首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Women with germline mutations in the breast cancer susceptibility gene BRCA1 are at an increased risk of developing breast cancer. The synthetic retinoid N-(4-hydroxyphenyl)retinamide (4-HPR) has been shown to have a clinical chemopreventive activity in patients with premenopausal breast cancer. Since BRCA1 mutations are associated with an early-onset breast cancer, usually before menopause, we hypothesized that 4-HPR may be an effective chemopreventive agent against breast tumors exhibiting BRCA1 mutations. The objective of this study was to determine the effectiveness and mechanisms of action of 4-HPR and its phenylretinamide analogues in BRCA1-mutated breast cancer cells. At clinically relevant doses, 4-HPR induced apoptosis in human (HCC1937) and murine (W0069, W525) BRCA1-mutated breast cancer cells. Among the various phenylretinamides tested, N-(2-carboxyphenyl)retinamide (2-CPR) and 3-CPR significantly inhibited the growth of HCC1937 cells; however, they were not as potent as 4-HPR in this respect. We also determined the mechanisms by which 4-HPR induces apoptosis in BRCA1-mutated breast cancer cells. The extent to which 4-HPR induced apoptosis in BRCA1-mutated cells correlated with the increases in nitric oxide (NO) production and nitric oxide synthase (NOS) II and NOSIII expression. Use of a NOS inhibitor to block NO production suppressed the inhibitory effects of 4-HPR in all cell lines. These in vitro results suggest that 4-HPR may be an effective chemopreventive agent against breast tumors that exhibit BRCA1 mutations because of its ability to induce NO-mediated apoptosis in such tumors.  相似文献   

4.
The synthetic retinoid fenretinide [N-(4-hydroxyphenyl)retinamide, 4-HPR] has demonstrated growth inhibition and induction of apoptosis of various malignant cells, including lung cancer cell lines. 4-HPR is now being investigated in several clinical trials. In our study, we show that 4-HPR inhibits growth on a broad panel of lung cancer cell lines (12/12 small cell lung cancer and 9/12 nonsmall cell lung cancer cell lines), including cell lines unresponsive to all-trans-retinoic acid (ATRA). 4-HPR revealed a higher potency than ATRA in inhibiting cell growth with IC(50) values ranging from 3.3-8.5 microM. Furthermore, 4-HPR induces apoptosis in lung cancer cell lines as proven by TUNEL and annexin V assay. Despite this, we observed stimulation of growth in 2 SCLC cell lines at 1 microM 4-HPR. In advance to the clinical application of 4-HPR, we demonstrate that growth inhibition is reversible after removal of 4-HPR and that long-term application is necessary. Through long-term stimulation with 4-HPR, we cultivated 3 resistant cell lines that were still inhibited by 4-HPR after several weeks, however, exhibited almost no apoptosis. These cell lines exhibited morphologic changes, which in the case of the SCLC cell lines suggested differentiation. Our data show that 4-HPR inhibits growth in lung cancer cell lines by varying mechanisms including (i) cytostasis, (ii) apoptosis and (iii) presumably, differentiation. In contrast, the observed growth stimulation, reversibility of growth inhibition and development of resistance to apoptosis make successful cancer therapy uncertain and may limit clinical application of 4-HPR in lung cancer patients, although its inhibitory effects last over several weeks.  相似文献   

5.
Squamous cell carcinoma (SCC) is the end product of a multistep process characterized by a progression from normal epithelial cells through metaplastic or dysplastic intraepithelial changes that evolve into invasive cancer. Since retinamides have shown promising in vivo anti-tumoral activity, we studied effects and effector mechanisms of the synthetic retinoid N-(4-hydroxyphenyl)retinamide (4-HPR) on squamous cells at progressing stages of tumorigenesis. To this end, an in vitro model of squamous carcinogenesis consisting of normal human keratinocytes, human papilloma virus (HPV)-immortalized keratinocytes (UP) and tumorigenic HPV-immortalized/v-Ha-ras transfected keratinocytes (UPR) was used. 4-HPR treatment affected cell growth at doses higher than 1.5 microM. Flow cytometric measurements of DNA content and annexin V revealed that cell growth decrease was mainly due to apoptosis at 4-HPR concentrations of or below 15 microM, and necrosis at higher concentrations. The effects were similar in the three cell types of the in vitro model, as well as in three SCC cell lines, suggesting that sensitivity to 4-HPR is independent of the degree of squamous cell tumorigenesis in the in vitro model. We further investigated whether mitochondrial damage was involved in the course of 4-HPR-induced apoptosis. Treatment of squamous cells with the antioxidant L-ascorbic acid inhibited apoptosis, indicating that 4-HPR increases production of free radicals. Measures of mitochondrial membrane potentials showed that 4-HPR induced membrane permeability transition (MPT), and that MPT-inhibitors were able to reduce apoptosis. This indicates that MPT is involved in apoptosis signalling by 4-HPR. Finally, we studied the role of caspases. We found that caspases 8, 9 and 3 participate in 4-HPR-mediated apoptosis of squamous cells, and that MPT is an upstream event that regulates caspase activity. Caspase 8 was activated independently of the Fas-Fas ligand pathway.  相似文献   

6.
7.
4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR) is a recently identified metabolite of fenretinide (4-HPR). We explored the effectiveness of 4-oxo-4-HPR in inducing cell growth inhibition in ovarian, breast, and neuroblastoma tumor cell lines; moreover, we investigated the molecular events mediating this effect in two ovarian carcinoma cell lines, one sensitive (A2780) and one resistant (A2780/HPR) to 4-HPR. 4-oxo-4-HPR was two to four times more effective than 4-HPR in most cell lines, was effective in both 4-HPR-sensitive and 4-HPR-resistant cells, and, in combination with 4-HPR, caused a synergistic effect. The tumor growth-inhibitory effects of 4-oxo-4-HPR seem to be independent of nuclear retinoid receptors (RAR), as indicated by the failure of RAR antagonists to inhibit its effects and by its poor ability to bind and transactivate RARs. Unlike 4-HPR, which only slightly affected the G(1) phase of the cell cycle, 4-oxo-4-HPR caused a marked accumulation of cells in G(2)-M. This effect was associated with a reduction in the expression of regulatory proteins of G(2)-M (cyclin-dependent kinase 1 and cdc25c) and S (cyclin A) phases, and with an increase in the expression of apoptosis-related proteins, such as p53 and p21. Apoptosis was induced by 4-oxo-4-HPR in both 4-HPR-sensitive and 4-HPR-resistant cells and involved activation of caspase-3 and caspase-9 but not caspase-8. We also showed that 4-oxo-4-HPR, similarly to 4-HPR, increased reactive oxygen species generation and ceramide levels by de novo synthesis. In conclusion, 4-oxo-4-HPR is an effective 4-HPR metabolite that might act as therapeutic agent per se and, when combined with 4-HPR, might improve 4-HPR activity or overcome 4-HPR resistance.  相似文献   

8.
9.
10.
The synthetic retinoid N-(4-hydroxyphenyl)retinamide (4-HPR) has been shown to induce apoptosis in various types of tumors, including prostate cancer. We sought to examine the key mechanisms affecting the resistance to 4-HPR-induced apoptosis in three human prostate cancer cell lines, PC-3, DU145, and LNCaP. Concentrations of more than 40 microM 4-HPR produced apoptosis to almost the same extent in all cell lines; however, only the LNCaP line remained highly sensitive to concentrations less than 10 microM. These differing sensitivities at low concentrations correlated well with the level of constitutive activation of nuclear factor kappa B (NFkappaB) in the individual cell lines. We found that NFkappaB activation inhibited c-jun NH(2)-terminal kinase and caspase 3 activation induced by 4-HPR and that NFkappaB inhibition by the I kappa B alpha phosphorylation inhibitor compound Bay 117082 resulted in increasing sensitization of both PC-3 and DU145 lines to apoptosis induced by 4-HPR at low concentrations. Furthermore, we found that inhibition of extracellular signal-regulated kinase (ERK) enhanced the suppression of NFkappaB by 4-HPR and also resulted in sensitization to apoptosis in the DU145 cell line, in which ERK is activated constitutively. It thus appears that mitogen-activated protein kinase associated with the activity of NFkappaB plays an important role in the degree of resistance to 4-HPR-induced apoptosis in human prostate cancer cells.  相似文献   

11.
BACKGROUND: The synthetic retinoid N-(4-hydroxyphenyl)retinamide (4-HPR or fenretinide) is toxic to myeloid leukemia and cervical carcinoma cell lines, probably in part due to its ability to increase levels of reactive oxygen species (ROS). We have studied the effects of 4-HPR on neuroblastoma cell lines. Since neuroblastomas commonly relapse in bone marrow, a hypoxic tissue compartment, and many chemotherapeutic agents are antagonized by hypoxia, our purpose was to study in these cell lines several factors influencing 4-HPR-induced cytotoxicity, including induced levels of ROS, effects of physiologic hypoxia and antioxidants, levels of ceramide, and the mechanism of cell death. METHODS: ROS generation was measured by carboxydichlorofluorescein diacetate fluoresence. Ceramide was quantified by radiolabeling and thin-layer chromatography. Immunoblotting was used to assess p53 protein levels. Apoptosis (programmed cell death) and necrosis were analyzed by nuclear morphology and internucleosomal DNA fragmentation patterns. Cytotoxicity was measured by a fluorescence-based assay employing digital imaging microscopy in the presence or absence of the pancaspase enzyme inhibitor BOC-d-fmk. Statistical tests were two-sided. RESULTS/CONCLUSIONS: In addition to increasing ROS, 4-HPR (2.5-10 microM) statistically significantly increased the level of intracellular ceramide (up to approximately 10-fold; P<.001) in a dose-dependent manner in two neuroblastoma cell lines, one of which is highly resistant to alkylating agents and to etoposide. Cell death induced by 4-HPR was reduced but not abrogated by hypoxia in the presence or absence of an antioxidant, N-acetyl-L-cysteine. Expression of p53 protein was not affected by 4-HPR. Furthermore, the pan-caspase enzyme inhibitor BOC-d-fmk prevented apoptosis, but not necrosis, and only partially decreased cytotoxicity induced by 4-HPR, indicating that 4-HPR induced both apoptosis and necrosis in neuroblastoma cells. IMPLICATIONS: 4-HPR may form the basis for a novel, p53-independent chemotherapy that operates through increased intracellular levels of ceramide and that retains cytotoxicity under reduced oxygen conditions.  相似文献   

12.
The synthetic retinoid N-(4-hydroxyphenyl)retinamide (4-HPR) induces apoptosis in a variety of cell lines and has shown promise as an anticancer agent both in vitro and in vivo. The clinical dose of 4-HPR, however, is limited by residual-associated toxicities, indicating a need for a less toxic drug. In this study, we show that 4-hydroxybenzylretinone (4-HBR), the unhydrolyzable analogue of 4-HPR, is effective in producing apoptosis in a variety of 4-HPR-sensitive cell lines, including breast cancer, neuroblastoma, and leukemia cells. We also show through the use of a pan-caspase inhibitor that this 4-HBR-induced apoptosis is dependent, at least in part, on caspase activity. 4-HBR is shown to exhibit binding to the retinoic acid receptors (RAR) at concentrations necessary to induce cell death and induces expression of all-trans-retinoic acid-responsive genes that can be blocked by a RAR pan-antagonist. However, through the use of this RAR pan-antagonist, 4-HBR-induced apoptosis and cell death is shown to be independent of the RAR signaling pathway. To further characterize the mechanism of action of 4-HBR, expression of the endoplasmic reticulum stress-induced genes GADD153 and Bcl-2-binding component 3 was examined. These mRNAs are shown to be rapidly induced in 4-HBR-treated and 4-HPR-treated breast cancer cells, and this up-regulation is also shown to be independent of the RARs. These results suggest that a stress-mediated apoptotic cascade is involved in the mechanism of action of these retinoids.  相似文献   

13.
14.
Fenretinide (4-HPR) is a retinoid analogue with antitumor and chemopreventive activities. In addition to 4-HPR, there are several other new phenylretinamides bearing hydroxyl, carboxyl, or methoxyl residues on carbons 2, 3, and 4 of the terminal phenylamine ring [N-(2-hydroxyphenyl)retinamide (2-HPR), N-(3-hydroxyphenyl)retinamide, N-(2-carboxyphenyl)retinamide, N-(3-carboxyphenyl)retinamide, N-(4-carboxyphenyl)retinamide, and N-(4-methoxyphenyl)retinamide (4-MPR) ]. It is hypothesized that these agents can act independent of the nuclear retinoid receptor pathway. To test this hypothesis directly, we have analyzed the activity of these phenylretinamides in vitro on a panel of F9 murine embryonal carcinoma cell lines, which includes wild-type (F9-WT) and mutant cells that have disrupted genes for both retinoid X receptor alpha and retinoic acid receptor gamma retinoid receptors (F9-KO). The F9-KO cells lack almost all measurable response to all-trans-retinoic acid, the primary biologically active retinoid. Two distinct effects of retinamides were identified. The first is a rapid, dose-dependent induction of cell growth inhibition (reduced cell viability), and the second is a slower induction of differentiation and accumulation of cells in the G(1) phase of the cell cycle that was observed with a concentration of 1 micro M, for only those phenylretinamides bearing charged (hydroxyl or carboxyl) groups on the terminal phenylamine ring. The induction of differentiation and G(1) accumulation was only observed in the F9-WT cells, indicating that this effect is receptor-dependent. 4-MPR, a major metabolite of 4-HPR, lacks a charged group on the terminal phenylamine ring and did not induce retinoid receptor-dependent effects, but did induce cell growth inhibition. Thus, 4-MPR may play a role in the clinical activity of 4-HPR. This study further reveals the mechanism of action of these novel phenylretinamides and supports continued investigation into their development as chemopreventive drugs.  相似文献   

15.

Purpose

PNAS-4, a novel pro-apoptotic gene activated during the early response to DNA damage, can inhibit proliferation via apoptosis when overexpressed in some tumor cells. The objectives of this study were to determine whether PNAS-4 could enhance apoptosis induced by cisplatin besides its induction of apoptosis, and to evaluate the usefulness of combined treatment with mouse PNAS-4 (mPNAS-4) gene therapy and low-dose cisplatin chemotherapy in the inhibition of tumor growth in colon carcinoma (CT26) and Lewis lung carcinoma (LL/2) murine models.

Methods

In this study, the in vitro growth-inhibitory and pro-apoptotic effects of PNAS-4 and/or cisplatin on CT26, LL/2, and SKOV3 cancer cells were assessed by MTT assay, flow cytometric analysis, DNA fragmentation, and morphological analysis, respectively. The in vivo antitumor activity of combined treatment with mPNAS-4 gene therapy and low-dose cisplatin were evaluated in the inhibition of tumor growth in colon carcinoma (CT26) and Lewis lung carcinoma (LL/2) murine models. Tumor volume and survival time were observed. Induction of apoptosis was also assessed in tumor tissues.

Results

In vitro, PNAS-4 inhibited proliferation of colon carcinoma (CT26), Lewis lung carcinoma (LL/2) and human ovarian cancer (SKOV3) cell lines via apoptosis, and significantly enhanced the apoptosis of CT26, LL/2, and SKOV3 cells induced by cisplatin. In vivo systemic administration of expression plasmid encoding mPNAS-4 (pcDNA3.1-mPS) and cisplatin, significantly decreased tumor growth through increased tumor cell apoptosis compared to treatment with mPNAS-4 or cisplatin alone.

Conclusions

Our data suggests that the combined treatment with mPNAS-4 plus cisplatin may augment the induction of apoptosis in tumor cells in vitro and in vivo, and that the augmented antitumor activity in vivo may result from the increased induction of apoptosis. The present study may provide a novel way to augment the antitumor efficacy of cytotoxic chemotherapy.  相似文献   

16.
PURPOSE: To evaluate study feasibility, toxicity, drug concentrations, and activity of escalating doses of the synthetic retinoid fenretinide [N-(4-hydroxyphenyl)retinamide (4-HPR)] in ovarian cancer by measuring serum CA125 and cytomorphometric biomarkers in cancer cells collected from ascitic fluid before and after treatment. METHODS: Twenty-two naive patients with ascitic ovarian cancer were treated with escalating doses of 4-HPR at 0, 400, 600, and 800 mg/d for 1 to 4 weeks before surgery. Changes in the proportion of proliferating cells expressed by Ki67 and computer-assisted cytomorphometric variables (nuclear area, DNA index, and chromatin texture) were determined in ascitic cells. Drug levels were measured by high-performance liquid chromatography. RESULTS: Doses up to 800 mg/d were well tolerated, and no adverse reactions occurred. There was no effect of 4-HPR on changes in serum CA125, Ki67 expression, which were assessed in 75% of subjects, and cytomorphometric variables, which were assessed in 80% of subjects. Plasma retinol levels were significantly lower in affected women than healthy donors. 4-HPR plasma concentrations increased slightly with increasing doses and attained a 1.4 micromol/L concentration with 800 mg/d. Drug levels in malignant ascitic cells and tumor tissue were higher than in plasma but were 50 and 5 times lower, respectively, than in carcinoma cells treated in vitro with 1 micromol/L 4-HPR. CONCLUSIONS: Cell biomarkers can be measured in ascitic cells to assess drug activity. Under our experimental conditions, 4-HPR did not show activity in advanced ovarian cancer cells. However, clinical evidence supports further investigation of fenretinide for ovarian cancer prevention.  相似文献   

17.
BACKGROUND: Retinoids have been shown to regulate vital cellular processes including cell proliferation, differentiation and apoptosis. N-(4-Hydroxyphenyl)-all-trans-retinamide (fenretinide, 4-HPR) is a synthetic ATRA derivative with chemopreventive and cytotoxic activity against various cancer cell lines including myeloid leukemia. Although several modes of action have been postulated, its mechanism of action in hematologic malignancies remains unclear. Furthermore, only limited information exists as to its activity in lymphoid malignancies. METHODS AND RESULTS: To test whether 4-HPR has activity in acute lymphoblastic leukemia (ALL), we first analyzed its antiproliferative effect in five ALL (Z-33, Z-138, Z-119, Z-181, and Jurkat) cell lines. We found that 4-HPR inhibited the proliferation of all cell lines in a dose-dependent manner at concentrations ranging from 1 to 10 microM. We further demonstrated by cell cycle analysis that 5 microM of 4-HPR blocked Z-119 cells in S phase thus preventing their progression through the cycle. Next we tested whether 4-HPR activated the caspase pathway and induced apoptotic cell death. We found that 4-HPR induced apoptosis in Z-119 cells through the activation of caspase-3 and subsequent cleavage of its substrate poly(ADP-ribose) polymerase (PARP). We then asked whether 4-HPR could affect fresh ALL progenitor cells. Therefore, we obtained bone marrow and peripheral blood cells from five patients with newly diagnosed ALL and tested the effect of 4-HPR using the ALL blast colony culture assay. To supplement our results, we also performed the ALL blast assay on one ALL cell line (ALL-1). We found that 4-HPR significantly inhibited ALL colony-forming cell proliferation in a dose-dependent manner. CONCLUSIONS: Our data show that 4-HPR is a potent inhibitor of ALL cell proliferation and that it induces in vitro apoptotic cell death in ALL blasts. Further studies are warranted to establish the in vivo effect of 4-HPR particularly in patients with ALL.  相似文献   

18.
The retinoid N-(4-hydroxyphenyl)retinamide (4-HPR also known as fenretinide) is a potent inducer of apoptosis in breast cancer cells. We observed a 4.5-fold reduction in 4-HPR-mediated apoptosis in MCF-7 breast cancer cells transfected with HER2/neu (MCF-7/HER2) as compared with the parental MCF-7 (MCF-7/WT) cells. Blocking HER2/neu with trastuzumab (Herceptin) led to a six-fold increase in 4-HPR-induced apoptosis in HER2/neu-overexpressing cells. These data indicate that HER2/neu reduces the sensitivity of breast cancer cells to 4-HPR. We showed previously that nitric oxide (NO) is essential for 4-HPR to induce apoptosis in breast cancer cells. The inhibitory effects of the 4-HPR and trastuzumab combination correlated with the amount of NO produced in HER2/neu-overexpressing cells. When a NO synthase (NOS) inhibitor was used to block NO production, decreased apoptosis by the 4-HPR and trastuzumab combination was observed. Furthermore, 4-HPR-mediated NOSII expression was lower in MCF-7/HER2 than MCF-7/WT cells, but was increased by trastuzumab in HER2/neu-overexpressing cells. Here we report the novel findings that HER2/neu reduces the ability of 4-HPR to induce apoptosis in breast cancer cells, and that one mechanism by which HER2/neu increases the resistance of breast cancer cells to 4-HPR is by decreasing NOSII-mediated NO production.  相似文献   

19.
Fenretinide, N-(4-hydroxyphenyl)retinamide (4-HPR) is an aminophenol-containing synthetic retinoid derivative of all-trans-retinoic acid, which is a potent chemopreventive and antiproliferative agent against various cancers. Clinical studies of 4-HPR have shown side effects consisting of night blindness and ocular toxicity. To maintain potent anticancer activity without side effects, p-dodecylaminophenol (p-DDAP) was designed based on structure-activity relationships of 4-HPR. In our study, we investigate whether p-DDAP shows anticancer activity against human prostate cancer cell line PC-3 when compared with 4-HPR. p-DDAP inhibited PC-3 cell growth progressively from low to high concentration in a dose-dependent manner. p-DDAP was the most potent antiproliferative agent in vitro among 6 p-alkylaminophenols and 3 4-hydroxyphenyl analogs examined including 4-HPR. Cells treated with p-DDAP were shown to undergo apoptosis, based on condensation nuclei, cytofluorimetric analysis, propidium iodide staining and the expression of bcl-2 and caspase 3. p-DDAP arrested the S phase of the cell cycle, while 4-HPR arrested the G(0)/G(1) phase. In addition, both the i.v. and i.p. administration of p-DDAP suppressed tumor growth in PC-3-implanted mice in vivo. p-DDAP showed no effects on blood retinol concentrations, in contrast to reductions after 4-HPR administration. These results indicate that p-DDAP exhibits excellent anticancer efficacy against hormonal independent prostate cancer in vitro and in vivo, and it may have great potential for clinical use in the treatment of prostate cancer with reduced side effects.  相似文献   

20.
The effect of the chemopreventive synthetic retinoid N-(4-hydroxyphenyl)-retinamide (4-HPR) on aromatase activity and expression was examined. 4-HPR caused a dose-dependent inhibition of aromatase activity in microsomes isolated from JEG-3 human placental carcinoma cells. The kinetics of inhibition were analysed by double-reciprocal plot. The Km of the substrate increased and the Vmax of the reaction decreased in the presence of 4-HPR, indicating that enzyme inhibition involved both competition for the substrate-binding site and non-competitive mechanisms. To determine whether 4-HPR would also inhibit aromatase activity in intact cells, MCF-7 human breast cancer cells were incubated with or without cAMP in the presence of 4-HPR. 4-HPR inhibited both basal and cAMP-induced aromatase activity in intact MCF-7 cells. The induction of aromatase mRNA expression in MCF-7 cells by cAMP was inhibited in cells treated with 4-HPR. These results indicate that 4-HPR inhibits both the enzymatic activity and expression of aromatase. These activities may play an important role in the known chemopreventive effect of 4-HPR towards breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号