首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Being the center of energy production in eukaryotic cells, mitochondria are also crucial for various cellular processes including intracellular Ca2+ signaling and generation of reactive oxygen species (ROS). Mitochondria contain their own circular DNA which encodes not only proteins, transfer RNA and ribosomal RNAs but also non-coding RNAs. The most recent line of evidence indicates the presence of 5-methylcytosine and 5-hydroxymethylcytosine in mitochondrial DNA (mtDNA); thus, the level of gene expression – in a way similar to nuclear DNA – can be regulated by direct epigenetic modifications. Up to now, very little data shows the possibility of epigenetic regulation of mtDNA. Mitochondria and mtDNA are particularly important in the nervous system and may participate in the initiation of drug addiction. In fact, some addictive drugs enhance ROS production and generate oxidative stress that in turn alters mitochondrial and nuclear gene expression. This review summarizes recent findings on mitochondrial function, mtDNA copy number and epigenetics in drug addiction.  相似文献   

2.
Mitochondrial oxidative stress and mitochondrial DNA.   总被引:11,自引:0,他引:11  
Mitochondria produce reactive oxygen species (ROS) under physiological conditions in association with activity of the respiratory chain in aerobic ATP production. The production of ROS is essentially a function of O2 consumption. Hence, increased mitochondrial activity per se can be an oxidative stress to cells. Furthermore, production of ROS is markedly enhanced in many pathological conditions in which the respiratory chain is impaired. Because mitochondrial DNA, which is essential for execution of normal oxidative phosphorylation, is located in proximity to the ROS-generating respiratory chain, it is more oxidatively damaged than is nuclear DNA. Cumulative damage of mitochondrial DNA is implicated in the aging process and in the progression of such common diseases as diabetes, cancer, and heart failure.  相似文献   

3.
Oxidative stress and heart failure   总被引:1,自引:0,他引:1  
  相似文献   

4.
Mitochondrial thymidine kinase 2 (TK2) and deoxyguanosine kinase (dGK) catalyze the initial phosphorylation of deoxynucleosides in the synthesis of the DNA precursors required for mitochondrial DNA (mtDNA) replication and are essential for mitochondrial function. Antiviral nucleosides are known to cause toxic mitochondrial side effects. Here, we examined the effects of 3′-azido-2′,3′-dideoxythymidine (AZT) (zidovudine) on mitochondrial TK2 and dGK levels and found that AZT treatment led to downregulation of mitochondrial TK2 and dGK in U2OS cells, whereas cytosolic deoxycytidine kinase (dCK) and thymidine kinase 1 (TK1) levels were not affected. The AZT effects on mitochondrial TK2 and dGK were similar to those of oxidants (e.g., hydrogen peroxide); therefore, we examined the oxidative effects of AZT. We found a modest increase in cellular reactive oxygen species (ROS) levels in the AZT-treated cells. The addition of uridine to AZT-treated cells reduced ROS levels and protein oxidation and prevented the degradation of mitochondrial TK2 and dGK. In organello studies indicated that the degradation of mitochondrial TK2 and dGK is a mitochondrial event. These results suggest that downregulation of mitochondrial TK2 and dGK may lead to decreased mitochondrial DNA precursor pools and eventually mtDNA depletion, which has significant implications for the regulation of mitochondrial nucleotide biosynthesis and for antiviral therapy using nucleoside analogs.  相似文献   

5.
Anthracycline-related cardiotoxicity correlates with cardiac anthracycline accumulation and bioactivation to secondary alcohol metabolites or reactive oxygen species (ROS), such as superoxide anion (O?·?) and hydrogen peroxide H?O?). We reported that in an ex vivo human myocardial strip model, 3 or 10 μM amrubicin [(7S,9S)-9-acetyl-9-amino-7-[(2-deoxy-β-D-erythro-pentopyranosyl)oxy]-7,8,9,10-tetrahydro-6,11-dihydroxy-5,12-napthacenedione hydrochloride] accumulated to a lower level compared with equimolar doxorubicin or epirubicin (J Pharmacol Exp Ther 341:464-473, 2012). We have characterized how amrubicin converted to ROS or secondary alcohol metabolite in comparison with doxorubicin (that formed both toxic species) or epirubicin (that lacked ROS formation and showed an impaired conversion to alcohol metabolite). Amrubicin and doxorubicin partitioned to mitochondria and caused similar elevations of H?O?, but the mechanisms of H?O? formation were different. Amrubicin produced H?O? by enzymatic reduction-oxidation of its quinone moiety, whereas doxorubicin acted by inducing mitochondrial uncoupling. Moreover, mitochondrial aconitase assays showed that 3 μM amrubicin caused an O?·?-dependent reversible inactivation, whereas doxorubicin always caused an irreversible inactivation. Low concentrations of amrubicin therefore proved similar to epirubicin in sparing mitochondrial aconitase from irreversible inactivation. The soluble fraction of human myocardial strips converted doxorubicin and epirubicin to secondary alcohol metabolites that irreversibly inactivated cytoplasmic aconitase; in contrast, strips exposed to amrubicin failed to generate its secondary alcohol metabolite, amrubicinol, and only occasionally exhibited an irreversible inactivation of cytoplasmic aconitase. This was caused by competing pathways that favored formation and complete or near-to-complete elimination of 9-deaminoamrubicinol. These results characterize amrubicin metabolic advantages over doxorubicin and epirubicin, which may correlate with amrubicin cardiac safety in preclinical or clinical settings.  相似文献   

6.
AIM OF STUDY: Previous reports note an increase in both reactive oxygen species (ROS) and nitric oxide (*NO) at the onset of myocardial reperfusion. We tested the hypothesis that inhibition of *NO or ROS production at the time of reperfusion improves recovery of post-ischemic myocardial function. METHODS AND MATERIALS: Isolated rat hearts were perfused with temperature controlled (37.4 degrees C) modified Krebs Henseleit buffer solution at 85 mm Hg. Following 20 min of global ischemia, hearts were reperfused for the first 10 min with: (1) standard buffer (control), (2) buffer with a NOS inhibitor, N-nitro-L-arginine methyl ester (L-NAME), (3) buffer with superoxide dismutase (SOD) or (4) buffer with N-morpholinosydnonimine hydrochloride (SIN-1), a peroxynitrite generator. Tissue O(2) and *NO were continuously measured with thin electrochemical probes embedded in the wall of the LV. ROS was measured with the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) (40 mM). LV contractile function was continuously monitored. RESULTS: Recovery of LV contractile function was significantly improved in hearts initially reperfused with L-NAME and SOD and significantly depressed in hearts reperfused with SIN-1 compared with control (p<0.01, n=5-8 per group). DMPO-adduct during reperfusion (measure of ROS) was significantly decreased with SOD (p<0.001 versus L-NAME and Control, n=4 per group) and unchanged with L-NAME and SIN-1 compared with Control. With L-NAME, tissue *NO and PO(2) were significantly decreased, independent of coronary flow, during reperfusion compared with control and SIN-1. CONCLUSIONS: Inhibition of O(2)*(-) or *NO at the time of reperfusion improves early reperfusion LV function and alters tissue oxygen tension. In contrast to pre-ischemic treatments, intervention to reduce peroxynitrite generation at the onset of reperfusion can effectively improve post-ischemic myocardial recovery.  相似文献   

7.
目的:观察单纯低氧及低氧复合运动对大鼠骨骼肌线粒体解偶联蛋白3(UCP3)表达的影响,并探讨其对线粒体能量转换和活性氧(ROS)生成的影响。方法:30只健康雄性SD大鼠随机分为:常氧对照组(NC,n=10)、单纯低氧组(HC,n=10)和低氧复合运动训练组(HT,n=10)。低氧干预为常压低氧帐篷,模拟11.3%的氧浓度,运动干预为低氧帐篷内53%VO2max强度的跑台训练,1h/d。4周后测定线粒体呼吸功能、ATP合成酶活力、ROS生成速率、UCP3mRNA和UCP3蛋白表达。结果:HC与NC组比较,态3呼吸速率(ST3)、呼吸控制比(RCR)、磷氧比(ADP/O)、ATP合成酶活力、UCP3mRNA和蛋白表达均显著降低(P<0.05—0.01),ROS生成速率升高(P<0.05)。HT与HC组比较,ST3、RCR、ADP/O、ATP合成酶活力、UCP3mRNA和蛋白表达均显著升高(P<0.05—0.01),ROS生成速率降低(P<0.05)。结论:低氧复合运动可上调骨骼肌线粒体UCP3表达,抑制ROS过度生成,并通过上调ATP合成酶活力,保持线粒体能量转换效率。  相似文献   

8.
9.
Neurodegenerative diseases and oxidative stress.   总被引:15,自引:0,他引:15  
Oxidative stress is now recognized as accountable for redox regulation involving reactive oxygen species (ROS) and reactive nitrogen species (RNS). Its role is pivotal for the modulation of critical cellular functions, notably for neurons astrocytes and microglia, such as apoptosis program activation, and ion transport, calcium mobilization, involved in excitotoxicity. Excitotoxicity and apoptosis are the two main causes of neuronal death. The role of mitochondria in apoptosis is crucial. Multiple apoptotic pathways emanate from the mitochondria. The respiratory chain of mitochondria that by oxidative phosphorylation, is the fount of cellular energy, i.e. ATP synthesis, is responsible for most of ROS and notably the first produced, superoxide anion (O(2)(;-)). Mitochondrial dysfunction, i.e. cell energy impairment, apoptosis and overproduction of ROS, is a final common pathogenic mechanism in aging and in neurodegenerative disease such as Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Nitric oxide (NO(;)), an RNS, which can be produced by three isoforms of NO-synthase in brain, plays a prominent role. The research on the genetics of inherited forms notably ALS, AD, PD, has improved our understanding of the pathobiology of the sporadic forms of neurodegenerative diseases or of aging of the brain. ROS and RNS, i.e. oxidative stress, are not the origin of neuronal death. The cascade of events that leads to neurons, death is complex. In addition to mitochondrial dysfunction (apoptosis), excitotoxicity, oxidative stress (inflammation), the mechanisms from gene to disease involve also protein misfolding leading to aggregates and proteasome dysfunction on ubiquinited material.  相似文献   

10.
This issue of the JCI includes studies demonstrating that sirtuin 1 (Sirt1), a NAD+-dependent deacetylase, slows renal senescence and safeguards cells in the renal medulla. Kume et al. demonstrated that caloric restriction protected the aging kidney by preserving renal Sirt1 expression, the latter deacetylating forkhead box O3a (FOXO3a), inducing Bnip 3, and promoting mitochondrial autophagy. Sirt1 expression, as shown by He et al., enabled interstitial cells to withstand the oxidizing medullary environment and exerted antiapoptotic and antifibrotic effects in the obstructed kidney. Sirt1 is thus an important participant in renal cytoprotective responses to aging and stress. The regulation of salt and water balance is one of the salient contributions of the kidney to the preservation of the constancy of the internal environment. Each day some 26,000 mmol of sodium and 180 liters of water traverse the glomerular filtration barrier into the urinary space, and all but 1% of such filtrate is faithfully returned by the tubular epithelium to the vascular compartment. Renal sodium reabsorption requires ATP, and to generate sufficient amounts of ATP for sodium transport, the kidney avidly consumes oxygen to drive mitochondrial oxidative phosphorylation; indeed, oxygen consumption/tissue weight by the kidney is exceeded, among major organs, only by the beating heart (1). A small percentage of oxygen consumed by mitochondria is incompletely reduced to reactive oxygen species (ROS), and this unremitting generation of oxidants during mitochondrial respiration, albeit in small amounts, may cumulatively take its toll on organs such as the kidney that are heavily dependent on mitochondrial metabolism.  相似文献   

11.
背景:缺血预处理可诱发机体内源性保护机制,可全面有效地防治器官移植缺血再灌注损伤.在胰腺移植过程中冷、热缺血均可导致移植胰腺缺血再灌注损伤,线粒体结构及功能与胰腺病变密切相关,近些年研究发现,线粒体DNA存在修复体系,其与线粒体DNA损伤之间的平衡决定了疾病的发生和转归.目的:观察缺血预处理对大鼠胰腺移植缺血再灌注损伤时的细胞凋亡的影响,分析线粒体DNA修复酶8-氧鸟嘌呤DNA糖基化酶和氧化应激在其中的变化规律及可能途径.方法:纳入健康雄性SD大鼠50只,其中20只为供体,10只为假手术组,另20只糖尿病造模后分为缺血再灌注组和缺血预处理组,每组10只.假手术组只行开、关腹手术,缺血再灌注组和缺血预处理组行异位全胰十二指肠移植.缺血再灌注组对应供体大鼠于获取供胰前以4℃ UW液灌洗20 min:缺血预处理组对应供体大鼠于获取供胰前阻断腹上动脉5 min,再灌注5 min,共2次.供胰均控制热缺血时间为15 min,冷缺血时间为180 min.再灌注后12 h检测血浆淀粉酶活性、血糖浓度及Caspase-3,9活化水平,流式细胞法检测腺泡细胞凋亡率,罗丹明123法检测线粒体膜电位,二氯荧光素法检测线粒体过氧化氢产生速率,高效液相色谱法检测线粒体DNA中8-氧鸟嘌呤质量浓度,荧光定量聚合酶链反应法检测8-氧鸟嘌呤DNA糖基化酶mRNA的表达,Westenn-blotting法检测细胞色素C释放、磷酸化Akt及线粒体8-氧鸟嘌呤DNA糖基化酶蛋白表达水平.结果与结论:缺血预处理可降低线粒体氧化应激,提高Akt磷酸化水平,从而上调8-氧鸟嘌呤DNA糖基化酶表达,减少线粒体DNA氧化损伤,抑制腺泡细胞凋亡,减轻移植胰缺血再灌注损伤.  相似文献   

12.
We reported that the combination of reactive oxygen species (ROS) quenchers Mn(III) tetrakis (4-benzoic acid) porphyrin (MnTBAP), catalase, and glutathione (MCG) given before 2 hours cold ischemia better protected cardiac mitochondria against cold ischemia and warm reperfusion (IR)-induced damage than MnTBAP alone. Here, we hypothesize that high K(+) cardioplegia (CP) plus MCG would provide added protection of mitochondrial bioenergetics and cardiac function against IR injury. Using fluorescence spectrophotometry, we monitored redox balance, ie reduced nicotinamide adenine dinucleotide and flavin adenine dinucleotide (NADH/FAD), superoxide (O(2) (?-)), and mitochondrial Ca(2+) (m[Ca(2+)]) in the left ventricular free wall. Guinea pig isolated hearts were perfused with either Krebs Ringer's (KR) solution, CP, or CP + MCG, before and during 27°C perfusion followed immediately by 2 hours of global ischemia at 27°C. Drugs were washed out with KR at the onset of 2 hours 37°C reperfusion. After 120 minutes warm reperfusion, myocardial infarction was lowest in the CP + MCG group and highest in the KR group. Developed left ventricular pressure recovery was similar in CP and CP + MCG and was better than in the KR group. O(2) (?-), m[Ca(2+)], and NADH/FAD were significantly different between the treatment and KR groups. O(2) (?-) was lower in CP + MCG than in the CP group. This study suggests that CP and ROS quenchers act in parallel to improve mitochondrial function and to provide protection against IR injury at 27°C.  相似文献   

13.
Molecular mechanisms of mitochondrial diabetes (MIDD)   总被引:7,自引:0,他引:7  
Mitochondria provide cells with most of the energy in the form of adenosine triphosphate (ATP). Mitochondria are complex organelles encoded both by nuclear and mtDNA. Only a few mitochondrial components are encoded by mtDNA, most of the mt-proteins are nuclear DNA encoded. Remarkably, the majority of the known mutations leading to a mitochondrial disease have been identified in mtDNA rather than in nuclear DNA. In general, the idea is that these pathogenic mutations in mtDNA affect energy supply leading to a disease state. Remarkably, different mtDNA mutations can associate with distinct disease states, a situation that is difficult to reconcile with the idea that a reduced ATP production is the sole pathogenic factor. This review deals with emerging insight into the mechanism by which the A3243G mutation in the mitochondrial tRNA (Leu, UUR) gene associates with diabetes as major clinical expression. A decrease in glucose-induced insulin secretion by pancreatic beta-cells and a premature aging of these cells seem to be the main process by which this mutation causes diabetes. The underlying mechanisms and variability in clinical presentation are discussed.  相似文献   

14.
Enhanced peroxynitrite formation is associated with vascular aging   总被引:24,自引:0,他引:24       下载免费PDF全文
Vascular aging is mainly characterized by endothelial dysfunction. We found decreased free nitric oxide (NO) levels in aged rat aortas, in conjunction with a sevenfold higher expression and activity of endothelial NO synthase (eNOS). This is shown to be a consequence of age-associated enhanced superoxide (.O(2)(-)) production with concomitant quenching of NO by the formation of peroxynitrite leading to nitrotyrosilation of mitochondrial manganese superoxide dismutase (MnSOD), a molecular footprint of increased peroxynitrite levels, which also increased with age. Thus, vascular aging appears to be initiated by augmented.O(2)(-) release, trapping of vasorelaxant NO, and subsequent peroxynitrite formation, followed by the nitration and inhibition of MnSOD. Increased eNOS expression and activity is a compensatory, but eventually futile, mechanism to counter regulate the loss of NO. The ultrastructural distribution of 3-nitrotyrosyl suggests that mitochondrial dysfunction plays a major role in the vascular aging process.  相似文献   

15.
BACKGROUND: Many mitochondrial pathologies are quantitative disorders related to tissue-specific deletion, depletion, or overreplication of mitochondrial DNA (mtDNA). We developed an assay for the determination of mtDNA copy number by real-time quantitative PCR for the molecular diagnosis of such alterations. METHODS: To determine altered mtDNA copy number in muscle from nine patients with single or multiple mtDNA deletions, we generated calibration curves from serial dilutions of cloned mtDNA probes specific to four different mitochondrial genes encoding either ribosomal (16S) or messenger (ND2, ND5, and ATPase6) RNAs, localized in different regions of the mtDNA sequence. This method was compared with quantification of radioactive signals from Southern-blot analysis. We also determined the mitochondrial-to-nuclear DNA ratio in muscle, liver, and cultured fibroblasts from a patient with mtDNA depletion and in liver from two patients with mtDNA overreplication. RESULTS: Both methods quantified 5-76% of deleted mtDNA in muscle, 59-97% of mtDNA depletion in the tissues, and 1.7- to 4.1-fold mtDNA overreplication in liver. The data obtained were concordant, with a linear correlation coefficient (r(2)) between the two methods of 0.94, and indicated that quantitative PCR has a higher sensitivity than Southern-blot analysis. CONCLUSIONS: Real-time quantitative PCR can determine the copy number of either deleted or full-length mtDNA in patients with mitochondrial diseases and has advantages over classic Southern-blot analysis.  相似文献   

16.
Econazole is an azole antifungal with anticancer activity that blocks Ca(2+) influx and stimulates endoplasmic reticulum (ER) Ca(2+) release through the generation of mitochondrial reactive oxygen species (ROS), resulting in sustained depletion of ER Ca(2+) stores, protein synthesis inhibition, and cell death. c-Myc, a commonly activated oncogene, also promotes apoptosis in response to growth factor withdrawal and a variety of chemotherapeutic agents. We have investigated the role of c-myc in regulating sensitivity to econazole. Here, we show that c-myc-negative cells are profoundly resistant to econazole. c-Myc-negative rat fibroblasts failed to generate mitochondrial ROS in response to econazole and consequently failed to deplete the ER of Ca(2+). HL60 cells knocked down for c-myc expression also displayed decreased ROS generation and decreased econazole sensitivity. Addition of H(2)O(2) restored sensitivity to econazole in both c-myc-negative rat fibroblasts and c-myc knocked-down HL60 cells, supporting a role for ROS in cell death induction. c-Myc-negative cells and HL60 cells knocked down for c-myc have reduced mitochondrial content compared with c-myc-positive cells. The hypoxia sensor, hypoxia-inducible factor-1alpha (HIF-1alpha), interacts antagonistically with c-myc and also regulates mitochondrial biogenesis. Knockdown of HIF-1alpha in c-myc-negative cells increased mitochondrial content restored ROS generation in response to econazole and increased sensitivity to the drug. Taken together, these results show that c-myc and HIF-1alpha regulate sensitivity to econazole by modulating the ability of the drug to generate mitochondrial ROS.  相似文献   

17.
目的:研究长时间有氧运动训练对老年大鼠心肌、脑组织线粒体DNA含量及线粒体呼吸链酶复合体的影响。 方法:将大鼠随机分为3组:青年组、老年对照组、老年运动训练组,运动组大鼠在水中进行90d渐进游泳训练,测定心脏、脑组织线粒体DNA含量、线粒体复合体Ⅰ、 Ⅳ的活性。结果:①与青年组相比老年对照组心肌线粒体DNA含量升高(P<0.01)、线粒体复合体Ⅰ、Ⅳ活性明显降低(P<0.05—0.01),脑组织线粒体DNA含量升高(P<0.01)、线粒体复合体Ⅰ、Ⅳ活性明显降低(P<0.05—0.01)。②与老年对照组相比老年运动训练组心肌线粒体DNA含量明显降低(P<0.05)、线粒体复合体Ⅰ、Ⅳ活性明显升高(P<0.05—0.01),脑线粒体DNA含量没有显著变化(P>0.05)、线粒体复合体Ⅰ、Ⅳ活性明显升高(P<0.05—0.01)。结论:长时间有氧运动训练可以降低老年大鼠心肌线粒体DNA含量,增加线粒体呼吸链复合酶活性,延缓衰老过程中线粒体功能的退行性变化。  相似文献   

18.
Mitochondria provide cells with most of the energy in the form of adenosine triphosphate (ATP). Mitochondria are complex organelles encoded both by nuclear and mtDNA. Only a few mitochondrial components are encoded by mtDNA, most of the mt‐proteins are nuclear DNA encoded. Remarkably, the majority of the known mutations leading to a mitochondrial disease have been identified in mtDNA rather than in nuclear DNA. In general, the idea is that these pathogenic mutations in mtDNA affect energy supply leading to a disease state. Remarkably, different mtDNA mutations can associate with distinct disease states, a situation that is difficult to reconcile with the idea that a reduced ATP production is the sole pathogenic factor. This review deals with emerging insight into the mechanism by which the A3243G mutation in the mitochondrial tRNA (Leu, UUR) gene associates with diabetes as major clinical expression. A decrease in glucose‐induced insulin secretion by pancreatic beta‐cells and a premature aging of these cells seem to be the main process by which this mutation causes diabetes. The underlying mechanisms and variability in clinical presentation are discussed.  相似文献   

19.
Reactive oxygen species (ROS) have been implicated in the pathogenesis of a wide range of acute and long-term neurodegenerative diseases. This study was undertaken to examine the efficacy of Pogostemon cablin, a well-known herb in Korean traditional medicine, on ROS-induced brain cell injury. Pogostemon cablin effectively protected human neuroglioma cell line A172 against both the necrotic and apoptotic cell death induced by hydrogen peroxide (H(2)O(2)). The effect of Pogostemon cablin was dose dependent at concentrations ranging from 0.2 to 5?mg ml(-1). Pogostemon cablin significantly prevented depletion of cellular ATP and activation of poly ADP-ribose polymerase induced by H(2)O(2). The preservation of functional integrity of mitochondria upon the treatment of Pogostemon cablin was also confirmed by 3-(4,5-dimethyl-2-thiazyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Furthermore, Pogostemon cablin significantly prevented H(2)O(2)-induced release of cytochrome c into cytosol. Determination of intracellular ROS showed that Pogostemon cablin might exert its role as a powerful scavenger of intracellular ROS. The present study suggests the beneficial effect of Pogostemon cablin on ROS-induced neuroglial cell injury. The action of Pogostemon cablin as a ROS-scavenger might underlie the mechanism.  相似文献   

20.
Oxidative stress induced in pathologies: the role of antioxidants.   总被引:8,自引:0,他引:8  
Exposure to oxidant molecules issued from the environment (pollution, radiation), nutrition, or pathologies can generate reactive oxygen species (ROS for example, H2O2, O2-, OH). These free radicals can alter DNA, proteins and/or membrane phospholipids. Depletion of intracellular antioxidants in acute oxidative stress or in various diseases increases intracellular ROS accumulation. This in turn is responsible for several chronic pathologies including cancer, neurodegenerative or cardiovascular pathologies. Thus, to prevent against cellular damages associated with oxidative stress it is important to balance the ratio of antioxidants to oxidants by supplementation or by cell induction of antioxidants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号