首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the Neisseria meningitidis serogroup W135 epidemic in Burkina Faso in 2002, the neighbouring countries dread undergoing outbreaks. Niger has strongly enhanced the microbiological surveillance, especially by adding the polymerase chain reaction (PCR) assay to the national framework of the surveillance system. During the 2003 epidemic season, 8113 clinically suspected cases of meningitis were notified and nine districts of the 42 crossed the epidemic threshold, while during the 2004 season, the number of cases was 3521 and four districts notified epidemics. In 2003 and 2004, serogroup A was identified in most N. meningitidis from cerebrospinal fluid (CSF) specimens (89.7% of 759 and 87.2% of 406, respectively). Although serogroup W135 represented only 8.3% of the meningococcal meningitis in 2003 and 7.9% in 2004, and was not involved in outbreaks, it was widespread in various areas of the country. In the regions that notified epidemics, the proportion of serogroup W135 was tiny while it exceeded 40% in several non-epidemic regions. Despite the wide distribution of W135 serogroup in Niger and the fears expressed in 2001, the threat of a large epidemic caused by N. meningitidis W135 seems to have been averted in Niger so far. There is no clear indication whether this serogroup will play a lasting role in the epidemiology of meningococcal meningitis or not. As early as in the 1990s, a significant but transient increase in the incidence of N. meningitidis serogroup X was observed. Close microbiological surveillance is crucial for monitoring the threat and for identifying at the earliest the serogroups involved in epidemics.  相似文献   

2.
We analysed cerebrospinal fluid samples from suspected meningitis cases in Nouna Health District, Burkina Faso, during the meningitis seasons of 2004-2006. Serogroup A ST2859 meningococci belonging to the ST5 clonal complex of subgroup III meningococci were the predominant causative agent. ST2859 bacteria were associated with focal outbreaks in the north of the district. While >10% of the population of an outbreak village carried ST2859, the population in the south of the district was predominantly colonised by serogroup Y ST4375 meningococci, which were associated with only sporadic cases of meningitis. Colonisation with the less virulent Y meningococci may interfere with the spread of the ST2859 to the south of the district, but there are concerns that this serogroup A clone may cause a third wave of subgroup III meningococcal disease in the African Meningitis Belt.  相似文献   

3.
Outbreaks of serogroup X meningococcal meningitis in Niger 1995-2000   总被引:1,自引:0,他引:1  
In the African meningitis belt, the recurrent meningococcal meningitis epidemics are generally caused by serogroup A. In the past 20 years, other serogroups have been detected, such as X or W135, which have caused sporadic cases or clusters. We report here 134 meningitis cases caused by Neisseria meningitidis serogroup X that occurred in Niamey between 1995 and 2000. They represented 3.91% of the meningococcal isolates from all CSF samples, whereas 94.4% were of serogroup A. Meningococcal meningitis cases were detected using the framework of the routine surveillance system for reportable diseases organized by the Ministry of Public Health of Niger. The strains were isolated and determined by the reference laboratory for meningitis in Niamey (CERMES) and further typed at the WHO collaborating center of the Pharo in Marseille and at the National Reference Center for the Meningococci at the Institut Pasteur. Reference laboratories in Marseille and Paris characterized 47 isolates having the antigenic formula (serogroup:serotype:sero-subtype) X:NT:P1.5. Meningitis cases due to meningococcus serogroup X did not present any clinical or epidemiological differences to those due to serogroup A. The seasonal incidence was classical; 93.3% of the cases were recorded during the dry season. The mean age of patients was 9.2 years (+/- 6 years). The sex ratio M/F was 1.3. Case fatality rate was 11.9% without any difference related to age or sex. The increasing incidence of the serogroup X was not related to the decrease of serogroup A, but seemed cyclic, and evolved independently of the recurrence of both serogroups A and C.  相似文献   

4.
Objective  To evaluate dipstick rapid diagnostic tests (RDTs) for meningococcal meningitis in basic health facilities.
Methods  Health facility staff received a one-day training. During the meningitis season, they performed RDTs on cerebrospinal fluid (CSF) specimens from suspected cases of meningitis. A frozen aliquot of CSF was later tested using polymerase chain reaction (PCR) to establish the reference diagnosis. RDTs used in health facilities were archived to allow checking the concordance between reported diagnosis and observed results. Reported diagnosis was also compared to PCR diagnosis. A second RDT was performed on each CSF specimen at the reference laboratory.
Results  Using RDTs, health facilities reported 382 negative results (73.9%), 114 NmA (22.1%), 12 NmW135 (2.3%) and nine uninterpretable results (1.7%), the latter corresponding to the misuse of a reagent by three agents. The agreement between reported diagnosis and archived dipsticks was excellent (kappa = 0.98). The agreement between PCR diagnosis and reported RDTs results was strong (kappa = 0.82). In health facilities, the sensitivity of RDTs for N. meningitidis A was Se = 0.91. The kappa coefficient measuring the agreement between RDTs operated in the reference laboratory and RDTs operated in health facilities was κ = 0.78.
Conclusion  We confirmed that dipstick RDTs to identify N. meningitidis serogroups A, C, W135 and Y can be reliably operated by non-specialized staff in basic health facilities. RDTs proved very useful to recommend vaccination in NmA epidemics, and also to avoid vaccination in epidemics due to serogroups not included in vaccines (NmX).  相似文献   

5.
A meningococcal serogroup A polysaccharide/tetanus toxoid conjugate vaccine (PsA‐TT) (MenAfriVac?) is being deployed in countries of the African meningitis belt. Experience with other polysaccharide/protein conjugate vaccines has shown that an important part of their success has been their ability to prevent the acquisition of pharyngeal carriage and hence to stop transmission and induce herd immunity. If PsA‐TT is to achieve the goal of preventing epidemics, it must be able to prevent the acquisition of pharyngeal carriage as well as invasive meningococcal disease and whether PsA‐TT can prevent pharyngeal carriage needs to be determined. To address this issue, a consortium (the African Meningococcal Carriage (MenAfriCar) consortium) was established in 2009 to investigate the pattern of meningococcal carriage in countries of the African meningitis belt prior to and after the introduction of PsA‐TT. This article describes how the consortium was established, its objectives and the standardised field and laboratory methods that were used to achieve these objectives. The experience of the MenAfriCar consortium will help in planning future studies on the epidemiology of meningococcal carriage in countries of the African meningitis belt and elsewhere.  相似文献   

6.
IgA1 protease was purified from a strain of serogroup A Neisseria meningitidis subgroup IV-1, representative of bacteria that caused an epidemic of meningococcal meningitis in The Gambia in 1982-1983. ELISAs and immunoblot assays were done using this protease as antigen with paired acute- and convalescent-phase sera from patients from that epidemic and from one in Finland caused by other serogroup A meningococci. Paired sera were also tested from healthy Gambians who were persistent nasopharyngeal carriers, persistent noncarriers, or persons who became carriers after the first serum sample was taken. The results correlated well between the two methods: Antibodies were stimulated by disease or acquisition of carriage, and they remained at a constant level upon continued carriage.  相似文献   

7.
Summary Meningococci belonging to serogroup W135 caused several cases of meningococcal meningitis in The Gambia in 1995 and were isolated during a serogroup A epidemic in Mali in 1994. The eight isolates tested belonged to the same clone of the ET-37 complex and differed in several bands from the pulsed-field gel electrophoresis restriction pattern of serogroup C meningococci of the ET-37 complex isolated in Mali. Three of 6 patients infected in The Gambia died, indicating that this W135 clone is virulent. Vaccines that protect only against infections with meningococci belonging to serogroups A and C are usually used to control outbreaks in Africa, although vaccines containing the W135 polysaccharide are available. The findings of this study indicate that outbreaks of meningococcal meningitis in Africa can be associated with serogroup W135 infections and that serogrouping is essential before vaccination campaigns are started.  相似文献   

8.
Neisseria meningitidis serogroup W135, well known for a long time as a cause of isolated cases of meningococcal meningitis, has recently increasingly been associated with disease outbreaks of considerable magnitude. Burkina Faso was hit by W135 epidemics in the dry seasons of 2002-2004, but only four W135 meningitis cases were recorded between February 2003 and March 2004 in adjoining Ghana. This reconfirms previous findings that bottlenecks exist in the spreading of new epidemic N. meningitidis clones within the meningitis belt of sub-Saharan Africa. Of the four Ghanaian W135 meningitis patients one died and three survived, of whom one had profound neurosensory hearing loss and speech impairment. All four disease isolates were sensitive to penicillin G, chloramphenicol, ciprofloxacin and cefotaxime and had the multi-locus sequence type (ST) 11, which is the major ST of the ET-37 clonal complex. Pulsed-field gel electrophoresis (PFGE) profiles of the Ghanaian disease isolates and recent epidemic isolates from Burkina Faso were largely identical. We conducted meningococcal colonization surveys in the home communities of three of the patients and in the Kassena Nankana District located at the border to Burkina Faso. W135 carriage rates ranged between 0% and 17.5%. When three consecutive surveys were conducted in the patient community with the highest carrier rate, persistence of W135 colonization over a period of 1 year was observed. Differences in PFGE profiles of carrier isolates taken at different times in the same patient community were indicative of rapid microevolution of the W135 bacteria, emphasizing the need for innovative fine typing methods to reveal the relationship between W135 isolates.  相似文献   

9.
Objective To investigate the effect of meningococcal vaccines on pharyngeal carriage of meningococci. Methods Systematic review. MEDLINE and EMBASE were searched for relevant studies. Controlled trials and observational studies which used comparison groups or compared carriage rates before and after vaccination were included in the review. Results Twenty‐nine studies satisfied the inclusion criteria. Twenty‐five studies reported the effect of a polysaccharide vaccine, one the effect of a serogroup C conjugate vaccine and three the impact of serogroup B outer‐membrane vaccines on overall and/or serogroup‐specific meningococcal carriage rates. Ten studies of meningococcal polysaccharide vaccines found reduced serogroup‐specific carriage; seven of these focussed on high‐risk groups and had a short follow‐up period. Only one of five studies of civilian populations in Africa showed a significantly reduced carriage. Many studies had methodological shortcomings. The one study which assessed the effect of a meningococcal conjugate vaccine on carriage showed a significant impact. Three studies of serogroup B outer‐membrane protein vaccines showed no effect on carriage. Conclusions A few well‐designed trials of the impact of meningococcal vaccines on carriage have been undertaken. Such studies should be an essential component of the evaluation of new meningococcal vaccines, particularly those introduced to control epidemic meningococcal disease in Africa.  相似文献   

10.
BACKGROUND: Neisseria meningitidis is a diverse commensal bacterium that occasionally causes severe invasive disease. The relationship between meningococcal genotype and capsular polysaccharide, the principal virulence factor and vaccine component, was investigated in carried meningococci isolated from 8000 children and young adults in Bavaria, Germany. METHODS: Of the 830 meningococci isolated (carriage rate, 10.4%) by microbiological techniques, 822 were characterized by serogrouping, multilocus sequence typing, and genetic analysis of the capsule region. Statistical and population genetic analyses were applied to these data. RESULTS: The rapid increase in carriage rates with age of carrier, the low prevalence of hyperinvasive meningococci, and the relative prevalence of the 4 disease-associated serogroups were consistent with earlier observations. There was no genetic structuring of the meningococcal population by age of carrier or sampling location; however, there was significant geographic structuring of the meningococci isolated in civil, but not military, institutions. The rate of capsule gene expression did not vary with age of carrier or meningococcal genotype, except for serogroup C, for which increased expression was associated with ST-11 (formerly ET-37) complex meningococci. CONCLUSIONS: Serogroup C capsule expression during carriage may contribute to the invasive character of ST-11 complex meningococci and to the high efficacy of meningococcal serogroup C conjugate polysaccharide vaccine.  相似文献   

11.
OBJECTIVES: We sought to describe Neisseria meningitidis immunity and its association with pharyngeal carriage in Burkina Faso, where N. meningitidis serogroup W-135 and serogroup A disease are hyperendemic and most of the population received polysaccharide A/C vaccine during 2002. METHODS: We collected oropharyngeal swab samples from healthy residents of Bobo-Dioulasso (4-14 years old, n=238; 15-29 years old, n=250) monthly during February-June 2003; N. meningitidis isolates were analyzed using polymerase chain reaction and serogrouped using immune sera. Serum samples were collected at the first and last clinic visit and analyzed for anti-A, anti-C, anti-W-135, and anti-Y immunoglobulin G (IgG) concentrations and anti-A and anti-W-135 bactericidal titers. RESULTS: N. meningitidis was carried at least once by 18% of participants; this carriage included strains from serogroups W-135 (5%) and Y and X (both <1%) but not from serogroups A, B, or C. At baseline, the prevalence of putatively protective specific IgG concentrations (> or =2 microg/mL) and bactericidal titers (> or =8) was 85% and 54%, respectively, against serogroup A, and 6% and 22%, respectively, against serogroup W-135. Putatively protective anti-W-135 IgG concentrations and bactericidal titers were of short duration and were not associated with carriage. CONCLUSION: N. meningitidis serogroup W-135 strains did not induce immunity, despite their circulation. Carriage of serogroup A strains was rare despite the hyperendemic incidence of serogroup A meningitis during 2003 in Bobo-Dioulasso. A vaccine that includes serogroup W-135 antigen and eliminates serogroup A carriage is needed for sub-Saharan Africa.  相似文献   

12.
BACKGROUND: The African meningitis belt undergoes recurrent epidemics caused by Neisseria meningitidis serogroup A. During 2002, Burkina Faso documented the first large serogroup W-135 (NmW-135) meningococcal disease epidemic. To understand the emergence of NmW-135, we investigated meningococcal carriage and immunity. METHODS: Immediately after Burkina Faso's epidemic, we conducted a cross-sectional survey of meningococcal carriage and seroprevalence in an epidemic and a nonepidemic district. We identified predictors of elevated NmW-135 serum bactericidal activity (SBA), a functional correlate of protection, using multivariate logistic regression. RESULTS: The NmW-135 carriage rate was 25.2% in the epidemic district and 3.4% in the nonepidemic district (P<.0001). Compared with residents of the nonepidemic district, those of the epidemic district had higher geometric mean titers of NmW-135 SBA (P<.0001). NmW-135 SBA titers>or=1:8, an estimated protective threshold, were observed in 60.4% and 34.0% of residents of the epidemic and nonepidemic district, respectively (P=.0002). In a multivariate model, current NmW-135 carriage, age, and residence in the epidemic district were independent predictors of having an NmW-135 SBA titer>or=1:8. CONCLUSIONS: Extensive NmW-135 carriage and transmission in the epidemic area caused residents to acquire natural immunity. Serial carriage and seroprevalence surveys could establish the duration of immunity in the population. The persistent circulation of NmW-135 underscores the potential for periodic NmW-135 epidemics in Africa.  相似文献   

13.
After an epidemic of serogroup A meningococcal meningitis in northern Ghana, a gradual disappearance of the epidemic strain was observed in a series of five 6-month carriage surveys of 37 randomly selected households. As serogroup A Neisseria meningitidis carriage decreased, an epidemic of serogroup X meningococcal carriage occurred, which reached 18% (53/298) of the people sampled during the dry season of 2000, coinciding with an outbreak of serogroup X disease. These carriage patterns were unrelated to that of Neisseria lactamica. Multilocus sequence typing and pulsed-field gel electrophoresis of the serogroup X bacteria revealed strong similarity with other strains isolated in Africa during recent decades. Three closely related clusters with distinct patterns of spread were identified among the Ghanian isolates, and further microevolution occurred after they arrived in the district. The occurrence of serogroup X outbreaks argues for the inclusion of this serogroup into a multivalent conjugate vaccine against N. meningitidis.  相似文献   

14.
ABSTRACT: BACKGROUND: Neisseria meningitidis serogroup C has emerged as a cause of epidemic disease in Hefei. The establishment of serogroup C as the predominant cause of endemic disease has not been described. METHODS: We conducted national laboratory-based surveillance for invasive meningococcal disease during 2000--2010. Isolates were characterized by pulsed-field gel electrophoresis and multilocus sequence typing. RESULTS: A total of 845 cases of invasive meningococcal disease were reported. The incidence increased from 1.25 cases per 100,000 population in 2000 to 3.14 cases per 100,000 in 2003 (p < 0.001), and peaked at 8.43 cases per 100,000 in 2005. The increase was mainly the result of an increase in the incidence of serogroup C disease. Serogroup C disease increased from 2/23 (9%) meningococcal cases and 0.11 cases per 100,000 in 2000 to 33/58 (57%) cases and 1.76 cases per 100,000 in 2003 (p < 0.01). Patients infected with serogroup C had serious complications more frequently than those infected with other serogroups. Specifically, 161/493 (32.7%) cases infected with serogroup C had at least one complication. The case-fatality rate of serogroup C meningitis was 11.4%, significantly higher than for serogroup A meningitis (5.3%, p = 0.021). Among patients with meningococcal disease, factors associated with death in univariate analysis were age of 15--24 years, infection with serogroup C, and meningococcemia. CONCLUSIONS: The incidence of meningococcal disease has substantially increased and serogroup C has become endemic in Hefei. The serogroup C strain has caused more severe disease than the previously predominant serogroup A strain.  相似文献   

15.
Immunization against meningococcal disease is recommended for solid organ transplant (SOT) recipients at high risk for meningococcal disease or travelling to an endemic country. However, the immunogenicity of meningococcal vaccines has not been studied in this population. We analyzed the immune response of quadrivalent (against Neisseria meningitidis serogroups A, C, Y, and W) polysaccharidic non‐conjugate and conjugate meningococcal vaccines in kidney‐ and liver‐transplant patients using bactericidal assays against the targeted serogroups. Upon vaccination with a non‐conjugate (n = 5) or a conjugate vaccine (n = 10), respectively, 40% and 50% of patients were able to mount an immune response, achieving at least the threshold correlated with protection defined as human serum bactericidal antibody titers of ≥4. Responders showed only partial and low responses (titers ≤64), thus predicting a rapid decline in bactericidal response. Only 1 patient developed a booster response to preexisting immunity. Our data argue for the need of additional measures for SOT recipients, when they are at risk of meningococcal disease.  相似文献   

16.
The relative frequency of serogroups of Neisseria meningitidis associated with meningococcal disease in Canada during the period January 1, 1999 to June 30, 2001 was examined. Of the 552 strains of N meningitidis collected from clinical specimens of normally sterile sites, 191 (34.6%), 276 (50.0%), 61 (11.1%) and 23 (4.2%) were identified by serological and molecular methods as serogroups B, C, Y and W135, respectively. About half (50.8%) of the serogroup Y isolates were isolated in the province of Ontario. The two most common serotypes found were 2c and 14. Most of the serogroup Y strains isolated from patients in Ontario were serotype 2c, while serotype 14 was the most common serotype associated with disease in the province of Quebec. The two most common serosubtypes found among the serogroup Y meningococci were P1.5 and P1.2,5. Laboratory findings, based on antigenic analysis, did not suggest that these serogroup Y strains arise by capsule switching from serogroups B and C strains. This study documented a higher incidence of finding serogroup Y meningococci in clinical specimens from patients in Ontario compared to the rest of Canada, and parallels the increase in serogroup Y meningococcal disease reported in some parts of the United States.Key Words: Meningococcal disease, Neisseria meningitidis, SerogroupsInvasive meningococcal disease (IMD) is a notifiable communicable disease that is monitored by a national surveillance program coordinated by the Division of Disease Surveillance and the Division of Respiratory Diseases, Centre for Infectious Disease Prevention and Control, Health Canada. Starting in 1971 and with the help of provincial public health officials, Health Canada began to collect data on the serogroup information on IMD cases. Also, isolates of meningococci collected from patients are routinely sent to Health Canada''s National Microbiology Laboratory (NML) in Winnipeg for further antigenic and genetic analyses.IMD is a serious disease globally but the serogroups of meningococci causing diseases in various countries may vary in frequency. For example, serogroup A is a major cause of disease in Africa and China (1), while serogroups B and C meningococci are the most frequent cause of IMD in Western countries (2). In Canada, most IMD cases are caused by meningococci belonging to serogroups B, C, Y and W135. Serogroups B and C account for over 75% of the isolates collected from patients (3).In the past decade, Neisseria meningitidis serogroup Y has emerged as a frequent cause of IMD in the United States (4,5). In view of these findings, it is important to monitor the incidence of serogroup Y disease. This report presents the frequency of isolation of serogroups of meningococci in normally sterile clinical specimens collected from patients (likely to be presented as IMD) in various parts of Canada and describes the distribution of serotypes and serosubtypes found among the serogroup Y isolates.  相似文献   

17.
The epidemiology of bacterial meningitis will change with introduction of meningococcal and pneumococcal conjugate vaccines in the African meningitis belt. The principal objectives of surveillance are to evaluate the impact of vaccination, to detect and investigate epidemics and provide material for research. The capacity of existing surveillance activities in the meningitis belt to meet these objectives varies due to infrastructural and financial constraints. Impact assessment of conjugate vaccine against meningococcal serogroup A will be limited to comparing incidence trends from a few surveillance sites with data obtained before vaccine introduction and to comparing trends in the incidence of suspected cases or localised epidemics in most other settings. The timeliness of detection of epidemics and identification of epidemic meningococcal serogroups could be improved in most countries by analysing suspected case data in health centre level resolution and by investigating outbreaks with mobile teams. For research and impact assessment of pneumococcal conjugate vaccines, several surveillance sites covering at least 0.5 million inhabitants should be maintained which undertake exhaustive case finding and systematic laboratory confirmation of meningitis and pneumonia. Molecular diagnostics will facilitate surveillance in remote areas, but the available techniques should be evaluated for diagnostic performance in the field and long‐term sustainability.  相似文献   

18.
In Italy, serogroup C meningococci of the clonal complex cc11 (MenC/cc11) have caused several outbreaks of invasive meningococcal disease (IMD) during the past 20 years. Between December 2019 and January 2020, an outbreak of six cases of IMD infected with MenC/cc11 was identified in a limited area in the northern part of Italy. All cases presented a severe clinical picture, and two of them were fatal. This report is focused on the microbiological and molecular analysis of meningococcal isolates with the aim to reconstruct the chain of transmission. It further presents the vaccination strategy adopted to control the outbreak. The phylogenetic evaluation demonstrated the close genetic proximity between the strain involved in this outbreak and a strain responsible for a larger epidemic that had occurred in 2015 and 2016 in the Tuscany Region. The rapid identification and characterisation of IMD cases and an extensive vaccination campaign contributed to the successful control of this outbreak caused by a hyperinvasive meningococcal strain.  相似文献   

19.
In the African meningitis belt, epidemics of meningococcal disease occur periodically, although unpredictably, every few years. These epidemics continue to cause havoc but new efforts to control the disease, through the use of conjugate vaccines, are being made. Conjugate vaccines are likely to reduce meningococcal carriage, thus generating herd immunity, but to understand their potential impact we need to know more about the epidemiology of meningococcal carriage in Africa. We review published studies of meningococcal carriage in the African meningitis belt. A wide range of carriage prevalences has been reported, from 3% to over 30%, and the serogroup distribution has been variable. Factors influencing carriage include age, contact with a case, and the epidemic/endemic situation; however, season and immunisation with polysaccharide vaccine have little effect. Since the dynamics of carriage within a population are complex, longitudinal carriage studies are of great value; however, few such studies have been done. Carefully designed carriage studies are needed to measure and interpret the impact of meningococcal group A conjugate vaccines in Africa.  相似文献   

20.
BACKGROUND: In 1999, meningococcal serogroup C conjugate (MCC) vaccines were introduced in the United Kingdom for those under 19 years of age. The impact of this intervention on asymptomatic carriage of meningococci was investigated to establish whether serogroup replacement or protection by herd immunity occurred. METHODS: Multicenter surveys of carriage were conducted during vaccine introduction and on 2 successive years, resulting in a total of 48,309 samples, from which 8599 meningococci were isolated and characterized by genotyping and phenotyping. RESULTS: A reduction in serogroup C carriage (rate ratio, 0.19) was observed that lasted at least 2 years with no evidence of serogroup replacement. Vaccine efficacy against carriage was 75%, and vaccination had a disproportionate impact on the carriage of sequence type (ST)-11 complex serogroup C meningococci that (rate ratio, 0.06); these meningococci also exhibited high rates of capsule expression. CONCLUSIONS: The impact of vaccination with MCC vaccine on the prevalence of carriage of group C meningococci was consistent with herd immunity. The high impact on the carriage of ST-11 complex serogroup C could be attributed to high levels of capsule expression. High vaccine efficacy against disease in young children, who were not protected long-term by the schedule initially used, is attributed to the high vaccine efficacy against carriage in older age groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号