首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
The iron-regulatory hormone, hepcidin, regulates systemic iron homeostasis by interacting with the iron export protein ferroportin (FPN1) to adjust iron absorption in enterocytes, iron recycling through reticuloendothelial macrophages, and iron release from storage in hepatocytes. We previously demonstrated that FPN1 was highly expressed in erythroblasts, a cell type that consumes most of the serum iron for use in hemoglobin synthesis. Herein, we have demonstrated that FPN1 localizes to the plasma membrane of erythroblasts, and hepcidin treatment leads to decreased expression of FPN1 and a subsequent increase in intracellular iron concentrations in both erythroblast cell lines and primary erythroblasts. Moreover, injection of exogenous hepcidin decreased FPN1 expression in BM erythroblasts in vivo, whereas iron depletion and associated hepcidin reduction led to increased FPN1 expression in erythroblasts. Taken together, hepcidin decreased FPN1 expression and increased intracellular iron availability of erythroblasts. We hypothesize that FPN1 expression in erythroblasts allows fine-tuning of systemic iron utilization to ensure that erythropoiesis is partially suppressed when nonerythropoietic tissues risk developing iron deficiency. Our results may explain why iron deficiency anemia is the most pronounced early manifestation of mammalian iron deficiency.  相似文献   

4.
5.
Ferroportin (FPN) mediates iron export from cells; FPN mutations are associated with the iron overloading disorder hemochromatosis. Previously, we found that the A77D, V162del, and G490D mutations inhibited FPN activity, but that other disease-associated FPN variants retained full iron export capability. The peptide hormone hepcidin inhibits FPN as part of a homeostatic negative feedback loop. We measured surface expression and function of wild-type FPN and fully active FPN mutants in the presence of hepcidin. We found that the Y64N and C326Y mutants of FPN are completely resistant to hepcidin inhibition and that N144D and N144H are partially resistant. Hemochromatosis-associated FPN mutations, therefore, either reduce iron export ability or produce an FPN variant that is insensitive to hepcidin. The former mutation type is associated with Kupffer-cell iron deposition and normal transferrin saturation in vivo, whereas patients with the latter category of FPN mutation have high transferrin saturation and tend to deposit iron throughout the liver parenchyma. FPN-linked hemochromatosis may have a variable pathogenesis depending on the causative FPN mutant.  相似文献   

6.
7.
Due to recent discoveries of novel genes involved in iron metabolism, our understanding of the molecular mechanisms underlying iron metabolism has dramatically increased. We have previously shown that the administration of angiotensin II alters iron homeostasis in the rat kidney, which may in turn aggravate angiotensin II-induced renal damage. Here we have investigated the effect of angiotensin II administration on the localization and expression of transferrin receptor (TfR), divalent metal transporter 1 (DMT1), ferroportin 1 (FPN), and hepcidin mRNA in the rat kidney. Weak expression of TfR, DMT1, FPN, and hepcidin mRNA was observed in the kidneys of control rats. In contrast, after 7 days of angiotensin II infusion by osmotic minipump, the expression of these mRNAs was more widely distributed. Staining of serial sections revealed that some, but not all, of the renal tubular cells positive for these genes contained iron deposits in the kidney of angiotensin II-infused animals. Real-time polymerase chain reaction (PCR) showed that the mRNA expression of TfR, iron-responsive element-negative DMT1, FPN, and hepcidin mRNA increased ~1.9-fold, ~1.7-fold, ~2.3-fold, and ~4.7-fold, respectively, after angiotensin II infusion as compared with that of untreated controls, and that these increases could be suppressed by the concomitant administration of losartan. Our data demonstrate that these genes were unequivocally expressed in the kidney and could be regulated by angiotensin II infusion. The relative contribution, if any, of these genes to renal and/or whole-body iron homeostasis in various disorders in which the renin angiotensin system is activated should be investigated in future studies.  相似文献   

8.
The peptide hormone hepcidin plays a central role in iron homeostasis. It is predominantly expressed in the liver and regulated by iron, hypoxia, and inflammation. Although it has been shown that iron plays a key pathophysiological role in cardiac diseases, including iron-overload cardiomyopathy, myocardial ischemia-reperfusion injury, and atherosclerosis, very little is known about the putative expression and the role of hepcidin in the heart. In the present study, expression and regulation of hepcidin in rat heart were analyzed. Basal cardiac expression of hepcidin was demonstrated on mRNA and protein level in vivo in a rat model and compared with its regulation in the liver. The cellular localization was analyzed by immunofluorescence microscopy. Sixteen hours after a single injection of turpentine, a more than 2-fold increase of cardiac hepcidin mRNA and a more than 3-fold increase of hepatic hepcidin mRNA was observed. In response to hypoxia, expression of hepcidin in the liver decreased. In contrast, hypoxia resulted in a strong up-regulation of hepcidin expression on mRNA and protein level in the heart, accompanied by an increased immunoreactivity of hepcidin pronounced at the myocardial intercalated disc area. The finding of a regulated expression of the iron-regulatory peptide hormone hepcidin in the heart suggests that hepcidin may have an important role in cardiac diseases.  相似文献   

9.
Iron regulation and erythropoiesis   总被引:1,自引:0,他引:1  
PURPOSE OF REVIEW: The peptide hormone hepcidin regulates iron metabolism in response to erythropoietic demand, iron stores and inflammation. Major advances have been made in understanding the regulation of hepcidin production, and consequently the availability of iron for erythropoiesis. RECENT FINDINGS: It is becoming clear that the bone morphogenetic protein (BMP) pathway plays a major role in setting the baseline hepcidin level and, with the assistance of BMP2/4 and hemochromatosis-related proteins hemojuvelin, HFE and transferrin receptor 2, also regulates hepcidin expression in response to iron. Regulation of hepcidin in anemias has now been linked to increased erythropoietic activity and is likely mediated by factor(s) secreted by erythroid precursors. GDF-15 was identified as a candidate for one of the erythroid factors suppressing hepcidin. Tissue hypoxia may also directly contribute to hepcidin suppression in anemias. Regulation of hepcidin by inflammation may include multiple cytokines and the Toll-like receptors pathways. Although it has not yet been shown that increased hepcidin is indispensible for the development of anemia of inflammation, transgenic overexpression of hepcidin was sufficient to replicate its key features. SUMMARY: Regulation of hepcidin and iron availability for erythropoiesis has revealed unexpected pathways and much complexity. The renaissance of the study of iron regulation continues to reward researchers with interesting biology and potential therapeutic targets.  相似文献   

10.
11.
12.
Chronic hepatitis C is characterized by iron accumulation in the liver, and excessive iron is hepatotoxic. However, the mechanism by which hepatitis C virus (HCV) regulates iron metabolism is poorly understood. Hepcidin plays a pivotal role as a negative regulator of iron absorption. The aim of the current study was to elucidate the mechanisms that govern hepcidin expression by HCV. Huh 7 cells, Huh7.5 cells, full-length HCV replicon cells established from Huh7.5 cells, and adenoviruses expressing HCV-core or HCV nonstructural proteins 3 through 5 (NS3-5) were used. Hepcidin expression was significantly lower in HCV replicon cells and in HCV core-expressing Huh7 cells. The expression was inversely correlated with the amount of reactive oxygen species (ROS) production. Anti-oxidants restored hepcidin expression in HCV replicon cells and Huh7 cells expressing HCV core. In HCV replicon cells, histone deacetylase (HDAC) activity was elevated at baseline and after exposure to hydrogen peroxide. Anti-oxidants reduced HDAC activity in a dose-dependent manner. HDAC inhibition increased hepcidin expression without affecting ROS production in HCV replicon cells. HCV-induced ROS stabilized the expression of two negative hepcidin regulators, HIF1alpha and HIF2alpha, and its expression was decreased by a HDAC inhibitor or an anti-oxidant. HCV-induced ROS also caused hypoacetylation of histones and inhibited binding of two positive regulators, C/EBPalpha and STAT3, to the hepcidin promoter, whereas anti-oxidant treatment of cells recovered C/EBPalpha and STAT3 binding to the hepcidin promoter. In addition, an HDAC inhibitor restored their binding to the hepcidin promoter via acetylation of histones. CONCLUSION: HCV-induced oxidative stress suppresses hepcidin expression through increased HDAC activity.  相似文献   

13.
Hepcidin is a key iron-regulatory hormone produced by the liver. Inappropriately low hepcidin levels cause iron overload, while increased hepcidin expression plays an important role in the anemia of inflammation (AI) by restricting intestinal iron absorption and macrophage iron release. Its expression is modulated in response to body iron stores, hypoxia, and inflammatory and infectious stimuli involving at least in part cytokines secreted by macrophages. In this study we established and characterized IL6-mediated hepcidin activation in the human liver cell line Huh7. We show that the proximal 165 bp of the hepcidin promoter is critical for hepcidin activation in response to exogenously administered IL6 or to conditioned medium from the monocyte/macrophage cell line THP-1. Importantly, we show that hepcidin activation by these stimuli requires a STAT3 binding motif located at position -64/-72 of the promoter. The same STAT binding site is also required for high basal-level hepcidin mRNA expression under control culture conditions, and siRNA-mediated RNA knockdown of STAT3 strongly reduces hepcidin mRNA expression. These results identify a missing link in the acute-phase activation of hepcidin and establish STAT3 as a key effector of baseline hepcidin expression and during inflammatory conditions.  相似文献   

14.
15.
Hypoxia is a crucial factor in tumor aggressiveness and resistance to therapy, especially in glioblastoma. Our previous results have shown that melatonin exerts antimigratory and anti‐invasive action in glioblastoma cells under normoxia. However, the effect of melatonin on migration and invasion of glioblastoma cells under hypoxic condition remains poorly understood. Here, we show that melatonin strongly reduced hypoxia‐mediated invasion and migration of U251 and U87 glioblastoma cells. In addition, we found that melatonin significantly blocked HIF‐1α protein expression and suppressed the expression of downstream target genes, matrix metalloproteinase 2 (MMP‐2) and vascular endothelial growth factor (VEGF). Furthermore, melatonin destabilized hypoxia‐induced HIF‐1α protein via its antioxidant activity against ROS produced by glioblastoma cells in response to hypoxia. Along with this, HIF‐1α silencing by small interfering RNA markedly inhibited glioblastoma cell migration and invasion, and this appeared to be associated with MMP‐2 and VEGF under hypoxia. Taken together, our findings suggest that melatonin suppresses hypoxia‐induced glioblastoma cell migration and invasion via inhibition of HIF‐1α. Considering the fact that overexpression of the HIF‐1α protein is often detected in glioblastoma multiforme, melatonin may prove to be a potent therapeutic agent for this tumor.  相似文献   

16.
Interleukin-6 induces hepcidin expression through STAT3   总被引:27,自引:1,他引:26  
Wrighting DM  Andrews NC 《Blood》2006,108(9):3204-3209
  相似文献   

17.
目的观察吡格列酮对缺氧复氧大鼠心肌细胞凋亡的保护作用,并探讨吡格列酮对低氧诱导因子-1α(HIF-1α)表达的影响。方法原代培养的SD乳鼠心肌细胞随机分为4组:溶媒组、缺氧复氧+溶媒组、缺氧复氧+吡格列酮0.1μM组、缺氧复氧+吡格列酮1μM组,建立缺氧复氧模型,利用Annexin—v与PI双染法及流式细胞仪检测心肌细胞凋亡,RT—PCR及Westernblot方法检测HIF-1αmRNA及蛋白表达的变化。结果缺氧复氧后,溶媒组心肌细胞发生明显凋亡,吡格列酮以剂量依赖方式减少心肌细胞凋亡(P〈0.05);缺氧复氧组HIF-1α表达上调,吡格列酮各组促进其进一步上调(P〈0.05),与剂量无关。结论吡格列酮对缺氧复氧大鼠心肌细胞凋亡具有保护作用,其机制可能与上调HIF-1α表达有关。  相似文献   

18.
In hereditary hemochromatosis, mutations in HFE lead to iron overload through abnormally low levels of hepcidin. In addition, HFE potentially modulates cellular iron uptake by interacting with transferrin receptor, a crucial protein during erythropoiesis. However, the role of HFE in this process was never explored. We hypothesize that HFE modulates erythropoiesis by affecting dietary iron absorption and erythroid iron intake. To investigate this, we used Hfe-KO mice in conditions of altered dietary iron and erythropoiesis. We show that Hfe-KO mice can overcome phlebotomy-induced anemia more rapidly than wild-type mice (even when iron loaded). Second, we evaluated mice combining the hemochromatosis and β-thalassemia phenotypes. Our results suggest that lack of Hfe is advantageous in conditions of increased erythropoietic activity because of augmented iron mobilization driven by deficient hepcidin response. Lastly, we demonstrate that Hfe is expressed in erythroid cells and impairs iron uptake, whereas its absence exclusively from the hematopoietic compartment is sufficient to accelerate recovery from phlebotomy. In summary, we demonstrate that Hfe influences erythropoiesis by 2 distinct mechanisms: limiting hepcidin expression under conditions of simultaneous iron overload and stress erythropoiesis, and impairing transferrin-bound iron uptake by erythroid cells. Moreover, our results provide novel suggestions to improve the treatment of hemochromatosis.  相似文献   

19.
Background /Aims:  Expression of Hamp1 , the gene encoding the iron regulatory peptide hepcidin, is inappropriately low in HFE-associated hereditary hemochromatosis and Hfe knockout mice ( Hfe −/− ). Since chronic alcohol consumption is also associated with disturbances in iron metabolism, we investigated the effects of alcohol consumption on hepcidin mRNA expression in Hfe −/− mice.
Methods:  Hfe −/− and C57BL/6 (wild-type) mice were pair-fed either an alcohol liquid diet or control diet for up to 8 weeks. The mRNA levels of hepcidin and ferroportin were measured at the mRNA level by RT-PCR and protein expression of hypoxia inducible factor-1 alpha (HIF-1α) was measured by western blot.
Results:  Hamp1 mRNA expression was significantly decreased and duodenal ferroportin expression was increased in alcohol-fed wild-type mice at 8 weeks. Time course experiments showed that the decrease in hepcidin mRNA was not immediate, but was significant by 4 weeks. Consistent with the genetic defect, Hamp1 mRNA was decreased and duodenal ferroportin mRNA expression was increased in Hfe −/− mice fed on the control diet compared with wild-type animals and alcohol further exacerbated these effects. HIF-1α protein levels were elevated in alcohol-fed wild-type animals compared with controls.
Conclusion:  Alcohol may decrease Hamp1 gene expression independently of the HFE pathway possibly via alcohol-induced hypoxia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号