opioid radioligands, but the kappa radioligand bound to significantly fewer sites than did the mu or delta radioligands. K(i) values for unlabeled mu, kappa, and delta competitors, including highly selective opioid antagonists, were consistent with each radioligand selectivity profile. The present data suggest that mu, kappa, and delta opioid radioligands bind to distinct opioid receptors in amphibians that are surprisingly similar to those found in mammalian brain.  相似文献   

19.
The cerebral A(1) adenosine receptor (A(1)AR) has recently become accessible for in vivo imaging using the selective A(1)AR ligand [(18)F]CPFPX and PET. For broad application in neurosciences, imaging at distribution equilibrium is advantageous to quantify stimulus-dependent changes in receptor availability and to avoid arterial blood sampling. Here we propose a bolus/infusion (B/I) protocol to assess the total distribution volume (DV(t)) of [(18)F]CPFPX under equilibrium conditions. Employing a bolus-to-infusion ratio of 0.8 h, (near) equilibrium conditions were attained within 60 min. The regional DV(t)' given by arterial and venous equilibrium analyses agreed well with conventional two-tissue compartment model analyses (r(2) > 0.94 and r(2) > 0.84, respectively) and Logan's graphical analyses (r(2) = 1.0 and r(2) > 0.93, respectively) (n = 4 healthy volunteers). The mean regional DV(t)' values of these equilibrium analyses and of venous equilibrium analyses in additional seven volunteers demonstrated excellent agreement with the results of earlier bolus studies (r(2) > 0.98). Error simulations show that minor deviations from true equilibrium are associated with negligible to small DV(t) errors. In conclusion, [(18)F]CPFPX shows suitable characteristics for A(1)AR quantification by B/I PET scanning. Carefully standardized venous equilibrium analyses may substitute arterial analyses and thus considerably enhance applicability of A(1)AR PET in clinical routine.  相似文献   

20.
For the quantitative analysis of ligand-receptor dynamic positron emission tomography (PET) studies, it is often desirable to apply reference tissue methods that eliminate the need for arterial blood sampling. A common technique is to apply a simplified reference tissue model (SRTM). Applications of this method are generally based on an analytical solution of the SRTM equation with parameters estimated by nonlinear regression. In this study, we derive, based on the same assumptions used to derive the SRTM, a new set of operational equations of integral form with parameters directly estimated by conventional weighted linear regression (WLR). In addition, a linear regression with spatial constraint (LRSC) algorithm is developed for parametric imaging to reduce the effects of high noise levels in pixel time activity curves that are typical of PET dynamic data. For comparison, conventional weighted nonlinear regression with the Marquardt algorithm (WNLRM) and nonlinear ridge regression with spatial constraint (NLRRSC) were also implemented using the nonlinear analytical solution of the SRTM equation. In contrast to the other three methods, LRSC reduces the percent root mean square error of the estimated parameters, especially at higher noise levels. For estimation of binding potential (BP), WLR and LRSC show similar variance even at high noise levels, but LRSC yields a smaller bias. Results from human studies demonstrate that LRSC produces high-quality parametric images. The variance of R(1) and k(2) images generated by WLR, WNLRM, and NLRRSC can be decreased 30%-60% by using LRSC. The quality of the BP images generated by WLR and LRSC is visually comparable, and the variance of BP images generated by WNLRM can be reduced 10%-40% by WLR or LRSC. The BP estimates obtained using WLR are 3%-5% lower than those estimated by LRSC. We conclude that the new linear equations yield a reliable, computationally efficient, and robust LRSC algorithm to generate parametric images of ligand-receptor dynamic PET studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号