首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Daytime performance changes were examined during chronic sleep restriction or augmentation and following subsequent recovery sleep. Sixty-six normal volunteers spent either 3 (n = 18), 5 (n= 16), 7 (n = 16), or 9 h (n = 16) daily time in bed (TIB) for 7 days (restriction/augmentation) followed by 3 days with 8 h daily TIB (recovery). In the 3-h group, speed (mean and fastest 10% of responses) on the psychomotor vigilance task (PVT) declined, and PVT lapses (reaction times greater than 500 ms) increased steadily across the 7 days of sleep restriction. In the 7- and 5-h groups speed initially declined, then appeared to stabilize at a reduced level; lapses were increased only in the 5-h group. In the 9-h group, speed and lapses remained at baseline levels. During recovery, PVT speed in the 7- and 5-h groups (and lapses in the 5-h group) remained at the stable, but reduced levels seen during the last days of the experimental phase, with no evidence of recovery. Speed and lapses in the 3-h group recovered rapidly following the first night of recovery sleep; however, recovery was incomplete with speed and lapses stabilizing at a level comparable with the 7- and 5-h groups. Performance in the 9-h group remained at baseline levels during the recovery phase. These results suggest that the brain adapts to chronic sleep restriction. In mild to moderate sleep restriction this adaptation is sufficient to stabilize performance, although at a reduced level. These adaptive changes are hypothesized to restrict brain operational capacity and to persist for several days after normal sleep duration is restored, delaying recovery.  相似文献   

2.
The study had two primary objectives. The first was to determine whether sleep loss results in a preference for tasks demanding minimal effort. The second was to evaluate the quality of performance when participants, under conditions of sleep loss, have control over task demands. In experiment 1, using a repeated-measures design, 50 undergraduate college students were evaluated, following one night of no sleep loss and one night of sleep loss. The Math Effort Task (MET) presented addition problems via computer. Participants were able to select additions at one of five levels of difficulty. Less-demanding problems were selected and more additions were solved correctly when the participants were subject to sleep loss. In experiment 2, 58 undergraduate college students were randomly assigned to a no sleep deprivation or a sleep deprivation condition. Sleep-deprived participants selected less-demanding problems on the MET. Percentage correct on the MET was equivalent for both the non-sleep-deprived and sleep-deprived groups. On a task selection question, the sleep-deprived participants also selected significantly less-demanding non-academic tasks. Increased sleepiness, fatigue, and reaction time were associated with the selection of less difficult tasks. Both groups of participants reported equivalent effort expenditures; sleep-deprived participants did not perceive a reduction in effort. These studies demonstrate that sleep loss results in the choice of low-effort behavior that helps maintain accurate responding.  相似文献   

3.
Study ObjectivesThe amount of recovery sleep needed to fully restore well-established neurobehavioral deficits from sleep loss remains unknown, as does whether the recovery pattern differs across measures after total sleep deprivation (TSD) and chronic sleep restriction (SR).MethodsIn total, 83 adults received two baseline nights (10–12-hour time in bed [TIB]) followed by five 4-hour TIB SR nights or 36-hour TSD and four recovery nights (R1–R4; 12-hour TIB). Neurobehavioral tests were completed every 2 hours during wakefulness and a Maintenance of Wakefulness Test measured physiological sleepiness. Polysomnography was collected on B2, R1, and R4 nights.ResultsTSD and SR produced significant deficits in cognitive performance, increases in self-reported sleepiness and fatigue, decreases in vigor, and increases in physiological sleepiness. Neurobehavioral recovery from SR occurred after R1 and was maintained for all measures except Psychomotor Vigilance Test (PVT) lapses and response speed, which failed to completely recover. Neurobehavioral recovery from TSD occurred after R1 and was maintained for all cognitive and self-reported measures, except for vigor. After TSD and SR, R1 recovery sleep was longer and of higher efficiency and better quality than R4 recovery sleep.ConclusionsPVT impairments from SR failed to reverse completely; by contrast, vigor did not recover after TSD; all other deficits were reversed after sleep loss. These results suggest that TSD and SR induce sustained, differential biological, physiological, and/or neural changes, which remarkably are not reversed with chronic, long-duration recovery sleep. Our findings have critical implications for the population at large and for military and health professionals.  相似文献   

4.
The aim of the present study was to examine if sleep amount prior to sleep restriction mediated subsequent task acquisition on serial addition/subtraction and reaction time (RT) sub‐tasks of the Automated Neuropsychological Assessment Metric. Eleven males and 13 females [mean (SD) age = 25 (6.5) years] were assigned to either an Extended [10 h time in bed (TIB)] (n = 12) or Habitual [Mean (SD) = 7.09 (0.7)] (n = 12) sleep group for 1 week followed by one baseline night, seven sleep restriction nights (3 h TIB) and five recovery nights (8 h TIB). Throughout baseline, restriction and recovery, mathematical and serial RT tasks were administered hourly each day (08:00–18:00 h). Math and serial RT throughput for each task (speed × accuracy product) was analysed using a mixed‐model anova with fixed effects for sleep group, day and time‐of‐day followed by post hoc t‐tests (Bonferroni correction). Math throughput improved for both groups during sleep restriction, but more so compared with baseline for the prior sleep Extended group versus the Habitual group during recovery. In sum, 1 week of sleep extension improved resilience during subsequent sleep restriction and facilitated task acquisition during recovery, demonstrating that nightly sleep duration exerts long‐term (days, weeks) effects.  相似文献   

5.
Twelve subjects were studied to determine the after-effects of using three 10-mg doses of dextroamphetamine to sustain alertness during sleep deprivation. Sleep architecture during recovery sleep was evaluated by comparing post-deprivation sleep beginning 15 h after the last dextroamphetamine dose to post-deprivation sleep after placebo. Performance and mood recovery were assessed by comparing volunteers who received dextroamphetamine first (during sleep deprivation) to those who received placebo first. Stages 1 and 2 sleep, movement time, REM latency, and sleep latency increased on the night after sleep deprivation with dextroamphetamine vs. placebo. Stage 4 was unaffected. Comparisons to baseline revealed more stage 1 during baseline than during either post-deprivation sleep period and more stage 2 during baseline than during sleep following placebo. Stage 4 sleep was lower during baseline than it was after either dose, and REM sleep was lower during baseline and after dextroamphetamine than after placebo. Sleep onset was slowest on the baseline night. Next-day performance and mood were not different as a function of whether subjects received dextroamphetamine or placebo during deprivation. These data suggest dextroamphetamine alters post-deprivation sleep architecture when used to sustain alertness during acute sleep loss, but next-day performance and subjective mood ratings are not substantially affected. A recovery sleep period of only 8 h appears to be adequate to regain baseline performance levels after short-term sleep deprivation.  相似文献   

6.
SUMMARY  Slow-wave sleep (SWS) has been theorized to be an intense form of nonREM sleep, but selective deprivation of SWS or Stage 4 sleep has not been shown to cause greater decrements in alertness or performance, compared to deprivation or disruption of the other stages of sleep. The present experiment examined the effects of marked SWS deprivation (SD) for two nights, a control sleep disruption (CD) condition in which minutes of SWS were preserved, and a no sleep disruption (ND) condition. Daytime sleepiness was assessed with the multiple sleep latency test (MSLT) and performance was evaluated with the simulated assembly line task (SALT), neither of which was used in previous studies of SWS or Stage 4 sleep deprivation. In agreement with prior studies, two nights of SD did not cause greater daytime sleepiness than did CD, although sleepiness in both conditions was increased compared to the ND condition. In addition, neither SD nor CD caused declines in performance or mood. However, post hoc analysis suggests an interaction between SWS and sleep duration, such that sufficient SWS may tend to prevent adverse effects of mild sleep loss on waking function.  相似文献   

7.
This study examined the effects of two nights of total sleep deprivation (TSD) and two nights of recovery sleep on response inhibition. Thirty-eight young, healthy adults performed a Go-NoGo task at 14 : 00 after: (1) a normal night of sleep; (2) each of two consecutive nights of TSD; and (3) each of two consecutive nights of recovery sleep; they also performed the task at 05 : 00 during the first night of sleep deprivation. We hypothesized that TSD would lead to an impaired ability to withhold a response that would be reversed with recovery sleep. Subjects did experience a significant increase in false positive responses throughout all of TSD, errors of omission (i.e. missed 'go' targets) were not significant until after the second night of TSD. Both components (withholding a response and automatic responding) of the task returned to baseline levels after one night of recovery sleep. These data suggest that individuals experience difficulty in withholding an inappropriate response during TSD, even when they are able to attend to the incoming stimuli and respond accurately to appropriate stimuli.  相似文献   

8.
It is important to develop shift schedules that minimise the chance for sleep‐related human error in safety‐critical domains. Experimental data on the effects of sleep restriction (SR) play a key role in this development work. In order to provide such data, we conducted an experiment in which cognitively demanding and long‐duration task performance, simulating task performance at work, was measured under SR and following recovery. Twenty healthy male volunteers, aged 19–29 years, participated in the study. Thirteen of them had first two baseline days (8‐h sleep opportunity per day), then five SR days (4‐h sleep) and finally two recovery days (8‐h sleep). Seven controls were allowed to sleep for 8 h each night. On each experimental day, multitask performance was tested in 50‐min sessions, physiological sleepiness was evaluated during multitask performance using electroencephalogram (EEG)/electrooculogram (EOG) recordings, and psychomotor vigilance task performance and Karolinska Sleepiness Scale were recorded. Sleep–wake rhythm was monitored throughout the experiment. The multitask performance progressively deteriorated as a result of prolongation of the SR and the time spent on the task. The effect was significant at group level, but individual differences were large: performance was not markedly deteriorated in all participants. Similar changes were observed also in EEG/EOG‐defined sleepiness. The recovery process of performance and sleepiness from the SR continued over the two recovery sleep opportunities. In all, our findings emphasise the importance of shift systems that do not restrict sleep for several consecutive days.  相似文献   

9.
Few studies have investigated waking electrophysiological measures of arousal during sleep restriction. This study examined electroencephalogram (EEG) activity and performance during a 96-hour laboratory protocol where participants slept a baseline night (8 h), were randomly assigned to 3-, 5-, or 8-hour sleep groups for the next two nights sleep restriction (SR1, SR2), and then slept a recovery night (8 h). There were dose-dependent deficits on measures of mood, sleepiness, and reaction time that were apparent during this short-term bout of sleep restriction. The ratio of alpha to theta EEG recorded at rest indicated dose-dependent changes in CNS arousal. At 9:00 hours, both the 3- and 5-hour groups showed EEG slowing (sleepiness) during restriction, with the 3-hour group exhibiting greater deficits. Later in the day at 13:00 hours, the 5-hour group no longer exhibited EEG slowing, but the extent of slowing was more widespread across the scalp for the 3-hour group. High-frequency EEG, a measure of effort, was greater on the mornings following sleep restriction. The 5-hour group had increased beta EEG at central-parietal sites following both nights of restriction, whereas the 3-hour group had increased beta and gamma EEG at occipital regions following the first night only. Short-term sleep restriction leads to deficits in performance as well as EEG slowing that correspond to the amount and duration of sleep loss. High-frequency EEG may be a marker of effort or compensation.  相似文献   

10.
This pilot study examined the relationships between the effects of sleep deprivation on subjective and objective measures of sleepiness and affect, and psychomotor vigilance performance. Following an adaptation night in the laboratory, healthy young adults were randomly assigned to either a night of total sleep deprivation (SD group; n = 15) or to a night of normal sleep (non-SD group; n = 14) under controlled laboratory conditions. The following day, subjective reports of mood and sleepiness, objective sleepiness (Multiple Sleep Latency Test and spontaneous oscillations in pupil diameter, PUI), affective reactivity/regulation (pupil dilation responses to emotional pictures), and psychomotor vigilance performance (PVT) were measured. Sleep deprivation had a significant impact on all three domains (affect, sleepiness, and vigilance), with significant group differences for eight of the nine outcome measures. Exploratory factor analyses performed across the entire sample and within the SD group alone revealed that the outcomes clustered on three orthogonal dimensions reflecting the method of measurement: physiological measures of sleepiness and affective reactivity/regulation, subjective measures of sleepiness and mood, and vigilance performance. Sleepiness and affective responses to sleep deprivation were associated (although separately for objective and subjective measures). PVT performance was also independent of the sleepiness and affect outcomes. These findings suggest that objective and subjective measures represent distinct entities that should not be assumed to be equivalent. By including affective outcomes in experimental sleep deprivation research, the impact of sleep loss on affective function and their relationship to other neurobehavioral domains can be assessed.  相似文献   

11.
Subjective alertness may provide some insight into reduced performance capacity under conditions suboptimal to neurobehavioural functioning, yet the accuracy of this insight remains unclear. We therefore investigated whether subjective alertness reflects the full extent of neurobehavioural impairment during the biological night when sleep is restricted. Twenty‐seven young healthy males were assigned to a standard forced desynchrony (FD) protocol (n = 13; 9.33 h in bed/28 h day) or a sleep‐restricted FD protocol (n = 14; 4.67 h in bed/28 h day). For both protocols, subjective alertness and neurobehavioural performance were measured using a visual analogue scale (VAS) and the psychomotor vigilance task (PVT), respectively; both measures were given at various combinations of prior wake and circadian phase (biological night versus biological day). Scores on both measures were standardized within individuals against their respective baseline average and standard deviation. We found that PVT performance and VAS rating deviated from their respective baseline to a similar extent during the standard protocol, yet a greater deviation was observed for PVT performance than VAS rating during the sleep‐restricted protocol. The discrepancy between the two measures during the sleep‐restricted protocol was particularly prominent during the biological night compared with the biological day. Thus, subjective alertness did not reflect the full extent of performance impairment when sleep was restricted, particularly during the biological night. Given that subjective alertness is often the only available information upon which performance capacity is assessed, our results suggest that sleep‐restricted individuals are likely to under‐estimate neurobehavioural impairment, particularly during the biological night.  相似文献   

12.
Chronic short sleep (CSS) is prevalent in modern societies and has been proposed as a risk factor for Alzheimer’s disease (AD). In support, short-term sleep loss acutely increases levels of amyloid β (Aβ) and tau in wild type (WT) mice and humans, and sleep disturbances predict cognitive decline in older adults. We have shown that CSS induces injury to and loss of locus coeruleus neurons (LCn), neurons with heightened susceptibility in AD. Yet whether CSS during young adulthood drives lasting Aβ and/or tau changes and/or neural injury later in life in the absence of genetic risk for AD has not been established. Here, we examined the impact of CSS exposure in young adult WT mice on late-in-life Aβ and tau changes and neural responses in two AD-vulnerable neuronal groups, LCn and hippocampal CA1 neurons. Twelve months following CSS exposure, CSS-exposed mice evidenced reductions in CA1 neuron counts and volume, spatial memory deficits, CA1 glial activation, and loss of LCn. Aβ 42 and hyperphosphorylated tau were increased in the CA1; however, amyloid plaques and tau tangles were not observed. Collectively the findings demonstrate that CSS exposure in the young adult mouse imparts late-in-life neurodegeneration and persistent derangements in amyloid and tau homeostasis. These findings occur in the absence of a genetic predisposition to neurodegeneration and demonstrate for the first time that CSS can induce lasting, significant neural injury consistent with some, but not all, features of late-onset AD.  相似文献   

13.
Polysomnograms were obtained from 37 volunteers, before (baseline) and after (two consecutive recovery nights) a 64-h sleep deprivation, with (d-amphetamine or modafinil) or without (placebo) alerting substances. The drugs were administered at 23.00 hours during the first sleep deprivation night (after 17.5 h of wakefulness), to determine whether decrements in cognitive performance would be prevented; at 05.30 hours during the second night of sleep deprivation (after 47.5 h of wakefulness), to see whether performance would be restored; and at 15.30 hours during the third day of continuous work, to study effects on recovery sleep. The second recovery night served to verify whether drug-induced sleep disturbances on the first recovery night would carry over to a second night of sleep. Recovery sleep for the placebo group was as expected: the debt in slow-wave sleep (SWS) and REM sleep was paid back during the first recovery night, the rebound in SWS occurring mainly during the first half of the night, and that of REM sleep being distributed evenly across REM sleep episodes. Recovery sleep for the amphetamine group was also consistent with previously published work: increased sleep latency and intrasleep wakefulness, decreased total sleep time and sleep efficiency, alterations in stage shifts, Stage 1, Stage 2 and SWS, and decreased REM sleep with a longer REM sleep latency. For this group, REM sleep rebound was observed only during the second recovery night. Results for the modafinil group exhibited decreased time in bed and sleep period time, suggesting a reduced requirement for recovery sleep than for the other two groups. This group showed fewer disturbances during the first recovery night than the amphetamine group. In particular, there was no REM sleep deficit, with longer REM sleep episodes and a shorter REM latency, and the REM sleep rebound was limited to the first REM sleep episode. The difference with the amphetamine group was also marked by less NREM sleep and Stage 2 and more SWS episodes. No REM sleep rebound occurred during the second recovery night, which barely differed from placebo. Hence, modafinil allowed for sleep to occur, displayed sleep patterns close to that of the placebo group, and decreased the need for a long recovery sleep usually taken to compensate for the lost sleep due to total sleep deprivation.  相似文献   

14.
SUMMARY  It has recently been reported that selective REM sleep deprivation (REMD) in college students results in memory impairment of the application of a set of rules in a logic task, but not recall of a paired associate task. The present experiments were designed to examine the effects of Total Sleep Deprivation (TSD) and (REMD) following acquisition of a pure motor task, the pursuit rotor. In Experiment 1, subjects ( N = 90) were exposed to TSD for one of several nights following training. Results showed that TSD on the same night as training resulted in poorer performance on retest one week later. In Experiment 2, subjects ( N = 42) were exposed to various kinds of sleep deprivation on the night of task acquisition. One group was subjected to REMD. Other groups included a non-REM awakening control group (NREMA), a TSD group, a normally rested Control group and a group allowed the first 4h of sleep in the night before being subjected to TSD (LH-TSD) for the rest of the night. Results showed the REMD and Control groups to have excellent memory for this task while the TSD and LH - TSD subjects had significantly poorer memory for the task. The NREMA group showed a slight, but not significant deficit. It was concluded that Stage 2 sleep, rather than REM sleep was the important stage of sleep for efficient memory processing of the pursuit rotor task.  相似文献   

15.
The aim of this study was to compare the effects of total sleep deprivation (TSD), rapid eye movement (REM) sleep and slow wave sleep (SWS) interruption and sleep recovery on mechanical and thermal pain sensitivity in healthy adults. Nine healthy male volunteers (age 26--43 years) were randomly assigned in this double blind and crossover study to undergo either REM sleep or SWS interruption. Periods of 6 consecutive laboratory nights separated by at least 2 weeks were designed as follows: N1 Adaptation night; N2 Baseline night; N3 Total sleep deprivation (40 h); N4 and N5 SWS or REM sleep interruption; N6 Recovery. Sleep was recorded and scored using standard methods. Tolerance thresholds to mechanical and thermal pain were assessed using an electronic pressure dolorimeter and a thermode operating on a Peltier principle. Relative to baseline levels, TSD decreased significantly mechanical pain thresholds (-8%). Both REM sleep and SWS interruption tended to decrease mechanical pain thresholds. Recovery sleep, after SWS interruption produced a significant increase in mechanical pain thresholds (+ 15%). Recovery sleep after REM sleep interruption did not significantly increase mechanical pain thresholds. No significant differences in thermal pain thresholds were detected between and within periods. In conclusion this experimental study in healthy adult volunteers has demonstrated an hyperalgesic effect related to 40 h TSD and an analgesic effect related to SWS recovery. The analgesic effect of SWS recovery is apparently greater than the analgesia induced by level I (World Health Organization) analgesic compounds in mechanical pain experiments in healthy volunteers.  相似文献   

16.
The effects of sleep inertia on decision-making performance   总被引:3,自引:2,他引:1  
Sleep inertia, the performance impairment that occurs immediately after awakening, has not been studied previously in relation to decision-making performance. Twelve subjects were monitored in the sleep laboratory for one night and twice awoken by a fire alarm (slow wave sleep, SWS and REM sleep). Decision making was measured over 10 3-min trials using the ‘Fire Chief’ computer task under conditions of baseline, SWS and REM arousal. The most important finding was that sleep inertia reduces decision-making performance for at least 30 min with the greatest impairments (in terms of both performance and subjective ratings) being found within 3 min after abrupt nocturnal awakening. Decision-making performance was as little as 51% of optimum (i.e. baseline) during these first few minutes. However, after 30 min, performance may still be as much as 20% below optimum. The initial effects of sleep inertia during the first 9 min are significantly greater after SWS arousal than after REM arousal, but this difference is not sustained. Decision-making performance after REM arousal showed more variability than after SWS arousal. Subjects reported being significantly sleepier and less clear-headed following both SWS and REM awakenings compared with baseline and this was sustained across the full 30 min. In order to generalize this finding to real-life situations, further research is required on the effects of continuous noise, emotional arousal and physical activity on the severity and duration of sleep inertia.  相似文献   

17.
SUMMARY  The recovery sleep of a 21-year-old normal woman was assessed after she had endured 11 1/2 days of sleep restriction in a world record-setting film-viewing marathon. An exceptional sleep debt was observed as indicated by an instanteous sleep onset, a high sleep efficiency, and a total sleep duration of over 20 hours. Other striking features of this recovery sleep were very short latencies to stages 3 and 4 sleep, return of Stage 4 sleep after 14.5 h, REM and SWS sleep rebound, and a linear increase in REM sleep efficiency across 14 consecutive REM-NREM episodes. Seven of nine home dreams reported after this recording contained competition themes, but none relating to the marathon films. Comparisons of the present results with those from subjects in previous record-setting events suggest possible explanations for the extremely long recovery sleep. Results also suggest that analyses of multiple consecutive sleep cycles may provide novel ways of assessing hypotheses about regulation of the REM-NREM cycle.  相似文献   

18.
The apparent connection between sleep debt, performance decrements and workplace accidents has generated a need for feasible vigilance tests that focus on the quantification of daytime sleepiness in occupational settings. The objective of this study was to evaluate the sensitivity of the Maintenance of Wakefulness Test (MWT) to acute sleep deprivation of various doses. Eight healthy female volunteers, mean age 28.9 years (range 23–36), participated in this laboratory study. After an adaptation night, the subjects were assigned to four counterbalanced, randomly ordered night sleep conditions. These four conditions allowed for a time in bed (TIB) of 0, 2, 4 or 8 h, producing a total sleep time of 0, 113, 218 and 427 min, respectively. The ability to sustain wakefulness was measured after the TIB period at 11.00 and 17.00 hours by the MWT. Analysis of variance with repeated measures was used to study the dependence of MWT sleep latencies on the immediately prior TIB period. Both the latency of stage 1 sleep onset and the appearance of slow eye movements reduced significantly with increased sleep loss. The quantitative relationship between the previous total sleep time and the subsequent MWT sleep latencies followed an exponentially decaying function showing a high sensitivity to acute, severe night sleep loss but low sensitivity to less severe sleep restrictions. It is concluded that the MWT seems to be a sensitive method for the estimation of acute sleep deprivation. The test results appear, however, non-linearly related to the earlier sleep debt.  相似文献   

19.
The pattern of desynchronized sleep (DS) occurrence in the rat was studied during exposure to an ambient temperature (Ta) of 0 degrees C for 48 h and during a 12 h recovery period at laboratory Ta (23 degrees C) following the first and second 24 h of cold exposure. The exposure to low Ta induces a DS deprivation which is followed, during recovery, by a clear DS rebound. Both the decrease and the following increase in the amount of DS are due to changes in the frequency rather than in the duration of DS episodes. The frequency distribution of the intervals between the end of one DS episode and the beginning of the next (DS interval) has shown that two populations of DS intervals exist, i.e. short DS intervals (3 min). On the basis of this, two types of DS episodes have been identified: the 'single DS episode', which is both preceded and followed by a long DS interval, and the 'sequential DS episode', which is a DS episode occurring within a cluster or a sequence of DS episodes and is characteristically separated by short DS intervals. The occurrence of such sequential DS episodes in a 'DS cluster', allows a high amount of DS to occur without increasing the duration of the DS episode. DS clusters are repressed during cold exposure, when the DS drive is counteracted by the need to thermoregulate, and enhanced during recovery, when the DS drive is unrestrained. In contrast, the occurrence of single DS episodes is much less affected by such different experimental conditions.  相似文献   

20.
Chronically enforced rapid eye (paradoxical) movement sleep deprivation (REM-SD) of rats leads to a host of pathologies, of which hyperphagia and loss of body weight are among the most readily observed. In recent years, the etiology of many REM-SD-associated pathologies have been elucidated, but one unexplored area is whether age affects outcomes. In this study, male Sprague-Dawley rats at 2, 6, and 12 months of age were REM sleep-deprived with the platform (flowerpot) method for 10-12 days. Two-month-old rats resided on 7-cm platforms, while 10-cm platforms were used for 6- and 12-month-old rats; rats on 15-cm platforms served as tank controls (TCs). Daily changes in food consumption (g/kg(0.67)) and body weight (g) during baseline, REM-SD or TCs, and post-experiment recovery in home cages were determined. Compared to TCs, REM-SD resulted in higher food intake and decreases in body weight. When returned to home cages, food intake rapidly declined to baseline levels. Of primary interest was that rates of body weight gain during recovery differed between the age groups. Two-month-old rats rapidly restored body weight to pre-REM-SD mass within 5 days; 6-month-old rats were extrapolated by linear regression to have taken about 10 days, and for 12-month-old rats, the estimate was about 35 days. The observation that restoration of body weight following its loss during REM-SD may be age-dependent is in general agreement with the literature on aging effects on how mammals respond to stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号