首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

1. Catalpol possesses numerous pharmacological activities, and however, little data available for the effects of catalpol on the activity of human liver cytochrome P450 (CYP) enzymes.

2. This study investigates the inhibitory effects of catalpol on the main human liver CYP isoforms. In this study, the inhibitory effects of catalpol on the eight human liver CYP isoforms 1A2, 2A6, 2E1, 2D6, 2C9, 2C19, 2C8 and 3A4 were investigated in human liver microsomes.

3. The results indicated that catalpol could inhibit the activity of CYP3A4, CYP2E1 and CYP2C9, with IC50 values of 14.27, 22.4 and 14.69?μM, respectively, but those other CYP isoforms were not affected. Enzyme kinetic studies showed that catalpol was not only a noncompetitive inhibitor of CYP3A4, but also a competitive inhibitor of CYP2E1 and CYP2C9, with Ki values of 7.40, 10.75 and 7.37?μM, respectively. In addition, catalpol is a time-dependent inhibitor for CYP3A4, with maximum inactivation (kinact) and 50% maximum inactivation (KI) values of 0.02?min?1 and 1.86?μM, respectively.

4. The in vitro studies of catalpol with CYP isoforms suggest that catalpol has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP3A4, CYP2E1 and CYP2C9. Further in vivo studies are needed in order to evaluate the significance of this interaction.  相似文献   

2.
1.?Curculigoside possesses numerous pharmacological activities, and however, little data available for the effects of curculigoside on the activity of human liver cytochrome P450 (CYP) enzymes.

2.?This study investigates the inhibitory effects of curculigoside on the main human liver CYP isoforms. In this study, the inhibitory effects of curculigoside on the eight human liver CYP isoforms 1A2, 2A6, 2E1, 2D6, 2C9, 2C19, 2C8, and 3A4 were investigated in human liver microsomes.

3.?The results indicated that curculigoside could inhibit the activity of CYP1A2, CYP2C8, and CYP3A4, with IC50 values of 15.26, 11.93, and 9.47?μM, respectively, but that other CYP isoforms were not affected. Enzyme kinetic studies showed that curculigoside was not only a noncompetitive inhibitor of CYP1A2, but also a competitive inhibitor of CYP2C8 and CYP3A4, with Ki values of 5.43, 3.54, and 3.35?μM, respectively. In addition, curculigoside is a time-dependent inhibitor for CYP1A2, with kinact/KI values of 0.056/6.15?μM?1?min?1.

4.?The in vitro studies of curculigoside with CYP isoforms suggest that curculigoside has the potential to cause pharmacokinetic drug interactions with other coadministered drugs metabolized by CYP1A2, CYP2C8, and CYP3A4. Further in vivo studies are needed in order to evaluate the significance of this interaction.  相似文献   

3.
Context: Friedelin is a triterpenoid with several biological activities. However, the affects of Friedelin on the activity of human liver cytochrome P450 (CYP) enzymes remains unclear.

Objective: This study investigates the inhibitory effects of Friedelin on the major human liver CYP isoforms (CYP3A4, 1A2, 2A6, 2E1, 2D6, 2C9, 2C19 and 2C8).

Materials and methods: First, the inhibitory effects of Friedelin (100?μM) on the eight human liver CYP isoforms were investigated in vitro using human liver microsomes (HLMs), and then enzyme inhibition, kinetic studies, and time-dependent inhibition studies were conducted to investigate the IC50, Ki and Kinact/KI values of Friedelin.

Results: The results indicate that Friedelin inhibited the activity of CYP3A4 and 2E1, with the IC50 values of 10.79 and 22.54?μM, respectively, but other CYP isoforms were not affected. Enzyme kinetic studies showed that Friedelin is not only a noncompetitive inhibitor of CYP3A4, but also a competitive inhibitor of CYP2E1, with Ki values of 6.16 and 18.02?μM, respectively. In addition, Friedelin is a time-dependent inhibitor of CYP3A4 with Kinact/Ki value of 4.84?nM/min.

Discussion and conclusion: The in vitro studies of Friedelin with CYP isoforms suggested that Friedelin has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP3A4 and 2E1. Further clinical studies are needed to evaluate the significance of this interaction.  相似文献   

4.
Abstract

1.?Sophocarpine is a biologically active component isolated from the foxtail-like sophora herb and seed that is often orally administered for the treatment of cancer and chronic bronchial asthma. However, whether sophocarpine affects the activity of human liver cytochrome P450 (CYP) enzymes remains unclear.

2.?In this study, the inhibitory effects of sophocarpine on the eight human liver CYP isoforms (CYP1A2, 3A4, 2A6, 2E1, 2D6, 2C9, 2C19, and 2C8) were investigated in vitro using human liver microsomes (HLMs).

3.?The results indicate that sophocarpine could inhibit the activity of CYP3A4 and 2C9, with the IC50 values of 12.22 and 15.96?μM, respectively, but that other CYP isoforms were not affected. Enzyme kinetic studies showed that sophocarpine is not only a noncompetitive inhibitor of CYP3A4 but also a competitive inhibitor of CYP2C9, with Ki values of 6.74 and 9.19?μM, respectively. Also, sophocarpine is a time-dependent inhibitor of CYP3A4 with Kinact/KI value of 0.082/21.54?μM?1?min?1.

4.?The in vitro studies of sophocarpine with CYP isoforms suggested that sophocarpine has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP3A4 and 2C9. Further clinical studies are needed to evaluate the significance of this interaction.  相似文献   

5.
1.?In vitro studies were conducted to evaluate potential inhibitory and inductive effects of the poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib, on cytochrome P450 (CYP) enzymes. Inhibitory effects were determined in human liver microsomes (HLM); inductive effects were evaluated in cultured human hepatocytes.

2.?Olaparib did not inhibit CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2D6 or CYP2E1 and caused slight inhibition of CYP2C9, CYP2C19 and CYP3A4/5 in HLM up to a concentration of 100?μM. However, olaparib (17–500?μM) inhibited CYP3A4/5 with an IC50 of 119?μM. In time-dependent CYP inhibition assays, olaparib (10?μM) had no effect against CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP2E1 and a minor effect against CYP3A4/5. In a further study, olaparib (2–200?μM) functioned as a time-dependent inhibitor of CYP3A4/5 (KI, 72.2?μM and Kinact, 0.0675?min?1). Assessment of the CYP induction potential of olaparib (0.061–44?μM) showed minor concentration-related increases in CYP1A2 and more marked increases in CYP2B6 and CYP3A4 mRNA, compared with positive control activity; however, no significant change in CYP3A4/5 enzyme activity was observed.

3.?Clinically significant drug–drug interactions due to olaparib inhibition or induction of hepatic or intestinal CYP3A4/5 cannot be excluded. It is recommended that olaparib is given with caution with narrow therapeutic range or sensitive CYP3A substrates, and that prescribers are aware that olaparib may reduce exposure to substrates of CYP2B6.  相似文献   

6.
1.?The accumulation of fusidic acid (FA) after multiple doses of FA has been reported on in previous studies but the related mechanisms have not been clarified fully. In the present study, we explain the mechanisms related to the mechanism-based inactivation of CYP2D6 and CYP3A4.

2.?The irreversible inhibitory effects of FA on CYP2D6 and CYP3A4 were examined via a series of experiments, including: (a) time-, concentration- and NADPH-dependent inactivation, (b) substrate protection in enzyme inactivation and (c) partition ratio with recombinant human CYP enzymes. Metoprolol α-hydroxylation and midazolam 1′-hydroxylation were used as marker reactions for CYP2D6 and CYP3A4 activities, and HPLC-MS/MS measurement was also utilised.

3.?FA caused to the time- and concentration-dependent inactivation of CYP2D6 and CYP3A4. About 55.8% of the activity of CYP2D6 and 75.8% of the activity of CYP3A4 were suppressed after incubation with 10?μM FA for 15?min. KI and kinact were found to be 2.87?μM and 0.033?min?1, respectively, for CYP2D6, while they were 1.95?μM and 0.029?min?1, respectively, for CYP3A4. Inhibition of CYP2D6 and CYP3A4 activity was found to require the presence of NADPH. Substrates of CYP2D6 and CYP3A4 showed that the enzymes were protected against the inactivation induced by FA. The estimated partition ratio for the inactivation was 7 for CYP2D6 and 12 for CYP3A4.

4.?FA is a potent mechanism-based inhibitor of CYP2D6 and CYP3A4, which may explain the accumulation of FA in vivo.  相似文献   

7.
1.?Fusidic acid (FA) is widely used for the treatment of infections of sensitive osteomyelitis or skin and soft tissue caused by bacteria. However, the role of cytochrome P450s (CYPs) in the metabolism of FA is unclear. In the present study, we screened the main CYPs for the metabolism of FA and studied its interactions with isoform-selective substrates in vitro.

2.?The main CYP450s were screened according to the inhibitory effect of specific inhibitors on the metabolism of FA in human liver microsomes (HLMs) or recombinant CYP isoforms. Enzyme kinetic parameters including Ki, Ki′, Vmax, and IC50 were calculated to determine the potential of FA to affect CYP-mediated metabolism of isoform-selective substrates.

3.?FA metabolism rate was inhibited by 49.8% and 83.1% under CYP2D6, CYP3A4 selective inhibitors in HLMs. In recombinant experiment, the inhibitory effects on FA metabolism were 83.3% for CYP2D6 and 58.9% for CYP3A4, respectively. FA showed inhibition on CYP2D6 and CYP3A4 with Kis of 13.9 and 38.6?μM, respectively. Other CYP isoforms including CYP1A2, CYP2A6, CYP2C9, CYP2E1, and CYP2C19 showed minimal or no effect on the metabolism of FA.

4.?FA was primarily metabolized by CYP2D6 and CYP3A4 and showed a noncompetitive inhibition on CYP2D6 and a mixed competitive inhibition on CYP3A4. Drug–drug interactions between FA and other chemicals, especially with substrates of CYP2D6 and CYP3A4, are phenomena that clinicians need to be aware of and cautious about.  相似文献   

8.
Abstract

1. Metoclopramide is a widely used clinical drug in a variety of medical settings with rare acute dystonic events reported. The aim of this study was to assess a previous report of inactivation of CYP2D6 by metoclopramide, to determine the contribution of various CYPs to metoclopramide metabolism, and to identify the mono-oxygenated products of metoclopramide metabolism.

2. Metoclopramide interacted with CYP2D6 with Type I binding and a Ks value of 9.56?±?1.09?µM. CYP2D6 was the major metabolizer of metoclopramide and the two major products were N-deethylation of the diethyl amine and N-hydroxylation on the phenyl ring amine. CYPs 1A2, 2C9, 2C19, and 3A4 also metabolized metoclopramide.

3. While reversible inhibition of CYP2D6 was noted, CYP2D6 inactivation by metoclopramide was not observed under conditions of varying concentration or varying time using SupersomesTM or pooled human liver microsomes.

4. The major metabolites of metoclopramide were N-hydroxylation and N-deethylation formed most efficiently by CYP2D6 but also formed by all CYPs examined. Also, while metoclopramide is metabolized primarily by CYP2D6, it is not a mechanism-based inactivator of CYP2D6 in vitro.  相似文献   

9.
1.?We evaluated potential in vitro drug interactions of luseogliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, mediated by CYP inhibition, CYP induction and drug transporters using human liver microsomes, primary hepatocytes and recombinant cells-expressing efflux or uptake transporters, respectively.

2.?Human CYP inhibition studies indicated that luseogliflozin was a weak inhibitor for CYP2C19 with an IC50 value of 58.3?μM, whereas it was not an inhibitor of the other eight major isoforms that were tested. The exposure of primary hepatocytes to luseogliflozin for 72?hrs weakly induced CYP3A4 at a concentration of 10?μM, whereas it did not induce CYP1A2 or CYP2B6 at concentrations of 0.1–10?μM.

3.?An in vitro transport study suggested that luseogliflozin is a substrate for human P-glycoprotein (P-gp), but not for breast cancer resistance protein (BCRP), organic anion transporting polypeptide (OATP) 1B1 and OATP1B3, organic anion transporter (OAT) 1 and OAT3, or organic cation transporter (OCT) 2. Luseogliflozin weakly inhibited OATP1B3 with an IC50 value of 93.1?μM, but those for other transporters are greater than 100?μM.

4.?Based on the therapeutic plasma concentration of the drug, clinically relevant drug interactions are unlikely to occur between luseogliflozin and coadministered drugs mediated by CYPs and/or transporters.  相似文献   

10.
Context: Rhodiola rosea L. (Crassulaceae) products are popular natural remedies with a worldwide distribution. Recent studies have revealed potent CYP inhibition by R. rosea extracts both in vitro and in vivo, but information on in vitro CYP inhibition by commercial products are lacking. Variations in commercial R. rosea product quality have also been published.

Objective: This study evaluates the variation of in vitro CYP inhibition potential and product quality of six commercially available R. rosea products.

Materials and methods: Human CYPs isolated from baculovirus-infected cell system were incubated with testosterone (CYP3A4), dextromethorphan (CYP2D6) or phenacetin (CYP1A2). Positive CYP inhibitors ketoconazole (CYP3A4), quinidine (CYP2D6) and β-naphtoflavone (CYP1A2) were used as controls. Quantification of rosavin, rosarin, rosin, tyrosol and salidroside were used to evaluate R. rosea content.

Results: IC50 values ranged from 7.2–106.6?μg/mL for CYP3A4, 13.0–186.1?μg/mL for 2D6 and 10.7–116.0?μg/mL for 1A2. The tincture formulation of R. rosea was the strongest inhibitor giving the lowest IC50 values of 7.2?±?0.7, 13?±?1.7 and 10.7?±?5.6?μg/mL, respectively. CYP3A4 was significantly more inhibited by the different products than CYP1A2 (p?<?.05). One of the six products did not contain any rosavin, rosarin or rosin and is not a R. rosea product. Constituent concentrations were not linked to enzyme inhibition.

Discussion and conclusion: The present results show a large variation in inhibitory potential between the products. Several of the products demonstrate similar inhibition levels as the product Arctic Root already proven to inhibit CYP enzyme activity in man.  相似文献   

11.
1.?A novel selective anaplastic lymphoma kinase (ALK) inhibitor, alectinib, has shown remarkable efficacy and safety in patients with ALK-positive non-small-cell lung cancer (NSCLC). The purpose of this study was to evaluate in vitro the potential to inhibit and induce cytochrome P450 (CYP) isoforms for alectinib and its major metabolite M4.

2.?Alectinib and M4 did not show the meaningful direct inhibition of six major CYP isoforms (CYP1A2, 2B6, 2C9, 2C19, 2D6 and 3A4) in human liver microsomes (HLM). Alectinib, but not M4, competitively inhibited CYP2C8, by which few marketed drugs are exclusively metabolized, with an inhibition constant of 1.98?μM.

3.?Out of the seven CYP isoforms in HLM, alectinib and M4 showed time-dependent inhibition (TDI) of only CYP3A4, which suggests low TDI potential due to low inactivation efficiency.

4.?Alectinib exhibited quite smaller induction of mRNA expression of CYP1A2, 2B6 and 3A4 genes in human hepatocytes compared to the respective positive controls, suggesting a low potential of enzyme induction.

5.?In summary, the risk of alectinib causing drug-drug interactions with coadministered drugs is expected to be low due to the weak potential of CYP inhibition and induction estimated in the preclinical studies.  相似文献   

12.
1.?The objective of this study were to investigate the effect of orally administered resveratrol on the pharmacokinetics of aripiprazole (APZ) in rat, and the inhibitory effects of resveratrol on APZ dehydrogenation activity in liver microsomes and human cytochrome P450 3A4 and 2D6.

2.?Twenty-five healthy male Sprague–Dawley rats were randomly divided into five groups: A (control group), B (multiple dose of 200?mg/kg resveratrol), C (multiple dose of 100?mg/kg resveratrol), D (a single dose of 200?mg/kg resveratrol) and E (a single dose of 100?mg/kg resveratrol). A single dose of 3?mg/kg APZ administered orally 30?min after administration of resveratrol. In addition, CYP2D6*1, CYP3A4*1, human and rat liver microsomes were performed to determine the effect of resveratrol on the metabolism of APZ in vitro.

3.?The multiple dose of 200 or 100?mg/kg resveratrol significantly increased the AUC and Cmax of APZ. The resveratrol also obviously decreased the CL, but without any significant difference on t1/2 in vivo. On the other hand, resveratrol showed inhibitory effect on CYP3A4*1, CYP2D6*1, human and rat microsomes, the IC50 of resveratrol was 6.771, 87.87, 45.11 and 35.59?μmol?l?1, respectively.

4.?Those results indicated more attention should be paid when APZ was administrated combined with resveratrol.  相似文献   

13.
Biotransformation of caffeine by cDNA-expressed human cytochromes P-450   总被引:2,自引:0,他引:2  
Objectives: The biotransformation of caffeine has been studied in vitro using human cytochrome P-450 isoenzymes (CYPs) expressed in human B-lymphoblastoid cell lines, namely CYP1A1, 1A2, 2A6, 2B6, 2D6-Val, 2E1 and 3A4, and microsomal epoxide hydroxylase (EH). In addition, CYP 2D6-Met was also studied, in which a valine in the wild type (CYP2D6-Val) has been replaced by a methionine due to a G to A mutation in position 112. Results: At caffeine 3 mmol·l-1, five CYPs (1A1, 1A2, 2D6-Met, 2E1 and 3A4) catalysed the biotransformation of caffeine. Among the enzymes studied, CYP1A2, which predominantly catalysed paraxanthine formation, had the highest intrinsic clearance (160 l h-1·mmol-1 CYP). Together with its high abundance in liver, it should be considered, therefore, to be the most important isoenzyme in caffeine metabolism. The affinity of caffeine for CYP1A1 was comparable to that of its homologue 1A2. CYP2D6-Met, which catalysed caffeine metabolism by demethylation and 8-hydroxylation, also had a relatively high intrinsic clearance (3.0 l·h-1mmol-1 CYP), in particular for theophylline and paraxanthine formation, with kM values between 9–16 mmol·l-1. In contrast, the wild type, CYP2D6-Val, had no detectable activity. In comparison, CYP2E1 played a less important role in in vitro caffeine metabolism. CYP3A4 predominantly catalysed 8-hydroxylation with a kM value of 46 mmol·l-1 and an intrinsic clearance of 0.60 l·h-1·mmol-1 CYP. Due to its high abundance in human liver, the latter CYP may contribute significantly to the in vivo formation of TMU. Conclusion: The findings of this study indicate that i) microsomes from transfected human B-lymphoblastoid cell lines give results close to those obtained with microsomes isolated from human liver, ii) at least four CYP isoforms are involved in caffeine metabolism, iii) at a substrate concentration <0.1 mmol·l-1, CYP1A2 and 1A1 are the most important isoenzymes, iv) at higher concentrations the participation of other isoenzymes, in particular CYP3A4, 2E1 and possibly also CYP2D6-Met, are important in caffeine metabolism, and v) the nucleotide composition at position 1120 of CYP2D6 determines the activity of this isoenzyme in caffeine metabolism.Abbreviations AFMU 5-acetylamino-6-formylamino-3-methyluracil - CYP human cytochrome P-450 - PAH polycyclic aromatic hydrocarbon - 17X paraxanthine - 37X theobromine - 13X theophylline - 137U trimethyluric acid.  相似文献   

14.
1.?CYP2D6 is an important member of the cytochrome P450 (CYP450) enzyme superfamily, we recently identified 22 CYP2D6 alleles in the Han Chinese population. The aim of this study was to assess the catalytic activities of these allelic isoforms and their effects on the metabolism of venlafaxine in vitro.

2.?The wild-type and 24 CYP2D6 variants were expressed in insect cells, and each variant was characterized using venlafaxine as the substrate. Reactions were performed at 37?°C with 5–500?μM substrate (three variants was adjusted to 1000?μM) for 50?min. By using high-performance liquid chromatography to detect the products, the kinetic parameters Km, Vmax, and intrinsic clearance (Vmax/Km) of O-desmethylvenlafaxine were determined.

3.?Among the 22 CYP2D6 variants, the intrinsic clearance (Vmax/Km) values of all variants were significantly decreased (from 0.2% to 84.5%) compared with wild-type CYP2D6*1. In addition, the kinetic parameters of two CYP2D6 variants could not be detected because they have no detectable enzyme activity.

4.?The comprehensive in vitro assessment of CYP2D6 variants provides significant insights into allele-specific activity towards venlafaxine in vivo.  相似文献   

15.
Abstract

1. We aimed to investigate the regulatory effects of Guanxinning injection (GXNI) on activities of cytochrome P1A2 (CYP1A2), CYP2C11, CYP2D1 and CYP3A1/2 by probe drugs in rats in vivo and in vitro.

2. GXNI-treated and blank control groups were administered GXNI and physiological saline by caudal vein for 14 days consecutively, then they were given the probe drugs of caffeine (10?mg/kg), tolbutamide (10?mg/kg), metoprolol (20?mg/kg) and dapsone (10?mg/kg) by intraperitoneal injection. The blood samples were collected at different times for ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis. Changes of the pharmacokinetics parameters between the GXNI-treated and the blank control groups were used to evaluate the effects of GXNI on the four CYP450 isoforms in rats in vivo. After blood collection, the livers of rats were taken and made microsomes for in vitro tests. The relevant metabolites of phenacetin, tolbutamide, dextromethorphan and testosterone were analyzed quantitatively by high-performance liquid chromatography (HPLC) after microsome incubation. The statistical differences between the two groups were observed to detect the effects of GXNI on the four CYP450 isoforms in rats in vitro.

3. The in vivo and in vitro results demonstrated that GXNI could induce CYP1A2 activity in rats, but had no significant effects on CYP2C11, CYP2D1 and CYP3A1/2.  相似文献   

16.
1.?The purpose of the present study was to investigate the effect of piperine (PIP) on CYP2E1 enzyme activity and pharmacokinetics of chlorzoxazone (CHZ) in healthy volunteers.

2.?An open-label, two period, sequential study was conducted in 12 healthy volunteers. A single dose of PIP 20?mg was administered daily for 10 days during treatment phase. A single dose of CHZ 250?mg was administered during control and after treatment phases under fasting conditions. The blood samples were collected at predetermined time intervals after CHZ dosing and analyzed by HPLC.

3.?Treatment with PIP significantly enhanced maximum plasma concentration (Cmax) (3.14–4.96?μg/mL), area under the curve (AUC) (10.46–17.78?μg h/mL), half life (T1/2) (1.26–1.82?h) and significantly decreased elimination rate constant (Kel) (0.57–0.41?h???1), apparent oral clearance (CL/F) (24.76–13.65?L/h) of CHZ when compared to control. In addition, treatment with PIP significantly decreased Cmax (0.22–0.15?μg/mL), AUC (0.94–0.68?μg h/mL), T1/2 (2.54–1.68?h) and significantly increased Kel (0.32–0.43?h???1) of 6-hydroxychlorzoxazone (6-OHCHZ) as compared to control. Furthermore, treatment with PIP significantly decreased metabolite to parent (6-OHCHZ/CHZ) ratios of Cmax, AUC, T1/2 and significantly increased Kel ratio of 6-OHCHZ/CHZ, which indicate the decreased formation of CHZ to 6-OHCHZ.

4.?The results suggest that altered pharmacokinetics of CHZ might be attributed to PIP mediated inhibition of CYP2E1 enzyme, which indicate significant pharmacokinetic interaction present between PIP and CHZ. The inhibition of CYP2E1 by PIP may represent a novel therapeutic benefit for minimizing ethanol induced CYP2E1 enzyme activity and results in reduced hepatotoxicity of ethanol.  相似文献   

17.
Abstract

1. l-Menthol, as a kind of monocyclic terpene, is widely used in inhalation formulations, food and tobacco. The purpose of this study was to investigate the pharmacokinetic behavior of l-menthol as well as its influence on the activities of cytochrome P450 enzymes.

2. The pharmacokinetic behaviors of l-menthol after inhalation (50?mg/kg) and intravenous injection (10?mg/kg) were investigated. A rat liver microsomal model was adopted to elucidate the inhibitory effect of l-menthol on CYP1A2, CYP2C11, CYP2D1/2, CYP2D4, CYP2E1 and CYP3A1 using phenacetin, tolbutamide, omeprazole, dextromethorphan, chlorzoxazone and testosterone as probe drugs, respectively.

3. The plasma concentration reached the Cmax within 1.0?h (inhalation) and descended with the T1/2 of 8.53 and 6.69?h for inhalation and i.v. administration, respectively. IC50 for inhibition of l-menthol on CYP 450 enzymes were 4.35?μM for 2D4, 8.67?μM for 1A2, 13.02?μM for 3A1, 14.78?μM for 2D1/2, 234.9?μM for 2C11 and 525.4?μM for 2E1, respectively.

4. The results illustrate the pharmacokinetic process of l-menthol in rats and provide information for further rational applications. l-Menthol had moderate inhibitions on CYP2D4 and 1A2, which might affect the disposition of medicines primarily dependent on these pathways.  相似文献   

18.
1. The metabolism of 7-benzyloxy-4-trifluoromethylcoumarin (BFC) to 7-hydroxy-4-trifluoromethylcoumarin (HFC) was studied in human liver microsomal preparations and in cDNA-expressed human cytochrome P450 (CYP) isoforms. 2. Kinetic analysis of the NADPH-dependent metabolism of BFC to HFC in four preparations of pooled human liver microsomes revealed mean (±SEM) Km and Vmax of 8.3±1.3 μM and 454±98 pmol/min/mg protein respectively. 3. The metabolism of BFC to HFC was determined in a characterized bank of 24 individual human liver microsomal preparations employing BFC substrate concentrations of 20 and 50 μM (i.e. about two and six times Km respectively). With 20 μM BFC the highest correlations were observed between BFC metabolism and markers of CYP1A2 (r2 = 0.784-0.797) and then with CYP3A (r2 = 0.434-0.547) isoforms, whereas with 50 μM BFC the highest correlations were observed between BFC metabolism and markers of CYP3A (r2 = 0.679-0.837) and then with CYP1A2 (r2 = 0.421-0.427) isoforms. At both BFC substrate concentrations, lower correlations were observed between BFC metabolism and enzymatic markers for CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP4A9/11. 4. Using human β-lymphoblastoid cell microsomes containing cDNA-expressed CYP isoforms, 20 μM BFC was metabolized by CYP1A2 and CYP3A4, with lower rates of metabolism being observed with CYP2C9 and CYP2C19. Kinetic studies with the CYP1A2 and CYP3A4 preparations demonstrated a lower Km with the CYP1A2 preparation, but a higher Vmax with the CYP3A4 preparation. 5. The metabolism of 20 μM BFC in human liver microsomes was inhibited to 37-48% of control by 5-100 μM of the mechanism-based CYP1A2 inhibitor furafylline and to 64-69% of control by 5-100 μM of the mechanism-based CYP3A4 inhibitor roleandomycin. While some inhibition of BFC metabolism was observed in the presence of 100 and 200 μM diethyldithiocarbamate, the addition of 2-50 μM sulphaphenazole, 50-500 μM Smephenytoin and 2-50 μM quinidine had little effect. 6. The metabolism of 20 μM BFC to HFC in human liver microsomes was also inhibited by an antibody to CYP3A4, whereas antibodies to CYP2C8}9 and CYP2D6 had no effect. 7. In summary, by correlation analysis, use of cDNA-expressed CYP isoforms, chemical inhibition and inhibitory antibodies, BFC appears metabolized by a number of CYP isoforms in human liver. BFC metabolism appears to be primarily catalysed by CYP1A2 and CYP3A4, with possibly some contribution by CYP2C9, CYP2C19 and perhaps other CYP isoforms. 8. The results also demonstrate the importance of the selection of an appropriate substrate concentration when conducting reaction phenotyping studies with human hepatic CYP isoforms.  相似文献   

19.
ContextPeucedanol is a major extract of Peucedanum japonicum Thunb. (Apiaceae) roots, which is a commonly used herb in paediatrics. Its interaction with cytochrome P450 enzymes (CYP450s) would lead to adverse effects or even failure of therapy.ObjectiveThe interaction between peucedanol and CYP450s was investigated.Materials and methodsPeucedanol (0, 2.5, 5, 10, 25, 50, and 100 μM) was incubated with eight human liver CYP isoforms (CYP1A2, 2A6, 3A4, 2C8, 2C9, 2C19, 2D6, and 2E1), in pooled human liver microsomes (HLMs) for 30 min with specific inhibitors as positive controls and untreated HLMs as negative controls. The enzyme kinetics and time-dependent study (0, 5, 10, 15, and 30 min) were performed to obtain corresponding parameters in vitro.ResultsPeucedanol significantly inhibited the activity of CYP1A2, 2D6, and 3A4 in a dose-dependent manner with IC50 values of 6.03, 13.57, and 7.58 μM, respectively. Peucedanol served as a non-competitive inhibitor of CYP3A4 with a Ki value of 4.07 μM and a competitive inhibitor of CYP1A2 and 2D6 with a Ki values of 3.39 and 6.77 μM, respectively. Moreover, the inhibition of CYP3A4 was time-dependent with the Ki/Kinact value of 5.44/0.046 min/μM.Discussion and conclusionsIn vitro inhibitory effect of peucedanol on the activity of CYP1A2, 2A6, and 3A4 was reported in this study. As these CYPs are involved in the metabolism of various drugs, these results implied potential drug-drug interactions between peucedanol and drugs metabolized by CYP1A2, 2D6, and 3A4, which needs further in vivo validation.  相似文献   

20.
1.?The major human cytochrome P450 (CYP) form(s) responsible for the metabolism of CP-195,543, a potent leukotriene B4 antagonist, were investigated.

2.?Incubation of CP-195,543 with human liver microsomes resulted in the formation of three major metabolites, M1–3. M1 and M2 were diastereoisomers and formed by oxidation on the benzylic position. M3 was formed by aromatic oxidation of the benzyl group attached to the 3-position of the benzopyran ring.

3.?The results from experiments with recombinant CYPs, correlation studies and inhibition studies with form-selective inhibitors and a CYP3A antibody strongly suggest that the CYP3A4 plays a major role in the metabolism of CP-195,543. Recombinant CYP3A5 did not metabolize CP-195,543.

4.?The apparent Km and Vmax for the formation of M1–3 in human liver microsomes were determined as 36?μM and 4.1?pmol?min?1?pmol?1 P450, 44?μM and 10?pmol?min?1?pmol?1 P450, and 34?μM and 2.0?pmol?min?1?pmol?1 P450, respectively. The average in vitro intrinsic clearance for M2 was the highest both in human liver microsomes and recombinant CYP3A4 compared with M1 and M3. Intrinsic clearance for M2 in human liver microsomes and recombinant CYP3A4 was 0.231 and 0.736 ml?min?1?pmol?1 P450, respectively. The intrinsic clearances for M1 and M3 in human liver microsomes and CYP3A4 were 0.114 and 0.060 and 0.197 and 0.088 ml?min?1?pmol?1 P450, respectively. This suggests that benzylic oxidation is the predominant phase I metabolic pathway of CP-195,543 in man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号