首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Neurological research》2013,35(7):751-754
Abstract

Brief ischemic episode, which in itself is not lethal, confers tolerance to subsequent ischemic insults. Since intracellular signal transduction system has been implicated in ischemic cell death, we studied the effect of pre-conditioning on the changes in the subcellular distribution of protein kinase Cγ (PKC γ) as well as CaM kinase II (CaMKII). Gerbils were pre-conditioned by a sublethal 2 min cerebral ischemia 24 h prior to lethal 5 min ischemia. The pre-conditioning generally downregulated PKCγ and CaMKII in the CA1 hippocampus. Especially at the starting point of the second lethal ischemia, the cytosolic PKCγ level was about 40% lower in the pre-conditioned group. Also, the crude synaptosomal CaMKII level at 24 h reperfusion following the second ischemia was significantly lower in the pre-conditioned group, showing enhanced recovery of CaMKII translocation. Present results suggest that ischemic pre-conditioning may downregulate calcium-mediated cell signaling system, enhancing normalization of calcium homeostasis, perturbed by the second ischemia of lethal duration. [Neurol Res 2001; 23: 751-754]  相似文献   

2.
It has been postulated that the central neurotoxicity of glutamate participates in the pathogenesis of the ischemia-induced neuronal death and the process of the neuronal death is initiated by overexcitation or depolarization of postsynaptic neurons induced by increased extracellular glutamate during ischemia. In the present study, in order to know whether ischemic neurons show the overexcitation, we studied changes of CA1 neuronal discharges in gerbil hippocampus induced by transient forebrain ischemia (1-5 min) using an extracellular unit recording technique. CA1 neurons showed the high frequency discharges shortly after ischemic insult of 90 sec, however, these discharges did not induce neuronal death. Delayed neuronal death in the CA1 sector was observed in animals with 5-min ischemia which did not induce high frequency discharges. Neuronal depolarization with no spike discharge may persist during and shortly after 5-min ischemia and initiate the delayed neuronal death.  相似文献   

3.
The involvement of protein kinase C (PKC)-mediated processes in mechanisms of long-term potentiation (LTP) was suggested by recent studies which have demonstrated a correlation between PKC activation and LTP. However, it was not possible to tell whether there is a causal relationship between the two events. Therefore, we have examined the induction and maintenance of LTP in rat hippocampal slices in the presence of a relatively selective PKC inhibitor, using extracellular electrophysiological techniques. Bath application of 0.1–100 μM polymyxin B did not influence the occurrence of post-tetanic and long-term potentiation usually seen in test responses 1 and 10 min after a 100-Hz/1 s tetanic stimulation of stratum radiatum fibers. However, 20 μM polymyxin B significantly depressed the increase in population spike amplitude and population excitatory postsynaptic potential (EPSP) slope from 30 to 120 min onwards, following repeated tetanization. Immediately after the drug application only weak and reversible effects were seen by the same parameters in test responses of a non-tetanized control input. A late (>6 h) heterosynaptic potentiation of the population spike in the control input was blocked by polymyxin B treatment. Whereas the EPSP-I,TP was fully blocked, some potentiation of the population spike still remained, suggesting the independence of PKC of the additional spike (E/S) potentiation for the first 6 h. These results provide direct evidence that the PKC activation is not essential for the initial phase of LTP, but is a necessary condition for a medium and a late, protein synthesis-dependent phase in this monosynaptic pathway, i.e. for the maintenance of synaptic LTP.  相似文献   

4.
The distribution patterns of cystatin C and apolipoprotein E (apo E) were studied immunocytochemically in the gerbil hippocampus before and after 5 min ischemia. In the controls, cystatin C was distributed mainly in astrocytes. In addition, a large number of dots positive for cystatin C were observed around the outlines of neuronal perikarya in the CA1 subfields. One day after ischemia, cystatin C-positive stainings outlining neuronal cell bodies disappeared. On the fourth day, intense stainings for cystatin C appeared in atrophied pyramidal neurons and these stainings in neurons disappeared by the 14th day. A remarkable increase in the number of cystatin C-positive astrocytes occurred on the fourth day and thereafter these spread over the whole of the CA1 subfield. Apo E was also distributed in astrocytes in the control specimens. From the fourth day, extra- and/or intracellular distribution of apo E-immunoreactivities was noted in the stratum pyramidale. Apo E-positive astrocytes disappeared transiently on the fourth day and then reappeared and increased remarkably by the 14th day. These findings indicate that cystatin C and apo E are involved in the degeneration process of brain neuronal cells.  相似文献   

5.
A variety of experimental evidence suggests that calmodulin and protein kinases, especially protein kinase C, may participate in regulating neurite development in cultured neurons, particularly neurite initiation. However, the results are somewhat contradictory. Further, the roles of calmodulin and protein kinases on many aspects of neurite development, such as branching or elongation of axons vs dendrites, have not been extensively studied. Cultured embryonic rat hippocampal pyramidal neurons develop readily identifiable axons and dendrites. We used this culture system and the new generation of highly specific protein kinase inhibitors to investigate the roles of protein kinases and calmodulin in neurite development. Neurons were cultured for 2 days in the continuous presence of calphostin C (a specific inhibitor of protein kinase C), KT5720 (inhibitor of cyclic AMP-dependent protein kinase), KN62 (inhibitor of Ca2+-calmodulin-dependent protein kinase II), or calmidazolium (inhibitor of calmodulin), each at concentrations from approximately 1 to 10 times the concentration reported in the literature to inhibit each kinase by 50%. The effects of phorbol 12-myristate 13-acetate (an activator of protein kinase C) and 4α-phorbol 12,13-didecanoate (an inactive phorbol ester) were also tested.At concentrations that had no effect on neuronal viability, calphostin C reduced neurite initiation and axon branching without significantly affecting the number of dendrites per neuron, dendrite branching, dendrite length, or axon length. Phorbol 12-myristate 13-acetate increased axon branching and the number of dendrites per cell, compared to the inactive 4α-phorbol 12,13-didecanoate. KT5720 inhibited only axon branching. KN62 reduced axon length, the number of dendrites per neuron and both axon and dendrite branching. At low concentrations, calmidazolium had no effect on any aspect of neurite development, but at high concentrations, calmidazolium inhibited every parameter that was measured (including viability).These results suggest that these three protein kinases selectively modulate different aspects of neurite development. The universality of effects caused by calmodulin inhibition make it impossible to determine if there are specific targets of calmodulin action involved in neurite development. Finally, our data indicate that some superficially similar characteristics of neuronal differentiation, such as neurite initiation and branching, may be controlled by quite different molecular mechanisms.  相似文献   

6.
Ca(2+)/calmodulin-dependent protein kinase IV (CaM kinase IV) is a multifunctional enzyme that is abundantly present in the nuclei of neurons. We report the properties of phosphorylation and activation of CaM kinase IV in comparison to CaM kinase II in cultured rat hippocampal neurons. Phosphorylation and activity of CaM kinase IV as well as CaM kinase II were increased by treatment of neurons either with glutamate or high K(+). Glutamate-induced phosphorylation and activity of CaM kinase IV were blocked by N-methyl-D-asparate (NMDA) antagonists, and NMDA application instead of glutamate did increase CaM kinase IV phosphorylation. CaM kinase IV phosphorylation was also increased by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), and was blocked by an inhibitor of NMDA receptor. The AMPA-induced phosphorylation was blocked by tetrodotoxin, a Na(+) channel blocker, that was expected to block endogenous glutamate transmission indirectly. On the other hand, high K(+)-induced phosphorylation and activation were not blocked by inhibitors of glutamate receptors, and effectively blocked by nifedipine, an L-type Ca(2+) channel blocker. These properties were similar between CaM kinase IV and CaM kinase II.  相似文献   

7.
The purpose of our experiment was to examine whether the cyclooxygenase inhibitor indomethacin ameliorates neuronal injury in the gerbil hippocampal CA1 sector following 5 minutes of forebrain ischemia. Thirty minutes before bilateral carotid artery occlusion, Mongolian gerbils were injected intraperitoneally with 1 (n = 10), 2 (n = 10), 5 (n = 12), or 10 (n = 7) mg/kg of indomethacin. Seven days after occlusion, the gerbils were perfusion-fixed and neuronal density in the hippocampal CA1 sector was assessed. The mean +/- SEM neuronal density in nine unoperated normal gerbils was 307 +/- 9/mm, in 10 untreated ischemic gerbils 55 +/- 21/mm, and in seven vehicle-treated ischemic gerbils 15 +/- 9/mm. The mean +/- SEM neuronal density in ischemic gerbils treated with 1, 2, 5, or 10 mg/kg indomethacin was 132 +/- 28/mm, 154 +/- 29/mm, 176 +/- 30/mm, and 136 +/- 39/mm, respectively. Indomethacin at any dose significantly ameliorated ischemic neuronal damage in the gerbil hippocampal CA1 sector.  相似文献   

8.
We examined cytosolic cytochrome c in gerbil hippocampal CA1 and CA3 regions after induction of 5-min ischemia by immunoblotting. In the CA1 region, cytochrome c was detected in the cytosolic fraction from 1 to 6 h after ischemia by Western blotting, while it was not detected in the CA3 region. Following intraventricular administration of cyclosporin A (CsA), detectable cytosolic cytochrome c was dramatically decreased, and about 80% of CA1 neurons survived after ischemia. The present studies demonstrate that cytochrome c is translocated from mitochondria to the cytosol in the early stage of delayed neuronal cell death, and suggest the involvement of the mitochondrial permeability transition.  相似文献   

9.
Multifunctional Ca2+/calmodulin-dependent protein kinases (CaMKs) including CaMKI, II and IV, are thought to regulate a variety of neuronal functions. Unlike CaMKII, which is regulated by autophosphorylation, CaMKI as well as CaMKIV are activated by CaMKK. In this study, we examined the cellular and subcellular localization of CaMKIdelta, a recently identified fourth isoform of CaMKI, in the mature brain. In situ hybridization analysis demonstrated wide expression of CaMKIdelta mRNA in the adult mouse brain with prominent expression in the hippocampal pyramidal cells. FLAG-tagged CaMKIdelta was localized at the cytoplasm and neurites without nuclear immunoreactivity in approximately 80% of the transfected primary hippocampal neurons. The stimulation with either KCl depolarization or glutamate triggered the nuclear localization of FLAG-tagged CaMKIdelta by two-fold with a peak at 1 min. In contrast, the catalytically inactive mutants of CaMKIdelta remained cytoplasmic without nuclear translocation during KCl depolarization, indicating the requirement of its activation for the nuclear translocation. Furthermore, we showed that immunoprecipitated CaMKIdelta could phosphorylate cAMP response element binding protein (CREB)alphain vitro and that the over-expression of CaMKIdelta enhanced GAL4-CREB-luciferase activity in PC12 cells stimulated by KCl depolarization. Our present study provides the first evidence for the possible involvement of CaMKIdelta in nuclear functions through its nuclear translocation in response to stimuli that trigger intracellular Ca2+ influx.  相似文献   

10.
Protein synthesis at various recirculation times after 5-min transient forebrain ischemia was evaluated in gerbil hippocampal CA1 pyramidal neurons that had acquired tolerance to delayed-type ischemic injury. Evaluation was performed by observing polyribosomes under electron microscopy, and by [14C] leucine autoradiography. Hippocampal CA1 pyramidal neurons in the gerbils acquired stable and reproducible tolerance to delayed-type ischemic injury subsequent to a 5-min ischemia by pretreatment that consisted of loading two 2-min ischemic periods at a 1-day interval, followed by 48 h of recirculation. During the early phase following the 5-min ischemia, polyribosomal disaggregation, loss of dendritic microtubules, and significant suppression of radiolabeled leucine incorporation were observed in the tolerance-induced CA1 neurons as well as in the non-tolerance-induced neurons. While these findings persisted in the non-tolerance-induced neurons throughout the duration of the experiment, most of the tolerance-induced neurons demonstrated reaggregation of cytosomal ribosomes, increase in the number of dendritic microtubules, and restoration of impaired amino acid incorporation 24 h after the ischemia. These findings suggest that revovery of protein synthesis during the early post ischemic phase is essential for CA1 neuron survival after ischemic injury.Supported by the Ehime Health Foundation. This study was carried out in compliance with the Guidelines for Animal Experimentation at Ehime Univesity School of Medicine, Ehime, Japan  相似文献   

11.
We examined whether or not nitration of tyrosine residues takes place in the gerbil hippocampal CA1 region after transient forebrain ischemia. The nitration of tyrosine residues to produce nitrotyrosine is a footprint of peroxynitrite, a reaction product of nitric oxide (NO) with superoxide. Nitrotyrosine immunoreactivity had been detected in the CA1 region from the early stage in a reperfused brain at 30 min after transient ischemia until DNA fragmentation and neuronal death appeared at 4 days after transient ischemia. In electron microscopy, we detected, prominently, nitrotyrosine immunoreactivity after transient ischemia in the cytoplasm of the CA1 neurons. Therefore, it is considered that the nitration of tyrosine residues by peroxynitrite may be closely related to apoptosis after transient ischemia.  相似文献   

12.
Yip S  Sastry BR 《Brain research》2000,864(1):1-12
During head injuries and hemorrhagic stroke, blood is released into the extravascular space. The pooled erythrocytes get lysed and hemoglobin is released into the intracranial cavities. Therefore, neurons may be exposed to hemoglobin and/or its breakdown products, hemin and iron, for long periods of time. In this study, the electrophysiological actions of these agents on synaptic transmission in rat hippocampal CA1 pyramidal neurons were studied using extracellular field- and whole cell patch-recordings. Previously our laboratory reported that commercially available hemoglobin produced a dose dependent suppression of synaptic transmission in hippocampal CA1 neurons. In the present study, however, we found that this depression was caused by impurities present in the hemoglobin samples. Commercially available hemoglobin and methemoglobin did not have a significant effect on synaptic transmission. Although, reduced-hemoglobin prepared using a method described by Martin et al. [J. Pharm. Exp. Ther. 232 (1985) 708], produced a significant depression of synaptic transients, these effects were due to contamination with bisulfite that was present due to the reducing procedure. Therefore, the technique of Martin et al. was inadequate in removing the reducing agents or their breakdown products. A number of studies in literature used commercial samples of hemoglobin or reduced hemoglobin prepared using the method of Martin et al. Our observations indicate that it would be important to determine if contaminants, rather than hemoglobin, are responsible for the observed effects in these studies. Unlike hemoglobin, its breakdown products, ferrous chloride and hemin, produced an irreversible and significant depression of field excitatory postsynaptic potentials. The relevance of these effects in neurological complications that follow head injuries and hemorrhagic stroke awaits further investigation.  相似文献   

13.
Niu ZD  Yu K  Gu Y  Wang M  She JQ  Chen WH  Ruan DY 《Neuroreport》2005,16(14):1585-1589
The effects of copper on voltage-gated A-type potassium currents were investigated in acutely dissociated rat hippocampal CA1 neurons using the whole-cell patch-clamp technique. Extracellular application of various concentrations of copper (1-1000 microM) reversibly reduced the amplitude of voltage-gated A-type potassium currents in a dose-dependent manner with a 50% inhibitory concentration value of 130 microM. Copper (300 microM) increased the V1/2 of the activation curve and state-inactivation curve by 17.2 and 9.0 mV, respectively. Thus, copper slowed down the activation and inactivation process of voltage-gated A-type potassium currents. This study indicated that copper reversibly inhibits the hippocampal CA1 neuronal voltage-gated A-type potassium current in a dose-dependent and voltage-dependent manner, and such actions are likely involved in the regulation of the neuronal excitability and the pathophysiology of Wilson's disease.  相似文献   

14.
Effects of a spider toxin (JSTX) on hippocampal CA1 neurons in vitro   总被引:3,自引:0,他引:3  
The effect of a toxin (JSTX) obtained from Nephila clavata (Joro spider) on the CA1 pyramidal neurons of the hippocampus was studied using slice preparations. JSTX blocked the excitatory postsynaptic potentials (EPSPs) in the pyramidal neuron evoked by Schaffer collateral stimulation but was without effect on the antidromic action potentials or on the resting conductance. Depolarization induced by ionophoretic application of glutamate was readily suppressed by JSTX but aspartate-induced depolarization was much less sensitive to the toxin. Among preferential agonists activating 3 receptor subtypes for excitatory amino acids, quisqualate responses were most effectively suppressed by JSTX. Kainate responses were similarly suppressed but in some cells higher concentration of the toxin was needed to block the responses. N-methyl-D-aspartate (NMDA) responses were the least sensitive to JSTX but they were suppressed by +/- 2-amino-5-phosphonovaleric acid (APV). Long term potentiation (LTP) once it had taken place was not completely inhibited by APV. In the presence of JSTX, however, LTP was blocked and tetanic stimuli produced only a short-lived potentiation. In Mg2+ free solution, an orthodromic stimulation evoked repetitive spike responses which were superimposed on the depolarization following the initial spike. APV suppressed the depolarization and associated spikes leaving an orthodromic response which was sensitive to JSTX. The results suggest that JSTX blocks EPSPs in CA1 pyramidal neurons which are mediated by non-NMDA type receptors.  相似文献   

15.
The NMDA subtype of the glutamate-gated channel exhibits a high permeability to Ca(2+). The influx of Ca(2+) through NMDA channels is limited by a rapid and Ca(2+)/calmodulin (CaM)-dependent inactivation that results from a competitive displacement of cytoskeleton-binding proteins from the NR1 subunit of the receptor by Ca(2+)/CaM (Zhang et al., 1998; Krupp et al., 1999). The C terminal of this subunit can be phosphorylated by protein kinase C (PKC) (Tingley et al., 1993). The present study sought to investigate whether PKC regulates Ca(2+)-dependent inactivation of the NMDA channel in hippocampal neurons. Activation of endogenous PKC by 4beta-phorbol 12-myristate 13-acetate enhanced peak (I(p)) and depressed steady-state (I(ss)) NMDA-evoked currents, resulting in a reduction in the ratio of these currents (I(ss)/I(p)). We demonstrated previously that PKC activity enhances I(P) via a sequential activation of the focal adhesion kinase cell adhesion kinase beta/proline-rich tyrosine kinase 2 (CAKbeta/Pyk2) and the nonreceptor tyrosine kinase Src (Huang et al., 1999; Lu et al., 1999). Here, we report that the PKC-induced depression of I(ss) is unrelated to the PKC/CAKbeta/Src-signaling pathway but depends on the concentration of extracellular Ca(2+). Intracellular applications of CaM reduced I(ss)/I(p) and occluded the Ca(2+)-dependent effect of phorbol esters on I(ss.) Moreover, increasing the concentration of intracellular Ca(2+) buffer or intracellular application of the inhibitory CaM-binding peptide (KY9) greatly reduced the phorbol ester-induced depression of I(ss). Taken together, these results suggest that PKC enhances Ca(2+)/CaM-dependent inactivation of the NMDA channel, most likely because of a phosphorylation-dependent regulation of interactions between receptor subunits, CaM, and other postsynaptic density proteins.  相似文献   

16.
Pyridostigmine, a carbamate acetylcholinesterase (AChE) inhibitor, is routinely employed in the treatment of the autoimmune disease myasthenia gravis. Due to its positively charged ammonium group, under normal conditions pyridostigmine cannot cross the blood-brain barrier (BBB) and penetrate the brain. However, several studies have suggested that under conditions in which the BBB is disrupted, pyridostigmine enters the brain, changes cortical excitability, and leads to long-lasting alterations in gene expression. The aim of this study was to characterize the mechanisms underlying pyridostigmine-induced changes in the excitability of central neurons. Using whole cell intracellular recordings in hippocampal neurons we show that pyridostigmine decreases repetitive firing adaptation and increases the appearance of excitatory postsynaptic potentials. In voltage clamp recordings, both pyridostigmine and acetylcholine (ACh) increased the frequency but not the amplitude of excitatory postsynaptic currents. These effects were reversible upon the administration of the muscarinic receptor antagonist, atropine, and were not blocked by tetrodotoxin. We conclude that pyridostigmine, by increasing free ACh levels, causes muscarinic-dependent enhancement of excitatory transmission. This mechanism may explain central side effects previously attributed to this drug as well as the potency of AChE inhibitors, including nerve-gas agents and organophosphate pesticides, in the initiation of cortical synchronization, epileptic discharge, and excitotoxic damage.  相似文献   

17.
Drug effects on calcium homeostasis in mouse CA1 hippocampal neurons   总被引:4,自引:0,他引:4  
Voltage-dependent Ca2+ channels (VDCC) are important in control of neuronal excitability, synaptic transmission, and many other cellular process. Even the slightest alteration in Ca2+ currents can have a considerable impact on the neuronal function. However, it is still unknown whether Ca2+ currents are affected by neurotoxic drugs such as lead, cobalt, zinc, cadmium, thallium, lanthanum, and aluminum. We have characterized the effects of neurotoxic drugs on Ca2+ homeostasis in CA1 hippocampal C57BL mice. Fura 2-AM fluorescence photometry was used to measure intracellular Ca2+ concentration ([Ca2+]i) in the presence and absence of neurotoxic drugs (10 microM) in response to KCl application. The peak [Ca2+]i due to KCl application was reduced in the presence of lead (60%), cobalt (35%), zinc (62%), cadmium (71%), thallium (27%), and lanthanum (66%). By contrast, in the presence of aluminum the peak [Ca2+]i was either increased (46%) or it was not affected. These results indicate that neurotoxic drugs could block the entry of calcium into CA1 neurons via VDCC.  相似文献   

18.
Expressions of nerve growth factor (NGF) and low affinity p75 NGF receptor (p75 NGFR) in gerbil hippocampal neurons after 3.5-min transient forebrain ischemia were studied. Most hippocampal CAI neurons were lost (neuronal density = 44 ± 12/mm) at 7 days after recirculation, while no cell death was found in the sham-control neurons (220 ± 27/min). NGF immunoreactivity was normally present in the sham-control hippocampal neurons. However, it decreased in hippocampal CAI neurons, and slightly decreased in the neurons of CA3 and dentate gyrus areas from 3 hr after recirculation. By 7 days, NGF immunoreactivity returned almost completely to the sham-control level in the CA3 and dentate gyrus neurons but decreased markedly in the CAI neurons. In contrast, p75 NGFR immunoreactivity was scarcely present in the sham-control hippocampal neurons but was induced from 1 hr after recirculation in the CAI and CA3 neurons and from 3 hr in the dentate gyrus. At 7 days, p75 NGFR immunoreactivity was expressed greatly in the surviving CAI neurons and the reactive astrocytes but was not seen in the other hippocampal neurons. The markedly decreased NGF and greatly induced p75 NGFR immunoreactivity found in the CAI neurons after transient forebrain ischemia suggests that NGF and p75 NGFR may be involved in the mechanism of delayed neuronal death. © 1995 Wiley-Liss, Inc.  相似文献   

19.
Activation of extracellular signal-regulated kinases (ERK) is crucial for many neural functions, including learning, memory, and synaptic plasticity. As muscarinic acetylcholine receptors (mAChR) modulate many of the same higher brain functions as ERK, we examined mAChR-mediated ERK activation in mouse hippocampal slices. The cholinergic agonist carbachol caused an atropine-sensitive ERK activation in the dendrites and somata CA1 pyramidal neurons. To determine the responsible mAChR subtype, we combined pharmacologic and genetic approaches. Pretreatment with M1 antagonists inhibited ERK activation. Furthermore, mAChR-induced ERK activation was absent in slices from M1 knockout mice. ERK activation was normal in slices derived from other mAChR subtype knockouts (M2, M3, and M4), although these other subtypes are expressed in many of the same neurons. Thus, we demonstrate divergent functions for the different mAChR subtypes. We conclude that M1 is responsible for mAChR-mediated ERK activation, providing a mechanism by which M1 may modulate learning and memory.  相似文献   

20.
Hwang IK  Hua L  Yoo KY  Kim DW  Kang TC  Choi SY  Won MH  Kim DH 《Brain research》2005,1062(1-2):111-119
In the present study, we observed chronological changes of antioxidant-like protein 1 (AOP-1) in the gerbil hippocampal CA1 region after 5 min of transient forebrain ischemia using immunohistochemistry and western blot. AOP-1 was significantly altered in the CA1 region after transient ischemia. In the sham-operated group, AOP-1 immunoreactivity was detected in pyramidal and non-pyramidal cells of the CA1 region. At 30 min after ischemic insult, AOP-1 immunoreactivity and protein level was decreased in the CA1 region. At 12 h after ischemic insult, AOP-1 immunoreactivity and protein level was highest in this region. At this time, after ischemia, AOP-1 immunoreactivity in non-pyramidal cells was high compared to the sham-operated group. Based on double immunofluorescence study, AOP-1-immunoreactive neurons were identified as GABAergic, which were stained with GAD or parvalbumin. Thereafter, AOP-1 immunoreactivity and protein levels were decreased time-dependently. From 4 days after ischemic insult, AOP 1 immunoreactivity was generally expressed in astrocytes. Five days after ischemic insult, AOP-1 immunoreactivity and protein level was increased again to 1.4 folds compared to that of the sham-operated group. In brief, AOP-1 immunoreactivity was increased in GABAergic non-pyramidal cells in the hippocampal CA1 region at early time after ischemic insult and was expressed in astrocytes at late time after ischemia. This result suggests that AOP-1 may be important role in homeostasis of GABAergic neurons because these neurons are resistant to ischemic damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号