首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Contaminant concentration estimates from simple models were compared with concentration fields obtained by computational fluid dynamic (CFD) simulations for various room and source configurations under steady-state conditions. Airflow and contaminant distributions in a 10 x 3 x 7-m room with a single contaminant source on a 1-m high table were simulated using CFD for steady, isothermal conditions. For a high wall jet inlet, simulations were performed for nine room air exhaust locations and eight source locations. For a ceiling diffuser inlet the impact of two exhaust locations and eight source locations were investigated. Because CFD treats determinants of contaminant transport explicitly and agreed well with experimental results, it was used as the standard for comparison. Parameters of the one- and two-zone completely mixed models (CM-1 and CM-2) and the uniform turbulent diffusivity model (UD) were determined from CFD simulation results. Concentration estimates from these were compared with CFD results in the breathing zone (BZ) plane (1.5 m above the floor) for the entire BZ, the source "near field," and the source "far field." In the near field the mean percentage difference between the model concentration estimates and the CFD results for all room configurations were -21.9, 32.3, and 126% for the CM-1, CM-2, and UD models, respectively, with standard deviations of 26.8, 111, and 103%. In the far field the mean percentage difference between the model estimates and CFD results were -4.8, -2.3, and -36.3%. The CM-1 model had generally the best performance for applications such as occupational epidemiology for the conditions and configurations studied. However, CM-1 tended to underestimate the near field concentration; thus, CM-2 was judged to be better in the near field when underestimation is undesirable, such as when determining compliance with occupational exposure limits. The agreement of CM-2 estimates with CFD results in the near field was more variable than that of the CM-1. The UD model performed poorly on average in both near and far fields, and the difficulty in accurately estimating the turbulent diffusivity presents a significant impediment to UD model use for exposure estimation.  相似文献   

2.
Computational fluid dynamics (CFD) is potentially a valuable tool for simulating the dispersion of air contaminants in workrooms. However, CFD-estimated airflow and contaminant concentration patterns have not always shown good agreement with experimental results. Thus, understanding the factors affecting the accuracy of such simulations is critical for their successful application in occupational hygiene. The purposes of this study were to validate CFD approaches for simulating the dispersion of gases and vapors in an enclosed space at two air flow rates and to demonstrate the impact of one important determinant of simulation accuracy. The concentration of a tracer gas, isobutylene, was measured at 117 points in a rectangular chamber [1 (L) x 0.3 (H) x 0.7 m (W)] using a photoionization analyzer. Chamber air flow rates were scaled using geometric and kinematic similarity criteria to represent a full-sized room at two Reynolds numbers (Re = 5 x 10(2) and 5 x 10(3)). Also, CFD simulations were conducted to estimate tracer gas concentrations throughout the chamber. The simulation results for two treatments of air inlet velocity (profiled inlet velocity measured in traverses across the air inlet and the assumption that air velocity is uniform across the inlet) were compared with experimental observations. The CFD-simulated 3-dimensional distribution of tracer gas concentration using the profiled inlet velocity showed better agreement qualitatively and quantitatively with measured chamber concentration, while the concentration estimated using the uniform inlet velocity showed poor agreement for both comparisons. For estimating room air contaminant concentrations when inlet velocities can be determined, this study suggests that using the inlet velocity distribution to define inlet boundary conditions for CFD simulations can provide more reliable estimates. When the inlet velocity distribution is not known, for instance for prospective design of dilution ventilation systems, the trials of several velocity profiles with different source, air inlet and air outlet locations may be useful for determining the most efficient workroom layout.  相似文献   

3.
A human exposure apparatus was designed to administer a gas and/or aerosol directly to the subject's face. This apparatus utilized a hood associated with a powered air-purifying respirator. The design criteria included the need to maximize subject comfort, maintain consistent atmospheres of a gas or dust within the hood, and the accurate use of direct-reading instruments to monitor exposure levels. An 83-L drum was used to pre-mix the gas or aerosol with the main dilution air prior to entering the hood worn by the subject. A clear plastic oxygen tent, ventilated with room exhaust air, was used to contain contaminants exiting the hood. Bypass valves were added to allow for a startup period during which contaminant concentration levels were allowed to stabilize prior to exposing the human subject. Results from characterization studies demonstrated that the system adequately contained contaminants within the oxygen tent, provided adequate mixing of contaminant and dilution air, produced stable contaminant concentrations over time, and was responsive to sudden changes in contaminant generation rate.  相似文献   

4.
The effect of worker's location, orientation, and activity on exposure   总被引:1,自引:0,他引:1  
The impact of a worker's location, orientation, and activity was studied in an experimental room (2.86 m x 2.35 m x 2.86 m) at known flow rates of 5.5 m(3)/min and 3.3 m(3)/min. A person in the room, wearing a full-facepiece, air-supplied respirator represented a worker. Propylene tracer gas was emitted at a constant rate from a 1-m pedestal at the center of the room and a continuous air sample was drawn from a point midway between the worker's mouth and nose. Breathing zone concentration (BZC) was monitored at 12 worker locations within the room for a stationary worker. At each location, BZCs were measured separately for four worker orientations: east, west, south, and north. BZCs of a walking worker were also monitored along the path defined by the 12 worker locations used in the stationary experiments. In a separate set of experiments, area concentration was monitored to see whether the worker's activity disturbed the contaminant concentrations at a fixed sampling point located behind the source looking from the direction of air inlet (location: 1.34 m, 1.20 m, 0.45 m). The following average differences in BZC over the 12 fixed locations were observed: 43% higher for near-field than for far-field locations; 20% higher when the worker was facing the source than when facing away (p-values for all four conditions: < 0.033), and 30% higher for a moving worker than for a stationary worker (p-values for all four conditions: < 0.01). When the worker was walking, the concentration at the fixed area sampling point was generally lower than the area concentration when the worker was absent or stationary in the room, possibly due to greater mixing of room air by the worker's movement. Because a worker's activities may be irregular and complicated, incorporating them as parameters in mathematical models is often not feasible. Instead, these findings may be used to assess uncertainty or adjust exposure estimates from simple models.  相似文献   

5.
The efficiency with which airborne test organisms were removed from the lower part of a room when the upper air was irradiated with ultraviolet light (UV) was used to evaluate convective air mixing between the upper and lower parts of the room. The temperature of air entering the room through four diffusers in the ceiling was 10 to 15 F hotter or colder than lower room air during the studies. Rates of disappearance of test organisms atomized into the air were more than twice as fast when cold air entered at the ceiling as when hot air entered. Mean vertical mixing rates were estimated to be 20 air changes per hour (AC/hr) with hot air entering at the ceiling and 150 to 300 AC/hr with cold air entering at the ceiling. These large differences resulted from the large temperature gradients which favored or inhibited vertical mixing of air.  相似文献   

6.
Understanding source behavior is important in controlling exposure to airborne contaminants. Industrial hygienists are often asked to infer emission information from room concentration data. This is not easily done, but models that make simplifying assumptions regarding contaminant transport are frequently used. The errors resulting from these assumptions are not yet well understood. This study compares emission estimates from the single-zone completely mixed (CM-1), two-zone completely mixed (CM-2), and uniform diffusivity (UD) models with the emissions set as boundary conditions in computational fluid dynamic (CFD) simulations of a workplace. The room airflow and concentration fields were computed using Fluent 4. These numerical experiments were factorial combinations of three source locations, five receptor locations, three dilution airflow rates, and two generation rate profiles, constant and time-varying. The aim was to compute plausible concentration fields, not to simulate exactly the processes in a real workroom. Thus, error is defined here as the difference between model and CFD predictions. For the steady-state case the UD model had the lowest error. When the source near-field contained the breathing zone receptor, the CM-2 model was applied. Then, in decreasing agreement with CFD were UD, CM-2, and CM-1. Averaging over all source and receptor locations (CM-2 applied for only one), in decreasing order of agreement with CFD were UD, CM-1, and CM-2. Source and receptor location had large effects on emission estimates using the CM-1 model and some effect using the UD model. A location-specific mixing factor (location factor) derived from steady-state concentration gradients was used to build a more accurate time-dependent emission model, CM-L. Total mass emitted from a time-varying source was modeled most accurately by CM-L, followed by CM-1 and CM-2.  相似文献   

7.
Experiments using the directed push-pull ventilation technique were conducted on a general type of local exhaust ventilation installation. The exhaust (pull) system consisted of a square hood, while the push system consisted of one or two slot jets or two round jets. The two slot or round jets were located behind and beside a mannequin (the mannequin simulated the worker's position). The one slot jet was located between the smoke source and the mannequin. Under experimental conditions, the push-pull system reduced the amount of smoke in the mannequin's breathing zone even when the exhaust system volume flow rate necessary for capture of the smoke decreased approximately 50%. Generally, no difference between the slot and round jet control performance was found. The experiments showed that the directed push-pull ventilation system can be used effectively to reduce the contaminant emission into a workroom, if the jets are located so that the eddy currents induced by the worker or other obstructions are minimized or eliminated.  相似文献   

8.
A problem may arise in ventilation design when the contaminant source is located in the worker's wake, where turbulence and vortex formation can carry the contaminant into the breathing zone even though the source is downwind. It was found previously that forced directional variations in the flow can reduce or eliminate the vortex formation that causes these local reversals. Reported here is a simple realization of this concept, in which an oscillating jet of air was directed at a mannequin in an otherwise steady flow of air. A 50th percentile male mannequin was placed in a nearly uniform flow of approximately 0.18 m/sec (36 ft/min). A low-velocity tracer gas source (isobutylene) was held in the standing mannequin's hands with the upper arms vertical and the elbows at 90 degrees. Four ventilation scenarios were compared by concentration measurements in the breathing zone, using photoionization detectors: (A) uniform flow; (B) addition of a steady jet with initial velocity 5.1 m/sec (1.0 x 10(3) ft/min) directed at the mannequin's back, parallel to the main flow; (C) making the jet oscillate to 45 degrees on either side of the centerline with a period of 13 sec; and (D) introducing a blockage at the centerline so the oscillating jet never blew directly at the worker. At the 97.5% confidence level the interrupted oscillating jet (case D) achieved at least 99% exposure reduction compared with the uniform flow by itself (case A), at least 93% compared with the steady jet (case B), and at least 45% exposure reduction compared with the unblocked oscillating jet (case C).  相似文献   

9.
目的 了解丝网印刷作业中多个化学危害源共同作用下的环己酮弥散规律与控制特性。
方法 利用FLUENT软件对丝网印刷作业环境中环己酮的弥散过程进行数值模拟,根据监测结果和计算结果讨论丝网印刷作业环境中毒物浓度的空间分布特点,研究通风口位置、入风口风速、入风口面积、障碍物存在对环己酮弥散的影响。
结果 化学危害物浓度场可视性地揭示出化学危害物在墙壁周围和化学危害源附近容易集聚。基于不同入风口风速、不同入风口截面积、不同送风形式的化学危害物浓度模拟结果显示:(1)入风口风速为0.8 m/s时的车间内化学危害物浓度低于入风口风速为0.2 m/s时,表明入风口风速是化学危害物弥散的重要控制因素之一;(2)入风口截面积增大后,车间内气流组织形式发生变化,直接影响到气流流动速度场的改变,导致化学危害物浓度稀释而使得浓度场发生较大变化,表明入风口截面积大小同样是化学危害物弥散的重要因素之一;(3)不同的送风形式(左侧窗户或右侧窗户送风)形成的气流组织不尽相同,当气流自化学危害源上风向进入时,有利于车间内化学危害物随着气流经印刷机上方排风罩排出。
结论 利用FLUENT仿真计算进行丝网印刷作业过程中环己酮弥散分析,可以可视性地揭示化学危害物在三维空间中的分布形态和集聚规律,有利于职业病危害因素的监测和防范。
  相似文献   

10.
In order to improve arc welding work in a small enclosed workspace, numerical simulations were conducted to find the most appropriate welding and ventilation conditions, such as welding currents, hood position and flow rates with no blowhole formation. In the simulations, distributions of airflow vectors and fume concentrations were calculated for two hood opening positions: one faced a welder's breathing zone, the other a contaminant source. As a result it was predicted that a hood opening facing a breathing zone remarkably lowered the fume concentration in the breathing zone compared with that facing a contaminant source. The reliability was confirmed in CO2 arc welding experiments in the enclosed workspace by using a welding robot. In addition, the number of blowholes in welds, examined with x-ray, decreased with the increase in the welding current and with the decrease in the exhaust flow rate. These results showed that the fume concentration near welder's breathing zone and the number of blowholes could be reduced effectively by appropriate selection of the welding current and hood position, and it was confirmed that the numerical simulations were sufficiently useful to predict these appropriate welding conditions.  相似文献   

11.
Push-pull ventilation (air is blown across a contaminant generation area toward an exhaust hood) can have distinct advantages over exhaust ventilation alone. It can control contaminant emission into the workplace better than exhaust only, and much less conditioned air must be exhausted so there are energy savings. This paper presents suggested push and pull flow rates for open surface tank operations such as plating. About 98% of the contaminant generated can be captured by a push-pull system using the proper flow rates.  相似文献   

12.
The presence of airborne pollutants in indoor environments has been associated with occupants' discomfort and/or adverse health effects. This study investigates occupational exposure in relation to indoor air mixing and source location relative to a human body. Experimental and computational methods were used to provide information about the pollutant distribution in the vicinity of the human body for different levels of room air mixing. Study results show that the often used assumption of uniform pollutant distribution in an occupied space is not always appropriate for estimation of inhalation exposure. Results also indicate that an occupant may experience very high acute exposure to airborne pollutants when little air mixing exists in a space and the pollutant source is in the vicinity of the occupant. The buoyancy-driven flow induced by the convective heat transfer from an occupant's body can transport pollutants in the occupant's vicinity to the breathing zone. Specific study results reveal that a source located in the occupant's front chest region makes a relatively large contribution to the breathing zone concentration compared with the other sources in the vicinity of the human body. With the source position in this region, exposure can be nine times greater than that calculated with the uniform mixing assumption. The buoyancy-driven convective plume around a body seems to have a significant influence on pollutant transport and human exposure, especially in the absence of room air mixing.  相似文献   

13.
A mathematical model is described for estimating benzene exposure at a parts washer using petroleum distillates solvent containing benzene. The basic assumptions are that the benzene mass emission rate exponentially decreases over time, and that the air above the parts washer basin to which a worker is exposed is part of a well-mixed air zone termed the near field (relative to the source location). Two previously conducted simulations of the parts washer process are described. A single 1-hour time-weighted average (TWA) benzene concentration was measured during Simulation #1, and two 4-hour TWA benzene concentrations were measured during Simulation #2. The initial benzene concentrations in the solvents were known, and the exponential loss rate constants were estimated from subsequent determinations of the benzene concentrations. Values for the interzonal airflow rate were estimated based on the conceptual geometry of the near field zone and sparse information on air speed near the parts washers. Minimum values for the room supply/exhaust air rate were estimated based on the room volumes and ventilation conditions. The modeled benzene concentrations were within a multiplicative range of one-half to twofold the measured concentrations. Uncertainty in a model estimate was quantified by Monte Carlo analysis; the distributions of model estimates exhibited coefficients of variation of approximately 40%. Issues related to uncertainty in exposure estimates made by mathematical modeling are discussed.  相似文献   

14.
Fukui M 《Health physics》2004,86(4):384-396
The radioactive gas 41Ar has been produced at high concentration by neutron activation near the reactor core in the Kyoto University Research Reactor. A pipe line for an exhaust stream, so-called sweep gas, was fabricated at the construction of the reactor in 1964 in order to exhale 41Ar from the facilities above to the environment. Other exhaust lines with decay tanks were established separately from the sweep line for both the cold neutron source in 1986 and the heavy-water tank in 1996, respectively, because a higher amount of 41Ar was thought to be produced from these facilities due to the improvement. As a result, a slight change in the flow rate of the exhaust was found to have a great deal of influence on both the 41Ar concentration in the reactor room and the rate of emission from the stack. By monitoring the exhaust air from the decay tanks, the mechanism for decreasing the emission was clarified together with identifying an obstacle, i.e., the condensate against the steady state flow, formed in the exhaust pipe. By setting the flow rate suitably in the exhaust line, the rate of 41Ar emission from the biological shielding into both the work place in the reactor room and the environment has been controlled as low as reasonably achievable.  相似文献   

15.
International guidelines recommend the use of ventilation systems in operating rooms to reduce the concentration of potentially hazardous substances such as anesthetic gases. The exhaust air grilles of these systems are typically located in the lower corners of the operating room and pick up two-thirds of the air volume, whereas the final third is taken from near the ceiling, which guarantees an optimal perfusion of the operating room with a sterile filtered air supply. However, this setup is also employed because anesthetic gases have a higher molecular weight than the components of air and should pool on the floor if movement is kept to a minimum and if a ventilation system with a unidirectional displacement flow is employed. However, this anticipated pooling of volatile anesthetics at the floor level has never been proven. Thus, we herein investigated the flow behaviors of isoflurane, sevoflurane, and carbon dioxide (for comparison) in a measuring chamber sized 2.46?×?1.85?×?5.40 m with a velocity of 0.3 m/sec and a degree of turbulence <20%. Gas concentrations were measured at 1,728 measuring positions throughout the measuring chamber, and the flow behaviors of isoflurane and sevoflurane were found to be similar, with an overlap of 90%. The largest spread of both gases was 55?cm at 5.4 m from the emission source. Interestingly, neither isoflurane nor sevoflurane was detected at floor level, but a continuous cone-like spreading was observed due to gravity. In contrast, carbon dioxide accumulated at floor level in the form of a gas cloud. Thus, floor level exhaust ventilation systems are likely unsuitable for the collection and removal of anesthetic gases from operating rooms.  相似文献   

16.
A real-scale pilot installation simulating an open surface treatment tank with a push-pull ventilation system has been designed. From experiments carried out, typical representations of the total and transversal linear efficiencies show that when total efficiency is related to push flow rate, taking as a parameter the pull flow rate, a parabolic profile is obtained with a maximum point or plateau that increases as the pull flow increases. When the transversal linear efficiency is analysed, three general zones where losses occur to the exterior can be detected: (i) when the push flow rate is low, any distortion in the wall jet, whether external (e.g. in the air flow inside the workshop) or internal (e.g. thermal effects), provokes an escape from contaminant; (ii) in the impact zone, where the push flow impacts on the tank surface, distortion increases as the push flow rate increases; (iii) when the push/pull flow rate ratio increases and preferential currents are produced inside the exhaust hood, these escape and cause substantial losses in efficiency.  相似文献   

17.
Disinfection of air in lower part of a room by ultraviolet irradiation of upper air has been studied after artificial dissemination of test organisms (Serratia marcescens). On basis of disinfection rates in lower air with different intensities of UV in upper air, the rates at which organisms are killed in upper air and at which air mixes between upper and lower parts of the room were calculated. By performing studies under different conditions of air motion, it was possible to analyze factors affecting air mixing and upper-air disinfection. With no fans to increase air motion, a single 30-w UV tube increased the rate of disappearance of organisms from lower part of room by the equivalent of 61 air changes per hour (median value). With a large-bladed ceiling fan, the same UV tube almost doubled the rate of disappearance of organisms.  相似文献   

18.
Conventional range hoods cannot effectively prevent the oil fumes containing cooking-induced harmful material from escaping into the kitchen Air curtains and guide plates have been used in range hoods to reduce the escape of airborne emissions and heat, thereby improving the kitchen environment and the cook's degree of comfort. In this article, numerical simulations are used to study the effects of the jet velocity of an air curtain, the jet angle of the air curtain, the width of the jet slot, the area of the guide plate, and the exhaust rate of the range hood on the perceived temperature, the perceived concentration of oil fumes, the release temperature of oil fumes, and the concentration of escaped oil fumes in a kitchen. The orthogonal experiment results show that the exhaust rate of the range hood is the main factor influencing the fumes concentration and the temperature distribution in the kitchen. For the range hood examined in the present study, the optimum values of the exhaust rate, the jet velocity of the air curtain, the jet angle of the air curtain, the width of the jet slot, and the area of the guide plate are 10.5 m3/min, 1.5 m/s, ?5°, 4 mm, and 0.22 m2, respectively, based on the results of the parametric study. In addition, the velocity field, temperature field, and oil fumes concentration field in the kitchen using the proposed range hood with the air curtain and guide plate are analyzed for those parameters. The study's results provide significant information needed for improving the kitchen environment.  相似文献   

19.
The purpose of these studies was to investigate actual xenon gas clearance times under different exhaust conditions, to compare them with the calculated clearance times, to observe the distribution of the xenon gas while it was being exhausted from the room, and to determine the cause of a stationary xenon cloud that appeared on some clinical images. Clearance times with and without a flexible exhaust hose placed next to a simulated 133Xe gas spill were compared with clearance times measured in a room with all exhaust closed off. Two gamma cameras were used to observe the transport and exhaust of xenon following a simulated spill. Clearance times with the flexible exhaust hose were less than one minute because the xenon gas was removed before it had a chance to disperse into the room. Conventional room clearance calculations based on uniform mixing and measured exhaust rates yielded a clearance time of 22 min. The source of an artifactual stationary cloud image was discovered to be a small amount of xenon trapped between the collimator and camera face. A negative pressure and dedicated exhaust can be even more effective in exhausting spilled xenon from a room than air transfer calculations predict. The authors believe the flexible hose should always be used.  相似文献   

20.
Recent studies have shown that a reverse flow often occurs in a unidirectional airflow in push-pull ventilation and may transport contaminants from the source into a worker's breathing zone. The same problem may arise in local exhaust ventilation when the contaminant source is located in the worker's wake region. In this study, organic solvent work with local exhaust ventilation was duplicated in a laboratory and the details of the reverse flow around the worker's body produced by the ventilation were experimentally investigated. In order to evaluate the influence of the reverse flow on the exposure of the worker, experiments with a mock-up mannequin (dummy worker) and a local ventilation system which was equipped with an exterior type hood and an enclosure type hood were conducted. The exposure level and the contaminant leakage from the hoods in several conditions were measured by means of a smoke test and tracer gas method. Ethanol vapor was used as a tracer gas. With the exterior type hood, the reverse flow visualized by the smoke was observed in front of the standing dummy worker but could not be observed when the dummy worker was seated. From the tracer gas measurements, it was proved that the exposure due to the reverse flow was not so serious at a capture velocity of > 0.4 m/s, but < 10 ppm contaminant leakage from the exterior hood had been recognized independently of the capture velocity. With the enclosure type hood, exposure due to the reverse flow could be controlled with a capture velocity of > 0.8 m/s. Although the contaminant leakage from the hood due to the reverse flow was not obvious with the enclosure type in any condition, caution should be exercised to prevent exposure when the worker is seated. Regardless of the hood type, the increase in the capture velocity was effective in decreasing exposure due to the reverse flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号