首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of upper and lower motor neurons. However, recent reports suggest an active role of non-neuronal cells in the pathogenesis of the disease. Here, we examined quantitatively the temporal development of neuropathologic features in the brain and spinal cord of a mouse model of ALS (SOD1G93A). Four phases of the disease were studied in both male and female SOD1G93A mice: presymptomatic (PRE-SYM), symptomatic (SYM), endstage (ES) and moribund (MB). Compared to their control littermates, SOD1G93A mice showed an increase in astrogliosis in the motor cortex, spinal cord and motor trigeminal nucleus in the SYM phase that worsened progressively in ES and MB animals. Associated with this increase in astrogliosis was a concomitant increase in motor neuron cell death in the spinal cord and motor trigeminal nucleus in both ES and MB mice, as well as in the ventrolateral thalamus in MB animals. In contrast, microglial activation was significantly increased in all the same regions but only when the mice were in the MB phase. These results suggest that astrogliosis preceded or occurred concurrently with neuronal degeneration whereas prominent microgliosis was evident later (MB stage), after significant motor neuron degeneration had occurred. Hence, our findings support a role for astrocytes in modulating the progression of non-cell autonomous degeneration of motor neurons, with microglia playing a role in clearing degenerating neurons.  相似文献   

2.
The p38 mitogen-activated protein kinase (p38MAPK) is activated via phosphorylation in neurones and glial cells by a variety of stimuli including oxidative stress, excitotoxicity, and inflammatory cytokines. Activated p38MAPK can in turn induce phosphorylation of cytoskeletal proteins and activation of cytokines and nitric oxide, thus contributing to neurodegeneration. We investigated the expression and distribution of p38MAPK in the spinal cord of transgenic mice expressing a superoxide dismutase 1 mutation (SOD1G93A), a model of familial amyotrophic lateral sclerosis (ALS). Accumulation of p38MAPK was found by immunoblotting in the spinal cord of G93A mice during the progression of disease, but no changes were detected in its mRNA levels. Immunostaining for phosphorylated p38MAPK in lumbar spinal cord sections of SOD1G93A mice at the presymptomatic and early stages of disease showed an increased labeling in motor neurones that colocalized with phosphorylated neurofilaments in vacuolized perikarya and neurites, as detected by confocal microscopy. As the disease progressed, activated p38MAPK also accumulated in hypertrophic astrocytes and reactive microglia, as demonstrated by colocalization with GFAP and CD11b immunostaining, respectively. These data suggest that activation of p38MAPK in motor neurons and then in reactive glial cells may contribute, respectively, to the development and progression of motor neuron pathology in SOD1G93A mice.  相似文献   

3.
Chung YH  Joo KM  Lee YJ  Shin DH  Cha CI 《Brain research》2004,1003(1-2):199-204
In the present study, we used the transgenic mice expressing a human Cu/Zn SOD mutation (SOD1(G93A)) as an in vivo model of amyotrophic lateral sclerosis (ALS) and performed immunohistochemical studies to investigate the changes of poly(ADP-ribose) polymerase (PARP) in the central nervous system. In the spinal cord of symptomatic transgenic mice, immunohistochemistry showed intensely stained PARP-immunoreactive glial cells with the appearance of astrocytes, which were confirmed as astrocytes by double-immunofluorescences. In the brainstem and cerebellum, PARP-immunoreactive astrocytes were observed in the medullary and pontine reticular formation, hypoglossal nucleus, vestibular nucleus, cochlear nucleus and cerebellar nuclei. On the contrary, no PARP-immunoreactive glial cells were observed in control mice although PARP-immunoreactive motor neurons were found. In presymptomatic transgenic mice, a few moderately stained neurons were observed, whereas PARP-immunoreactive astrocytes were not detected. The present study provides the first evidence that PARP-immunoreactive astrocytes were found in the central nervous system of symptomatic SOD1(G93A) transgenic mice, suggesting that reactive astrocytes may play an important role in the pathogenesis and progress of ALS.  相似文献   

4.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motor neurons in the CNS. Astrocytes play a critical role in disease progression of ALS. Astrocytes are interconnected through a family of gap junction proteins known as connexins (Cx). Cx43 is a major astrocyte connexin conducting crucial homeostatic functions in the CNS. Under pathological conditions, connexin expression and functions are altered. Here we report that an abnormal increase in Cx43 expression serves as one of the mechanisms for astrocyte‐mediated toxicity in ALS. We observed a progressive increase in Cx43 expression in the SOD1G93A mouse model of ALS during the disease course. Notably, this increase in Cx43 was also detected in the motor cortex and spinal cord of ALS patients. Astrocytes isolated from SOD1G93A mice as well as human induced pluripotent stem cell (iPSC)‐derived astrocytes showed an increase in Cx43 protein, which was found to be an endogenous phenomenon independent of neuronal co‐culture. Increased Cx43 expression led to important functional consequences when tested in SOD1G93A astrocytes when compared to control astrocytes over‐expressing wild‐type SOD1 (SOD1WT). We observed SOD1G93A astrocytes exhibited enhanced gap junction coupling, increased hemichannel‐mediated activity, and elevated intracellular calcium levels. Finally, we tested the impact of increased expression of Cx43 on MN survival and observed that use of both a pan Cx43 blocker and Cx43 hemichannel blocker conferred neuroprotection to MNs cultured with SOD1G93A astrocytes. These novel findings show a previously unrecognized role of Cx43 in ALS‐related motor neuron loss. GLIA 2016;64:1154–1169  相似文献   

5.
Introduction: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease. We sought to determine whether peroxisome proliferator–activated receptor γ coactivator 1α (PGC‐1α) would have a beneficial effect on this disease. Methods: PGC‐1α transgenic mice were crossed with SOD1 mutant G93A DL mice. Results: We observed a moderate but non‐significant increase in average lifespan in PGC‐1α/G93A DL mice, as compared with G93A DL mice (292 ± 3 days vs. 274 ± 7 days). Although the onset of ALS was not altered, progression of the disease was significantly slower (∽34% increase in duration) in the PGC‐1α/G93A DL mice. These mice also exhibited markedly improved performance on the rotarod test, and the improved motor activity was associated with a decreased loss of motor neurons and less degeneration of neuromuscular junctions. Conclusion: A sustained level of excitatory amino acid transporter protein 2 (EAAT2) in astrocytes of the PGC‐1α/G93A DL mice may contribute to neuronal protection. Muscle Nerve 2011  相似文献   

6.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease where motor neurons within the brain and spinal cord are lost, leading to paralysis and death. Recently, a correlation between head trauma and the incidence of ALS has been reported. Furthermore, new invasive neurosurgical studies are being planned which involve inserting needles directly to the spinal cord. We therefore tested whether acute trauma to the spinal cord via a knife wound injury would lead to accelerated disease progression in rodent models of ALS (SOD1G93A rats). A longitudinal stab injury using a small knife was performed within the lumbar spinal cord region of presymptomatic SOD1G93A rats. Host glial activation was detected in the lumbar area surrounding a micro-knife lesion at 2 weeks after surgery in both wild type and SOD1G93A animals. However, there was no sign of motor neuron loss in the injured spinal cord of any animal and normal motor function was maintained in the ipsilateral limb. These results indicate that motor neurons in presymptomatic G93A animals are not affected by an invasive puncture wound injury involving reactive astrocytes. Furthermore, acute trauma alone does not accelerate disease onset or progression in this ALS model which is important for future strategies of gene and cell therapies directly targeting the spinal cord of ALS patients.  相似文献   

7.
Alexianu ME  Kozovska M  Appel SH 《Neurology》2001,57(7):1282-1289
OBJECTIVE: The cause of motor neuron death in ALS is incompletely understood. This study aims to define the potential involvement of nonneuronal immune-inflammatory factors in the destruction of motor neurons in mutant superoxide dismutase-1 (SOD1) transgenic mice as a model of ALS. BACKGROUND: The presence of activated microglia, IgG and its receptor for Fc portion (FcgammaRI), and T lymphocytes in the spinal cord of both patients with ALS and experimental animal models of motor neuron disease strongly suggests that immune-inflammatory factors may be actively involved in the disease process. METHODS: The expression of immune-inflammatory factors was followed in both human mutant (G93A) SOD1 transgenic mice and human wild-type SOD1 transgenic mice, at different ages (40, 80, and 120 days). Fixed, frozen, free-floating sections of the lumbar spinal cord were stained with antibodies against CD11b, IgG, FcgammaRI, intercellular adhesion molecule-1 (ICAM-1), CD3, and glial fibrillary acidic protein. RESULTS: The earliest change observed was the upregulation of ICAM-1 in the ventral lumbar spinal cord of 40-day-old mutant SOD1 mice. IgG and FcgammaRI reactivities were detected on motor neurons as early as 40 days and on microglial cells at later stages. Microglial activation was first evident in the ventral horn at 80 days, whereas reactive astrocytes and T cells became most prominent in 120-day-old mutant SOD1 mice. CONCLUSION: The upregulation of proinflammatory factors during early presymptomatic stages as well as the expansion of immune activation as disease progresses in mutant SOD1 transgenic mice suggest that immune-inflammatory mechanisms could contribute to disease progression.  相似文献   

8.
Multiple cell death pathways are implicated in the etiology of amyotrophic lateral sclerosis (ALS), but the cause of the characteristic motor neuron degeneration remains unknown. To determine whether CNS metabolic defects are critical for ALS pathogenesis, we examined the temporal evolution of energetic defects in the G93A SOD1 mouse model of familial ALS. [14C]-2-deoxyglucose in vivo autoradiography in G93A mice showed that glucose utilization is impaired in components of the corticospinal and bulbospinal motor tracts prior to either pathologic or bioenergetic changes in the spinal cord. This was accompanied by significant depletions in cortical ATP content in presymptomatic mice, which was partially ameliorated by creatine administration. Findings suggest that bioenergetic defects are involved in the initial stages of mSOD1-induced toxicity in G93A mice and imply that the selective dysfunction and degeneration of spinal cord motor neurons in this model may be secondary to dysfunction within cerebral motor pathways.  相似文献   

9.
Aims: Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease whose mechanism is not understood. Recently, it was reported that apoptosis‐inducing factor (AIF) was involved in motor neuronal cell death in ALS model mice, and AIF‐induced neuronal cell death by interacting with cyclophilin A (CypA). However, it is unknown whether the CypA and AIF‐complex induces chromatinolysis in ALS. Therefore, in the present study, we investigated the process of motor neuron degeneration as the disease progresses and to determine whether the CypA‐AIF complex would play a role in inducing motor neuronal cell death in mutant superoxide dismutase 1 (SOD1)G93A ALS model mice. Methodology: We prepared the nuclear fractions of spinal cords and demonstrated the nuclear translocation of CypA with AIF in SOD1G93A mice by immunoprecipitation. The localization of CypA and AIF in the spinal cords was assessed by immunohistochemistry. Results: In the spinal cords of SOD1G93A mice, the expressions of CypA and AIF were detected in the motor neurons, and CypA and AIF cotranslocated to the motor neuronal nuclei with CypA. Furthermore, the expression of CypA was detected in GFAP‐positive astrocytes, but not in CD11b‐positive microglial cells. On the other hand, these findings were not detected in the spinal cords of wild‐type mice. Conclusions: From these results, we suggest that CypA and AIF may play cooperative and pivotal roles in motor neuronal death in the murine ALS model.  相似文献   

10.
Exposure to environmental lead (Pb) is a mild risk factor for amyotrophic lateral sclerosis (ALS), a paralytic disease characterized by progressive degeneration of motor neurons. However, recent evidence has paradoxically linked higher Pb levels in ALS patients with longer survival. We investigated the effects of low-level Pb exposure on survival of mice expressing the ALS-linked superoxide dismutase-1 G93A mutation (SOD1G93A). SOD1G93A mice exposed to Pb showed longer survival and increased expression of VEGF in the ventral horn associated with reduced astrocytosis. Pretreatment of cultured SOD1G93A astrocytes with low, non toxic Pb concentrations upregulated VEGF expression and significantly abrogated motor neuron loss in coculture, an effect prevented by neutralizing antibodies to VEGF. The actions of Pb on astrocytes might explain its paradoxical slowing of disease progression in SOD1G93A mice and the improved survival of ALS patients. Understanding how Pb stimulates astrocytic VEGF production and reduces neuroinflammation may yield a new therapeutic approach for treating ALS.  相似文献   

11.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons. Visualizing corresponding metabolic changes in the brain of patients with ALS with proton magnetic resonance spectroscopy ((1)H-MRS) may provide surrogate markers for an early disease detection, for monitoring the progression and for evaluating a treatment response. The primary objective of our study was to evaluate whether modifications in MR metabolite levels occur before clinical disease onset, and whether these changes are directly linked to a distinct spatial progression pattern in the CNS. Therefore, age-dependent alterations in the cerebral and spinal metabolic profile in the mouse model of ALS overexpressing the mutated human G93A-superoxide dismutase 1 (G93A-SOD1) were determined by high-resolution MRS of tissue extracts at 14.1 Tesla. Both non-transgenic mice (control mice) and transgenic mice overexpressing the non-mutated human SOD1 (tg-SOD1) served as controls. In the spinal cord of G93A-SOD1 mice significantly decreased levels of N-acetyl aspartate were already detected 34 days postpartum, i.e. about 60 days before the average disease onset caused by motor neuron decline. In addition, glutamine and gamma-aminobutyric acid concentrations were significantly diminished at Day 75, which is still in the presymptomatic phase of the disease. These metabolic changes were further progressive in the course of the disease and started to involve the brainstem at Day 75. Overall, high-resolution (1)H-MRS allows a sensitive spatial and temporal metabolite profiling in the presymptomatic phase of ALS even before significant neuronal cell loss occurs.  相似文献   

12.
The vulnerability of motor neurons in transgenic SOD1G93A mice, a model of familial amyotrophic lateral sclerosis (ALS), may depend on the failure of these cells to activate survival mechanisms in response to the toxic mutant SOD1. To test this we investigated whether defects in the PI3K/Akt pathway, a survival signal, and of its neuron-specific activator, Rai, were important for motor neuron degeneration in these mice. No substantial changes were found in the levels of Rai, PI3K(p85) or phosphorylated Akt (P-Akt) in the ventral horn of spinal cord of SOD1G93A mice during disease progression. P-Akt immunoreactivity was the same in degenerating and healthy motor neurons. Rai ablation in SOD1G93A mice slightly accelerated the motor dysfunction without affecting their life span. Thus, motor neurons in SOD1G93A mice do not lose the pro-survival PI3K/Akt signal nor increase it in order to suppress the cell death mechanisms.  相似文献   

13.
Recent studies indicate that endoplasmic reticulum (ER) stress is involved in the pathogenesis of familial and sporadic amyotrophic lateral sclerosis (ALS). ER stress occurs when the ER-mitochondria calcium cycle (ERMCC) is disturbed and misfolded proteins accumulate in the ER. To cope with ER stress, the cell engages the unfolded protein response (UPR). While activation of the UPR has been shown in some ALS models and tissues, ER stress elements have not been studied directly in motor neurons. Here we investigated the expression of XBP1 and ATF6α and phosphorylation of eIF2α, and their modulation, in mutated SOD1(G93A) NSC34 and animal model of ALS. Expression of XBP1 and ATF6α mRNA and protein was enhanced in SOD1(G93A) NSC34 cells. Activation of ATF6α and XBP1 and phosphorylation of eIF2α were detectable in mutated SOD1(G93A) motor but not in wild-type motor neurons. Treatment with the ER stressor thapsigargin enhanced phosphorylation of eIF2α and activated proteolysis of ATF6α and splicing of XBP1 in NSC34 and motor neurons in a time-dependent manner. The present study thus provides direct evidence of activated UPR in motor neurons which overexpress human pathogenic mutant SOD1(G93A) , providing evidence that ER stress plays a major role in ALS.  相似文献   

14.
Chung YH  Hong JJ  Shin CM  Joo KM  Kim MJ  Cha CI 《Brain research》2003,967(1-2):226-234
In the present study, we used the transgenic mice expressing a human Cu/Zn SOD mutation (SOD1(G93A)) as an in vivo model of ALS and performed immunohistochemical studies to investigate the changes of homocysteine in the central nervous system of symptomatic transgenic mice. In control and presymptomatic transgenic mice, homocysteine-immunoreactive astrocytes were not detected in any region. In symptomatic transgenic mice, homocysteine-immunoreactive astrocytes were distributed in the spinal cord, brainstem and cerebellar nuclei of transgenic mice. In the hippocampal formation of transgenic mice, pyramidal cells in the CA1-3 regions and granule cells in the dentate gyrus showed homocysteine immunoreactivity. The present study provides the first in vivo evidence that homocysteine immunoreactive astrocytes were found in the central nervous system of symptomatic SOD(G93A) transgenic mice, suggesting that reactive astrocytes may play an important role in the pathogenesis and progress of ALS. This study also suggests that increased expression of homocysteine in the hippocampal neurons might reflect a role of homocysteine in an abnormality of hippocampal function of ALS.  相似文献   

15.
Chung YH  Joo KM  Lim HC  Cho MH  Kim D  Lee WB  Cha CI 《Brain research》2005,1050(1-2):203-209
In the present study, we performed immunohistochemical studies to investigate the changes of phosphorylated extracellular signal-regulated kinases (pERK) in the central nervous system of SOD1(G93A) transgenic mice. In symptomatic transgenic mice, pERK-immunoreactive astrocytes were detected in the spinal cord, brainstem, central gray and cerebellar nuclei. In contrast to symptomatic mice, no pERK-immunoreactive astrocytes were observed in any brain region of wtSOD1 and presymptomatic mice, and the number and intensity of stained neurons were not different at the age of 8 weeks and 13 weeks. Interestingly, region-specific alterations in pERK immunoreactivity were observed in the hippocampal region and cerebellum. These results provide the first evidence that pERK-immunoreactive astrocytes were found in the CNS of SOD1(G93A) transgenic mice after clinical symptoms, showing a possible consequence of the pathological process of ALS. This study has also demonstrated that pERK increases in the hippocampus and cerebellum, suggesting a role of pERK in an abnormality of cognitive and/or motor function in ALS, respectively. However, the mechanisms underlying the increased immunoreactivity for pERK and the functional implications require elucidation.  相似文献   

16.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motor neurons. To analyze the progressive motor deficits during the course of this disease, we investigated fatigability and ability of recovery of spinal motor neurons by testing monosynaptic reflex transmission with increasing stimulus frequencies in the lumbar spinal cord of the SOD1(G93A) mouse model for ALS in a comparison with wild-type (WT) mice. Monosynaptic reflexes in WT and SOD1(G93A) mice without behavioral deficits showed no difference with respect to their resistance to increasing stimulus frequencies. During the progression of motor deficits in SOD1(G93A) mice, the vulnerability of monosynaptic reflexes to higher frequencies increased, the required time for reflex recovery was extended, and recovery was often incomplete. Fatigability and demand for recovery of spinal motor neurons in SOD1(G93A) mice rose with increasing motor deficits. This supports the assumption that impairment of the energy supply may contribute to the pathogenesis of ALS.  相似文献   

17.
Growing evidence documents oxidative stress involvement in ALS. We previously demonstrated accumulation of a protein‐bound form of the highly toxic lipid peroxidation product crotonaldehyde (CRA) in the spinal cord of sporadic ALS patients. In the present study, to the determine the role for CRA in the disease processes of superoxide dismutase‐1 (SOD1) mutation‐associated familial ALS (FALS), we performed immunohistochemical and semiquantitative cell count analyses of protein‐bound CRA (P‐CRA) in the spinal cord of SOD1‐mutated FALS and its transgenic mouse model. Immunohistochemical analysis revealed increased P‐CRA immunoreactivity in the spinal cord of the FALS patients and the transgenic mice compared to their respective controls. In the FALS patients, P‐CRA immunoreactivity was localized in almost all of the chromatolytic motor neurons, neurofilamentous conglomerates, spheroids, cordlike swollen axons, reactive astrocytes and microglia, and the surrounding neuropil in the affected areas represented by the anterior horns. In the transgenic mice, P‐CRA immunoreactivity was localized in only a few ventral horn glia in the presymptomatic stage, in almost all of the vacuolated motor neurons and cordlike swollen axons and some of the ventral horn reactive astrocytes and microglia in the onset stage, and in many of the ventral horn reactive astrocytes and microglia in the advanced stage. Cell count analysis on mouse spinal cord sections disclosed a statistically significant increase in the density of P‐CRA‐immunoreactive glia in the ventral horns of the young to old G93A mice compared to the age‐matched control mice. The present results indicate that enhanced CRA formation occurs in motor neurons and reactive glia in the spinal cord of SOD1‐mutated FALS and its transgenic mouse model as well as sporadic ALS, suggesting implications for CRA in the pathomechanism common to these forms of ALS.  相似文献   

18.
19.
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder involving the selective degeneration of motor neurons. In a small proportion of patients, ALS is caused by mutations in copper/zinc superoxide dismutase (SOD1), and mice overexpressing SOD1(G93A) mutant develop a syndrome that closely resembles the human disease. Excitotoxicity mediated by glutamate AMPA receptors has been suggested to be implicated in the selective susceptibility of motor neurons occurring in ALS. In SOD1(G93A) mice, we found that levels of GluR2 AMPA subunit, which plays a pivotal role in the maintenance of calcium impermeability of AMPA receptors, are decreased in spinal motor neurons before symptom onset in concomitance with a modest increase of GluR3 expression, a calcium-permeable AMPA subunit. This effect can result in a higher number of calcium-permeable AMPA receptors on motor neurons of SOD1(G93A) mice, predisposing these cells to be injured by AMPA-mediated glutamate firing. In support of this, we showed that treatment with a new noncompetitive AMPA antagonist, ZK 187638, partially protected motor neurons, improved motor function, and prolonged the survival of SOD1(G93A) mice.  相似文献   

20.
Although pronounced changes in astrocytes and microglia accompany the neuronal degeneration observed in a murine model of familial amyotrophic lateral sclerosis, the significance of non-neuronal cell contribution to the disease process remains unclear. Activated astrocytes and microglia are capable of secreting numerous cytokines, some of which may have potentially harmful effects on neuron survival. For this reason we wished to determine the expression pattern of various cytokines in the spinal cords of transgenic mice expressing a Cu-Zn superoxide dismutase mutation (Tgn G93A SOD1) by using semi-quantitative RT-PCR. Three different patterns of cytokine expression were observed in G93A SOD1 transgenic mice. For most cytokines, we were unable to detect mRNA expression in Tgn G93A SOD1 mouse spinal cords at any age, yet message was readily detected in spleen or activated splenocytes. A second pattern, typified by TNF-alpha, was characterized by mRNA expression prior to the onset of motor deficits and increasing until the terminal stages of the disease. For other cytokines, including TGF-beta1 and M-CSF, mRNA expression was detected in young presymptomatic Tgn G93A SOD1 mice (as well as wild-type and transgenic mice expressing wild-type SOD1 (Tgn SOD1)), with upregulation later occurring only in G93A SOD1 transgenic mice. These results indicate a temporal correlation between the expression of certain cytokines and the onset of motor dysfunction in Tgn G93A SOD1 mice and suggest a potential role for these molecules in the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号