首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorinated oligomers, when blended into polyurethane, have been shown to migrate to the surface and generate an interface that minimizes protein denaturation and reduces cell activation. This type of surface modification can be achieved with ppm quantities of a bioactive fluorinated surface modifier (BFSM), enabling the introduction of bioactive agents onto a surface in one manufacturing step. In the current study, two BFSMs were synthesized with covalently conjugated RGD and PHSRN peptides near the fluorine terminal groups, and were shown to be surface active in polyurethane blends. CyQuant cell enumeration, scanning electron microscopy, and cell viability assays all indicated that the bioactive (and fluorinated) substrates supported enhanced monocyte interaction. The simplicity of the surface modification technique and the demonstrated ability of the peptide BFSMs to influence cell attachment and spreading indicate the potential benefits and practical value of the BFSM technology in tailoring surfaces for biomaterial applications. This was specifically highlighted for human blood monocytes, a key cell involved in the early stages of wound healing.  相似文献   

2.
Elastin-like polypeptide (ELP) surface modification represents a valuable approach for the development of biomaterials in a wide range of medical applications. In this study, ELP surface modification has been achieved through the use of elastin cross-linking peptide (ECP) bioactive fluorinated surface modifiers (ECP-BFSMs). The synthesis of low molecular weight fluorinated additives was described and their subsequent blending with a base polycarbonate urethane (PCNU) was shown to successfully enrich the surface to allow for ELP surface cross-linking via lysine moieties on the peptide segments of the ECP-BFSMs. The kinetics for the surface migration of fluorescent ECP-BFSMs was studied over a 2-week period by two-photon confocal microscopy. A decrease in advancing contact angle from 87.9° to 75.3° was observed for ECP-BFSM modified PCNU and was associated with the presence of ECP peptides on the surface. X-ray photoelectron spectroscopy demonstrated an increase in surface atomic percent of fluorine (from 0.2 to 7.2%) and nitrogen (from 1.0 to 3.0%) associated with the surface localization of fluoro groups and amide groups associated with the peptides in the ECP-BFSMs. A further increase in surface atomic percent of nitrogen (from 3.0 to 8.3%) was observed after ELP surface cross-linking. These ELP-modified surfaces were shown to promote increased smooth muscle cell adhesion, spreading and retention over a 7-day culture period relative to their non-ELP4 analogs. This novel surface modifying additive approach may be used for various biomimetic applications since it generates a stable ECM-like surface retained onto a relatively inert fluorinated background.  相似文献   

3.
The ability of biomaterial surfaces to regulate cell behavior requires control over surface chemistry and microstructure. One of the greatest challenges with silicon-based biomedical microdevices such as those recently developed for neural stimulation, implantable encapsulation, biosensors, and drug delivery, is to improve biocompatibility and tissue integration. This may be achieved by modifying the exposed silicon surface with bioactive peptides. In this study, Arg-Gly-Asp (RGD) peptide conjugated surfaces were prepared and characterized. The effect of these surfaces on fibroblast adhesion and proliferation was examined over 4 days. Silicon surfaces coupled with a synthetic RGD peptide, as characterized with X-ray photoelectron spectroscopy and atomic force microscopy, display enhanced cell proliferation and bioactivity. Results demonstrate an almost three-fold greater cell attachment! proliferation on RGD immobilized surfaces compared to unmodified (control) silicon surfaces. Modulating the biological response of inorganic materials such as silicon will allow us to design more appropriate interfaces for implantable diagnostic and therapeutic silicon-based microdevices.  相似文献   

4.
Kim TG  Park TG 《Tissue engineering》2006,12(2):221-233
A cell adhesive peptide, Arg-Gly-Asp (RGD), was immobilized onto the surface of electrospun poly(D,L-lactic-co-glycolic acid) PLGA nanofiber mesh in an attempt to mimic an extracellular matrix structure. A blend mixture of PLGA and PLGA-b-PEG-NH(2) di-block copolymer dissolved in a 1:1 volume mixture of dimethylformamide and tetrahydrofuran was electrospun to produce a nanofiber mesh with functional primary amino groups on the surface. Various electrospinning parameters, such as polymer concentration and the blend ratio, were optimized to produce a nanofiber mesh with desirable morphology, surface characteristics, and fiber diameter. A cell adhesive peptide, GRGDY, was covalently grafted onto the aminated surface of the electrospun mesh under a hydrating condition. The amounts of surface primary amino groups and grafted RGD peptides were quantitatively determined. Cell attachment, spreading, and proliferation were greatly enhanced in the RGD modified electrospun PLGA nanofiber mesh compared with that of the unmodified one.  相似文献   

5.
RGD是许多粘附蛋白结构中的高度保守序列,与细胞在生物材料表面的粘附、增殖密切相关。本研究在聚酯薄膜表面分别预衬纤维粘连蛋白和共价接枝RGD三肽,然后在不同聚酯材料上种植体外培养的人脐静脉内皮细胞,结果显示RGD可明显促进细胞在材料表面的粘附和增殖,与纤维粘连蛋白相比,RGD促进细胞粘附的作用更为明显,而在细胞增殖方面,二者的作用无显著性差异。本研究为改进生物材料的表面设计,促进心血管移植物的内皮化提供了一个切实可行的思路。  相似文献   

6.
Dinnes DL  Santerre JP  Labow RS 《Biomaterials》2005,26(18):3881-3889
Activation of the phospholipase A2 (PLA2) pathway is a key cell signaling event in the inflammatory response. The PLA2 family consists of a group of enzymes that hydrolyze membrane phospholipids, resulting in the liberation of arachidonic acid (AA), a precursor to pro-inflammatory molecules. Given the well-documented activating role of biomaterials in the inflammatory response to medical implants, the present study investigated the link between PLA2 and polycarbonate-based polyurethane (PCNU) biodegradation, and the effect that material surface had on PLA2 activation in the U937 cell line. PCNUs were synthesized with poly(1,6-hexyl 1,2-ethyl carbonate)diol, 1,4-butanediol and one of two diisocyanates (hexane 1,6-diisocyanate or 4,4'-methylene bisphenyl diisocyanate) in varying stoichiometries and incubated with adherent U937 cells. PLA2 inhibiting agents resulted in significantly decreased PCNU biodegradation (p < 0.05). Moreover, when activation of PLA2 was assessed (3H-AA release), significantly more 3H-AA was released from PCNU-adherent U937 cells than polystyrene-adherent U937 cells (p < 0.05) which was significantly decreased in the presence of PLA2 inhibitors. The pattern of inhibition of U937 cell-mediated biodegradation and 3H-AA release that was modulated by PCNU surface differences, suggests a role for secretory PLA2 along with cytosolic PLA2. Understanding PCNU activation of intracellular pathways, such as PLA2, will allow the design of materials optimized for their intended use.  相似文献   

7.
Gao Q  Chung AS  Kao WJ 《Tissue engineering》2007,13(1):179-185
In this study we synthesized gelatin-based, tissue-engineering, interpenetrating network (IPN) scaffolds immobilized with fibronectin (FN)-derived peptides to assess monocyte-biomaterial interaction. Human promonocytic U937 cells were seeded onto peptide-grafted IPN or tissue-culture polystyrene plate (TCPS) pre-adsorbed with FN or FN-derived peptides. The presence of RGD influenced U937 density on IPN. Interleukin-1 beta (IL-1beta) messenger ribonucleic acid (mRNA) expression in adherent U937 on treated TCPS was slightly upregulated at 4 h. Tumor necrosis factor alpha (TNF-alpha) and IL-1beta mRNA expression in adherent U937 on all IPNs was generally downregulated at 4 h. This downregulation of IL-1beta mRNA apparently varied in IPNs grafted with different ligand and was still present at 24 h. TNF-alpha and IL-1beta proteins released from U937 on treated TCPS were comparable with the control at 24 h, but TNF-alpha and IL-1beta protein expression in U937 on IPNs was lower at 24 h than on the TCPS control. The results indicate that the tissue-engineering substrate and the bioactive peptides modulate the initial U937 adhesion and the subsequent inflammatory cytokine gene and protein expression.  相似文献   

8.
The prominent cell type found on implanted medical devices during the chronic inflammatory response is the monocyte-derived macrophage (MDM). Using an activated in vitro cell system, it was possible to show that MDMs possess esterolytic activities that may contribute to the degradation of polyurethanes. In the present study, the U937 cell line was paralleled to the MDM cell system in order to validate the use of a cell line that could expedite studies on biomaterial biocompatibility and biostability. Using 12-o-tetradecanoylphorbol 13-acetate (PMA), the optimum differentiation time for the U937 cells was 72 h based on biodegradation, degradative potential, and (35)S-methionine uptake. After activation of the cells by resuspending from tissue culture polystyrene plates and reseeding onto a (14)C-labeled polycarbonate-based polyurethane(PCNU), both U937 cells and the MDMs elicited comparable radiolabel release (measure of polymer breakdown) and esterase activity (measure of degradative potential) at 48 h.There was no difference in the effect on radiolabel release and esterase activity elicited by both cell types with inhibitors of protein synthesis, esterase activity, and phospholipase A(2). This established that both cell types likely used similar hydrolytic activities and signaling pathways to cause degradation of the PCNU. Immunoblotting demonstrated that both cell systems secreted monocyte-specific esterase and cholesterol esterase enzymes previously shown to degrade PCNUs. The U937 cell system is more convenient and reproducible than MDMs for pursuing possible biological pathways elucidating the mechanism of polyurethane biodegradation. Once established with U937s, the pathways can then be validated with the more physiologically relevant human MDM cell system.  相似文献   

9.
The covalent attachment of an Arg-Gly-Asp (RGD) containing peptide to polypyrrole(PPy)-coated titanium substrates has been investigated in order to develop a bioactive material of potential use in orthopedic fields. Polypyrrole has been employed as the coating polymer because of its suitability to be electrochemically grown directly onto metallic substrates of different shapes, leading to remarkably adherent films. The synthetic peptide Cys-Gly-(Arg-Gly-Asp)-Ser-Pro-Lys, containing the cell-adhesive region of fibronectin (RGD), has been grafted to the polymer substrate via the cysteine residue using a procedure recently developed in the authors laboratory. The effectiveness of grafting was monitored by X-ray photoelectron spectroscopy (XPS), which assessed the presence of the peptide grafted onto the polymer surface exploiting the cysteine sulfur as target element. Neonatal rat calvarial osteoblasts were attached to RGD-modified PPy-coated Ti substrates at levels significantly greater than on unmodified PPy-coated Ti and glass coverslip substrates.  相似文献   

10.
The covalent attachment of an Arg-Gly-Asp (RGD) containing peptide to polypyrrole(PPy)-coated titanium substrates has been investigated in order to develop a bioactive material of potential use in orthopedic fields. Polypyrrole has been employed as the coating polymer because of its suitability to be electrochemically grown directly onto metallic substrates of different shapes, leading to remarkably adherent films. The synthetic peptide Cys-Gly-(Arg-Gly-Asp)-Ser-Pro-Lys, containing the cell-adhesive region of fibronectin(RGD), has been grafted to the polymer substrate via the cysteine residue using a procedure recently developed in the authors laboratory. The effectiveness of grafting was monitored by X-ray photoelectron spectroscopy (XPS), which assessed the presence of the peptide grafted onto the polymer surface exploiting the cysteine sulfur as target element. Neonatal rat calvarial osteoblasts were attached to RGD-modified PPy-coated Ti substrates at levels significantly greater than on unmodified PPy-coated Ti and glass coverslip substrates.  相似文献   

11.
研究RGD肽对内皮细胞(Endothelialcell,EC)在生物材料表面黏附稳定性的影响。实验材料(聚酯)分为三组:RGD组(表面共价接枝人工合成的RGD三肽)、对照组(表面预衬纤维粘连蛋白)和空白组(表面未作任何处理),然后在三组材料表面种植体外培养的人脐静脉内皮细胞,并在定常流条件下观察比较RGD肽和纤维粘连蛋白对材料表面细胞黏附稳定性的影响。结果显示随着剪切力作用时间延长和剪切力加大,三组材料表面黏附的细胞脱落逐渐增多。空白组PET表面细胞脱落最为明显,8.19dyne/cm2作用4h后,材料表面细胞残留率仅为13.73%。PET表面结合RGD或纤维粘连蛋白后,细胞残留率明显增加,同样剪切力作用下细胞残留率分别为43.33%和40.75%,两组之间无显著性差异。由此得出结论,RGD可以提高EC在材料表面的黏附稳定性。本结果仅是一个体外实验的初步结果,需要进一步的体内实验加以证实。  相似文献   

12.
Peptide or protein ligands can be used for molecular decoration to enhance the functionality of synthetic materials. However, some skepticism has arisen about the efficacy of such strategy in practical contexts since serum proteins largely adsorb. To address this issue, it is crucial to ascertain whether a chemically conjugated integrin-binding peptide is fully recognized by a cell even if partially covered by a physisorbed layer of serum protein; in more general terms, if competitive protein fragments physisorbed onto the surface are distinguishable from those chemically anchored to it. Here, we engraft an RGD peptide on poly-ε-caprolactone (PCL) surfaces and follow the dynamics of focal adhesion (FA) and cytoskeleton assembly at different times and culture conditions using a variety of analytical tools. Although the presence of serum protein covers the bioconjugated RGD significantly, after the first adhesion phase cells dig into the physisorbed layer and reach the submerged signal to establish a more stable adhesion structure (mature FAs). Although the spreading area index is not substantially affected by the presence of the RGD peptide, cells attached to chemically bound signals develop a stronger adhesive interaction with the materials and assemble a mechanically stable cytoskeleton. This demonstrates that cells are able to discriminate, via mechanosensoring, between adhesive motives belonging to physisorbed proteins and those firmly anchored on the material surface.  相似文献   

13.
The accumulation of mononuclear phagocytes at sites of chronic inflammation is dependent on an increase in the rate of extravasation of blood-borne monocytes through the vascular endothelium into the connective tissue. Once the monocytes have emigrated into the connective tissue, they may differentiate into tissue macrophages, presumably following interactions with extracellular matrix proteins. To study these processes, we tested the effects of cytokines and phorbol esters on the adhesion of U937 cells, a human monocyte-like cell line, to cultured endothelial cells (EC) and to matrix proteins. In the absence of cytokines, very few of the U937 cells adhered to EC (5% or less in most experiments). When EC were pretreated for optimal periods of time (4-8 hr) with recombinant interleukin-1 alpha (IL-1 alpha), IL-1 beta, tumor necrosis factor-alpha (TNF alpha), or lymphotoxin (LT; also known as TNF-beta), 35-85% of the U937 cells were able to bind. Interferon-gamma (IFN-gamma) and interleukin-2 (IL-2) did not stimulate U937-EC binding, even though IFN-gamma was shown to increase EC adhesiveness for T lymphocytes. Phorbol esters also greatly stimulated U937-EC adhesion but, in this case, the increase was due to an action on the U937 cells. A monoclonal antibody (MAb), 60.3, against the CD11/CD18 family of leukocyte adhesion molecules partially inhibited the adhesion of untreated and phorbol ester-treated U937 cells to noncytokine-treated EC. However, that MAb had no effect on U937 cell binding to TNF-alpha-treated EC. Thus U937 cells use both CD11/CD18-dependent and -independent mechanisms to adhere to EC. In the absence of stimulating agents, only a small proportion of the U937 cells (2-20%) adhered to fibronectin (FN), and almost none bound to either laminin (LN) or gelatin (denatured type I collagen). In the presence of phorbol esters, a much larger proportion of the U937 cells adhered to FN, with only slight increases in the proportion of cells which bound to LN or gelatin. Additional adhesion assays performed in the presence of a pentapeptide containing the amino acid sequence arg-gly-asp (RGD), which is part of one of the cell-binding domains of FN, demonstrated that the RGD-containing peptide almost totally blocked the phorbol ester-induced adhesion of U937 cells to FN. In contrast, the peptide had no inhibitory effect on the phorbol ester-induced binding of U937 cells to EC.  相似文献   

14.
Surface topography and (bio)chemistry are key factors in determining cell response to an implant. We investigated cell adhesion and spreading patterns of epithelial cells, fibroblasts and osteoblasts on biomimetically modified, smooth and rough titanium surfaces. The RGD bioactive peptide sequence was immobilized via a non-fouling poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) molecular assembly system, which allowed exploitation of specific cell-peptide interactions even in the presence of serum. As control surfaces, bare titanium and bio-inactive surfaces (scrambled RDG and unfunctionalized PLL-g-PEG) were used. Our findings demonstrated that surface topography and chemistry directly influenced the attachment and morphology of all cell types tested. In general, an increase in cell number and more spread cells were observed on bioactive substrates (containing RGD) compared to bio-inactive surfaces. More fibroblasts were present on smooth than on rough topographies, whereas for osteoblasts the opposite tendency was observed. Epithelial cell attachment did not follow any regular pattern. Footprint areas for all cell types were significantly reduced on rough compared to smooth surfaces. Osteoblast attachment and footprint areas increased with increasing RGD-peptide surface density. However, no synergy (interaction) between RGD-peptide surface density and surface topography was observed for osteoblasts neither in terms of attachment nor footprint area.  相似文献   

15.
Biesalski MA  Knaebel A  Tu R  Tirrell M 《Biomaterials》2006,27(8):1259-1269
We report the synthesis and characterization of a stable polymerized monolayer of peptide-amphihiles on a planar solid support that promotes mouse fibroblast cell adhesion and spreading. Peptide-amphiphiles consisting of a polymerizable fatty acid attached to a short RGD containing peptide sequence are self-assembled and polymerized at the water-air interface by means of the Langmuir- Blodgett technique. The surface concentration of the peptide-amphiphile is varied by co-spreading the peptide-amphiphile with an analogous non-modified polymerizable amphiphile at the water/air interface, prior to UV light-induced polymerization. The polymerized monolayer is transferred onto a hydrophobized smooth mica surface and the resulting surfaces have been investigated with respect to directing the cell adhesion and spreading of mouse fibroblast cells in a serum-free medium. Fibroblast cells adhere and spread on surfaces exposing the bioactive ligand but do not spread on reference surfaces without peptide. We find a maximum number of adherent cells at rather high peptide surface concentrations of about 10 mol% in the mixed monolayer, equivalent to more than 50 pmol/cm2 peptide on the surface of the film. We attribute this finding to a limited accessibility of the ligands by the integrins. Because of the stability of the polymerized peptide-amphiphile monolayer, these surfaces can be re-seeded multiple times with cells, i.e. adherent cells can be removed from the surface, the surface can be sterilized and cells can be re-attached.  相似文献   

16.
目的:探索RGD多肽修饰的改性PLGA支架材料上骨髓基质细胞的增殖、粘附及分化情况。方法用异型双功能交联剂Sulfo-LC-SPDP将GRGDSPC多肽共价结合到改性PLGA支架材料上,以未接多肽的改性PLGA材料做对照,取第三代MSC接种到材料上,培养1d、2d、3d、4d后比较材料上的细胞密度来反映细胞的增殖程度;取第三代MSC接种到材料上,培养4h、12h后沉淀法定量检测粘附的细胞数,培养24h后摄光镜图像比较粘附细胞的数量和形态,并用FITC连接的鬼笔环肽对细胞骨架染色,在荧光显微镜下观察细胞骨架的组织情况;取第三代MSC接种到材料上,用成骨性培养基培养7d、14d、21d,检测细胞中ALP活性来了解MSC分化情况。结果:培养1d、2d、3d、4d后细胞的增殖程度无显著性差异;培养4h、12h后实验组细胞粘附率均显著高于对照组,且24h后细胞的粘附质量、细胞骨架的组织情况也较对照组为好;培养14d后实验组细胞表达显著高的ALP活性。结论:RGD多肽修饰对细胞增殖无明显促进作用,但能提高改性PLGA支架材料对骨髓基质细胞的粘附性,对MSC向成骨细胞分化有显著促进作用。  相似文献   

17.
A dense poly-L-lactic acid (PLLA) film was employed as the primary material and hot-embossed with the formation of microgrooves (g-PLLA). A thin layer of Au was then deposited on the film to obtain a morphologically modified substrate (Au/g-PLLA). The Au/g-PLLA film surface was then chemically modified by imprinting octadecanethiolate (ODT) self-assembled monolayers on the upper surface (ODT/Au/g-PLLA), followed by Arg-Gly-Asp (RGD) peptide sequences on the microgrooves (RGD_ODT/Au/g-PLLA). The surface chemistry of the as-prepared RGD_ODT/Au/g-PLLA samples was examined. The bioactivity and spreading function of Schwann cells cultured on the morphologically and chemically modified surfaces were assessed. The results demonstrate that Schwann cells adhered to the RGD/Au/g-PLLA surface and proliferated along the microgrooves without crossing over the ODT/Au/PLLA surface. The proposed film surface can be used for manipulating the outgrowth of axons by modifying and arranging a selected region to induce cell growth and to prevent cells from spreading out nondirectionally.  相似文献   

18.
Csucs G  Michel R  Lussi JW  Textor M  Danuser G 《Biomaterials》2003,24(10):1713-1720
Microcontact printing (microcP) is a cost effective and simple method to create chemically micropatterned surfaces for cell biological applications. We have combined the technique with the spontaneous molecular assembly of a polycationic PEG-grafted copolymer, poly-L-lysine-g-poly(ethylene glycol) (PLL-g-PEG). PLL-g-PEG with omega-functionalized PEG chains was print-transferred onto tissue culture polystyrene (TCPS) or glass substrates, resulting in patterns with a lateral resolution down to 1 microm. Subsequently, dipping in an aqueous solution of non-functionalized PLL-g-PEG was used to backfill the non-printed regions of the surface, rendering them highly protein and thus cell resistant. In a second approach, proteins were stamped and a PLL-g-PEG backfill was applied for passivation of the bare surface regions. Printing of peptide(RGD)-functionalized PLL-g-PEG or proteins combined with a subsequent PLL-g-PEG backfill can be applied to a wide variety of substrate materials with negatively charged surfaces such as TCPS, glass and many metal oxides. We have tested the printed surfaces with human foreskin fibroblasts for cell adhesion and long-term performance and with fish epidermal keratocytes for cell motility and short-time behaviour. Both cell types reacted selectively to the surface micropatterns. Fibroblasts adhered to the printed (adhesive) regions only, where they remained attached up to at least 1 week and were even able to proliferate. Keratocyte spreading and motility were also directed by the geometry of the underlying patterns. The results prove that microcP in conjunction with the use of PLL-g-PEG and its derivatives provides a simple and robust alternative to previously reported micropatterning methods for future cell biological and biotechnological applications.  相似文献   

19.
Biomimetic strategies focusing on presenting short bioadhesive oligopeptides, including the arginine-glycine-aspartic acid (RGD) motif present in numerous adhesive proteins, on a non-fouling support have emerged as promising approaches to improve cellular activities and healing responses. Nevertheless, these bio-inspired strategies are limited by low activity of the oligopeptides compared to the native ligand due to the absence of complementary or modulatory domains. In the present analysis, we generated well-defined biointerfaces presenting RGD-based ligands of increasing complexity to directly compare their biological activities in terms of cell adhesion strength, integrin binding and signaling. Mixed self-assembled monolayers of alkanethiols on gold were optimized to engineer robust supports that present anchoring groups for ligand tethering within a non-fouling, protein adsorption-resistant background. Controlled bioadhesive interfaces were generated by tethering adhesive ligands via standard peptide chemistry. On a molar basis, biointerfaces functionalized with the FNIII7-10 recombinant fragment presenting the RGD and PHSRN adhesive motifs in the correct structural context exhibited significantly higher adhesion strength, FAK activation, and cell proliferation rate than supports presenting RGD ligand or RGD-PHSRN, an oligopeptide presenting these two sites separated by a polyglycine linker. Moreover, FNIII7-10-functionalized surfaces displayed specificity for alpha5beta1 integrin, while cell adhesion to supports presenting RGD or RGD-PHSRN was primarily mediated by alphavbeta3 integrin. These results are significant to the rational engineering of bioactive materials that convey integrin binding specificity for directed cellular and tissue responses in biomedical and biotechnological applications.  相似文献   

20.
We have developed a series of extracellular matrix (ECM)-like biomimetic surfactant polymers to improve endothelial cell adhesion and growth on vascular biomaterials. These polymers provide a single-step procedure for modifying the surface of existing biomaterials and consist of a poly(vinyl amine) (PVAm) backbone with varying ratios of cell-binding peptide (RGD) to carbohydrate (maltose), ranging from 100% RGD:0% maltose to 50% RGD:50% maltose. Three biomimetic surfaces, as well as a fibronectin (FN)-coated glass surface were seeded at confluence with human pulmonary artery endothelial cells (HPAECs) and exposed to shear stresses ranging from 0-40.6 dyn/cm2 for periods of 2 h and 6 h. Surfaces were examined for HPAEC coverage and cytoskeletal arrangement as a function of time and shear stress. In general, after 6 h of shear exposure, EC retention on 100% RGD > FN > 75% RGD > 50% RGD. The 100% RGD surface maintained more than 50% of its initial EC monolayer at low to moderate shear stresses whereas all other surfaces dropped to approximately 40% or less in the same shear stress range. The most stable surface, 100% RGD, showed a significant increase in cytoskeletal organization at all shear stresses greater than 2.5 dyn/cm2. In contrast, there was no real change in cytoskeletal organization on the FN surface, and there was a decrease on the 75% RGD surface over time. These results indicate that increasing surface peptide density can control EC shear stability. Furthermore, improved shear stability increases with increasing peptide density and is related to the EC's ability to reorganize its cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号