首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The positive association of decreased risk of colorectal cancer with nonsteroidal antiinflammatory drug (NSAID) use, combined with the observation that cyclooxygenase(COX)-2 is present in a majority of colorectal tumors, has led to the proposed use of isozyme-specific COX inhibitors as preventive agents in polyp and tumor formation in the colon. However, the exact biochemical mechanisms and disease stage at which reduced risk is mediated remain somewhat controversial, in part because of the complex biochemical changes that occur during the progression from aberrant crypt to polyp to tumor. In this study, COX-1 and COX-2 protein expression levels were determined in sets of tumor and normal colon tissue. Changes were characterized in COX-1 and COX-2 expression within individuals, in relation to such factors as sex, tumor grade, and location in the colorectum. COX-1 expression levels were found to be significantly reduced in tumors compared to matched normal tissues (Dunn's method, P < 0.05). Additionally, COX-1 expression was decreased in stage T3 tumors as compared to stage T2 tumors (Student's t-test, P = 0.009). Similar to previous reports, COX-2 protein expression was present in 73% of the tumors studied and appeared to be independent of tumor grade and sex. Interestingly, decreased COX-2 expression correlated with tumor occurrence in rectal mucosa (Wilcoxon two-sample test, P < 0.05). These results warrant further investigation, especially the identification of determinants that would predict which populations would be most responsive to COX-2 inhibition as a means of colorectal cancer chemoprevention.  相似文献   

2.
INTRODUCTION: Alterations in eicosanoid metabolism is well established in a variety of malignant tumors, particularly colorectal carcinoma. Recent studies in our laboratory have emphasized a role for EP subtype receptors in progression of colorectal cancer and disease specific mortality. Therefore, the aim of the present study was to extend our knowledge to include additional receptor expression (DP1, DP2, FP, IP, TP) for prostanoids (PGD2, TXA2, PGF2alpha, PGI2) in relationship to tumor stage, differentiation and progression of colorectal cancer. MATERIAL AND METHODS: Total RNA from 62 tumors and adjacent normal colon tissue (n = 48) was extracted. Quantification of receptor expression was performed by realtime PCR and related to the expression of an appropriate housekeeping gene (GAPDH). Tumors were assessed according to Dukes A-D (stage I-IV). RESULTS: DP1, DP2, FP and IP receptor subtypes displayed significantly reduced overall expression in tumor tissue compared to normal colon tissue, while the TP receptor subtype showed significantly higher expression in tumor tissue. Overall expression of the prostanoid receptors in tumor tissue was not related to clinical indexes as tumor stage and tumor cell differentiation evaluated by multivariate analyses. Cultured colorectal cancer cell lines with low (HT-29) and high (HCA-7) intrinsic PGE2 production at confluent state did not express DP1 and IP receptor subtypes, but displayed low expression of DP2, FP and TP receptor subtypes. CONCLUSION: The results in the present study indicate imbalanced expression of prostanoid receptors in colorectal cancer compared to normal colon tissue without clear cut relationship to disease progression. Therefore, future studies should be performed on defined cells within the tumor tissue compartment determining whether any prostanoid receptor(s) is useful as a molecular target in treatment or prevention of colorectal cancer.  相似文献   

3.
Recent studies have shown that inhibition of cyclooxygenases (e.g. COX-2) exerts antitumorigenic effects on hepatocellular carcinomas (HCCs), which are to a significant extent due to the abrogation of PGE(2) synthesis. PGE(2) acts via differentially regulated prostaglandin receptors (EP(1-4)). Our study was designed to investigate the expression pattern of EP-receptors in HCCs and to evaluate the therapeutic potential of selective EP-receptor antagonists. Using tissue microarrays including a total of 14 control livers, 17 liver cirrhoses, 22 premalignant dysplastic nodules (DNs) and 162 HCCs with different histological grades, the expression of COX-2, mPGES-1 and -2 and EP(1-4)-receptors was analyzed. Western immunoblot analyses were performed to confirm the expression in HCC cell lines. The effects of EP(1-4)-receptor antagonism on cell viability and apoptosis were investigated using MTT-assays and FACS-analyses, respectively. COX-2, mPGES-1 and -2 and EP(1-4)-receptors were expressed in all HCC tissues. COX-2 expression was highest in DNs and declined with loss of HCC-differentiation. With respect to COX-2 expression, a converse expression of EP(1-3) -receptors and mPGES-1 and -2 was found in DNs compared to HCCs. Selectively antagonizing EP(1)- and EP(3)-receptors reduced the viability of HCC cells in a dose-dependent manner, which was associated with apoptosis induction. Our results suggest a differential regulation of EP-receptor subtype expression with dedifferentiation of HCCs in which a converse expression pattern for COX-2 in comparison to EP(1-3)-receptors occurs. Of clinical interest, selectively antagonizing EP(1)- and EP(3)-receptors may provide a novel systemic therapeutic approach to the treatment of HCCs.  相似文献   

4.
High levels of prostaglandin E2 (PGE2) synthesis resulting from the up-regulation of cyclooxygenase (COX)-2 has been shown to be critical for the development of non-melanoma skin tumors. This effect of PGE2 is likely mediated by one or more of its 4 G-protein coupled membrane receptors, EP1-4. A previous study showed that BK5.EP1 transgenic mice produced more carcinomas than wild type (WT) mice using initiation/promotion protocols, although the tumor response was dependent on the type of tumor promoter used. In this study, a single topical application of either 7,12-dimethylbenz[a]anthracene (DMBA) or benzo[a]pyrene (B[a]P), alone, was found to elicit squamous cell carcinomas (SCCs) in the BK5.EP1 transgenic mice, but not in WT mice. While the epidermis of both WT and transgenic mice was hyperplastic several days after DMBA, this effect regressed in the WT mice while proliferation continued in the transgenic mice. Several parameters associated with carcinogen initiation were measured and were found to be similar between genotypes, including CYP1B1 and aromatase expression, B[a]P adduct formation, Ras activity, and keratinocyte stem cell numbers. However, EP1 transgene expression elevated COX-2 levels in the epidermis and SCC could be completely prevented in DMBA-treated BK5.EP1 mice either by feeding the selective COX-2 inhibitor celecoxib in their diet or by crossing them onto a COX-2 null background. These data suggest that the tumor promoting/progressing effects of EP1 require the PGE2 synthesized by COX-2.  相似文献   

5.
6.
Prostaglandin E(2) (PGE(2) ) has been shown to promote the development of murine skin tumors. EP1 is 1 of the 4 PGE(2) G-protein-coupled membrane receptors expressed by murine keratinocytes. EP1 mRNA levels were increased ~2-fold after topical treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA) or exposure to ultraviolet (UV) light, as well as increased ~3- to 12-fold in tumors induced by 7,12-dimethyl-benz[a]anthracene (DMBA) initiation/TPA promotion or by UV exposure. To determine the effect of EP1 levels on tumor development, we generated BK5.EP1 transgenic mice that overexpress EP1 in the basal layer of the epidermis. Skins of these mice were histologically indistinguishable from wild type (WT) mice and had similar levels of proliferation after TPA treatment. Using a DMBA/TPA carcinogenesis protocol, BK5.EP1 mice had a reduced tumor multiplicity compared to WT mice, likely due to the observed down-regulation of protein kinase C (PKC). However, the BK5.EP1 mice had an ~8-fold higher papilloma to carcinoma conversion rate. When DMBA/anthralin was used, BK5.EP1 mice produced more tumors than WT mice, as well as a ninefold increase in carcinomas, indicating that the tumor response is dependent on the type of tumor promoter agent used. Additionally, although almost undetectable in WT mice, cyclooxygenase-2 (COX-2) was expressed in the untreated epidermis of BK5.EP1 mice. While TPA highly induced COX-2 in WT mice, COX-2 expression in the BK5.EP1 mice did not change after TPA treatment; PGE(2) levels were likewise affected. These data indicate that EP1 is more important in tumor progression than in tumor promotion and that it indirectly regulates COX-2 expression.  相似文献   

7.
Hawcroft G  Ko CW  Hull MA 《Oncogene》2007,26(21):3006-3019
The predominant product of cyclooxygenase (COX) activity in the colon, prostaglandin (PG) E2 promotes intestinal tumorigenesis. Expression of the PGE2 receptor EP4 is upregulated during colorectal carcinogenesis. Therefore, we investigated the role of elevated PGE2-EP4 receptor signalling in the protumorigenic activity of PGE2 by increasing EP4 receptor expression in HT-29 human colorectal cancer (CRC) cells (HT-29-EP4) by stable transfection. Elevated PGE2-induced EP4 receptor activity in HT-29 cells increased resistance to spontaneous apoptosis and promoted anchorage-independent growth, but had no effect on proliferation of HT-29-EP4 cells. EP4 receptor activation by PGE2 in HT-29-EP4 cells also led to development of fluid-filled cysts, which was associated with increased tight junction protein (occludin and zonula occludens-1) expression. Overexpression of the EP4 receptor in HT-29 cells led to basal EP4 receptor signalling in the absence of exogenous PGE2, which was explained by autocrine activity of endogenous, COX-2-derived PGE2 and constitutive, ligand-independent EP4 receptor activity. The predominant signalling pathway mediating antiapoptotic activity downstream of PGE2-EP4 receptor activation in HT-29-EP4 cells was elevation of cyclic adenosine monophosphate (cAMP) levels, which was associated with phosphorylation of cAMP-response element binding protein. EP4 receptor activation led to a small increase in phosphorylated extracellular signal-regulated kinase (ERK) 2 protein levels but inhibition of ERK phosphorylation did not abrogate the antiapoptotic activity of PGE2. However, PGE2-EP4 receptor signalling did not lead to trans-activation of the epidermal growth factor receptor in HT-29 cells. Inhibition of protumorigenic PGE2-EP4 receptor signalling represents a potential strategy for anti-CRC therapy that may avoid the toxicity associated with systemic COX inhibition.  相似文献   

8.
UVB radiation is the major carcinogen responsible for skin carcinogenesis, thus elucidation of the molecular pathways altered in skin in response to UVB would reveal novel targets for therapeutic intervention. It is well established that UVB leads to upregulation of cyclooxygenase 2 (COX-2) in the skin which contributes to skin carcinogenesis. Overexpression of COX-2 has been shown to promote colon cancer cell growth through β-catenin signaling, however, little is known about the connection between UVB, COX-2, and β-catenin in the skin. In the present study, we have identified a novel pathway in which UVB induces β-catenin signaling in keratinocytes, which is modulated by COX-2 expression. Exposure of the mouse 308 keratinocyte cell line (308 cells) and primary normal human epidermal keratinocytes (NHEKs) to UVB resulted in increased protein levels of both N-terminally unphosphorylated and total β-catenin. In addition, we found that UVB-enhanced β-catenin-dependent TOPflash reporter activity and expression of a downstream β-catenin target gene. We demonstrated that UVB-induced β-catenin signaling is modulated by COX-2, as treatment of keratinocytes with the specific COX-2 inhibitor NS398 blocked UVB induction of β-catenin. Additionally, β-catenin target gene expression was reduced in UVB-treated COX-2 knockout (KO) MEFs compared to wild-type (WT) MEFs. Furthermore, epidermis from UVB-exposed SKH-1 mice exhibited increased N-terminally unphosphorylated and total β-catenin protein levels and increased staining for total β-catenin, and both responses were reduced in COX-2 heterozygous mice. Taken together, these results suggest a novel pathway in which UVB induces β-catenin signaling in keratinocytes which is enhanced by COX-2 expression.  相似文献   

9.
Targeting cyclooxygenase-2 for prevention and therapy of colorectal cancer   总被引:7,自引:0,他引:7  
Cyclooxygenase-2 (COX-2) is an inducible enzyme that regulates prostaglandin synthesis and is overexpressed at sites of inflammation and in several epithelial cancers. A causal link for COX-2 in epithelial tumorigenesis was shown in genetically manipulated animal models of colon and breast carcinoma. Studies have elucidated the regulation of COX-2 expression and have identified EP receptors through which prostanoids exert their biological effects. Mechanistic studies indicated that COX-2 is involved in apoptosis resistance, angiogenesis, and tumor cell invasiveness, which appear to contribute to its effects in tumorigenesis. Furthermore, forced COX-2 expression has been shown to suppress apoptosis by modulating the level of death receptor 5 (DR5) and this effect was reversed by a COX inhibitor. COX enzymes are targets for cancer prevention as shown by the observation that nonselective COX and selective COX-2 inhibitors have been reported to effectively prevent experimental colon cancer and can regress colorectal polyps in patients with familial adenomatous polyposis. This review will focus on the role of COX-2 as a target for the prevention and treatment of human colorectal cancer.  相似文献   

10.
Enhancement of antitumor activity of docetaxel by celecoxib in lung tumors   总被引:3,自引:0,他引:3  
Our study investigates the effect of a highly selective cyclooxygenase-2 (COX-2) inhibitor, celecoxib, on the cytotoxicity of docetaxel in nude mice bearing A549 tumor xenografts and elucidates the molecular mechanisms of the antitumor effect of this combination. Female nu/nu mice, xenografted with s.c. A549 tumors were treated with either celecoxib (150 mg/kg/day), docetaxel (10 mg/kg) or a combination of both. The tumor tissues were quantified for the induction of apoptosis, intratumor levels/expressions of prostaglandin E2 (PGE2), 15 deoxy prostaglandin J2 (15-d PGJ2), microsomal prostaglandin E synthase (mPGES) and cytoplasmic phospholipase A2 (cPLA2). The combination of celecoxib with docetaxel significantly inhibited the tumor growth (p < 0.03) as compared to celecoxib or docetaxel alone, decreased the levels of PGE2 by 10-fold and increased the 15-d PGJ2 levels by 4-fold as compared to control. The combination also enhanced the peroxisome proliferator-activated receptor (PPAR)-gamma expression, decreased the expression of cPLA2, mPGES and vascular endothelial growth factor (VEGF), but had no effect on the expression of COX-1 or COX-2 in tumor tissues. TUNEL staining of the tumor tissues showed a marked increase in the apoptosis in the combination group as compared to the celecoxib- or docetaxel-treated groups and this was associated with an increase in the intratumor p53 expression. In conclusion, the combination of celecoxib with docetaxel produces a greater antitumor effect in s.c. A549 tumors as compared to celecoxib or docetaxel alone and this effect is associated with concomitant alterations in the intratumor levels of PGE2 and 15-d PGJ2.  相似文献   

11.
Earlier observations on cyclo-oxygenase inhibitors (NSAIDs) restricting tumor growth were re-evaluated by comparing the effects of non-selective, preferential selective and selective derivatives of COX-inhibitors on tumor growth in mouse models with either prostaglandin-sensitive (MCG-101, human tumors) and -insensitive transplants (K1735-M2). Tumor growth, with and without provision of a classical cyclo-oxygenase inhibitor (indomethacin), was related to tumor content of COX-1/COX-2 protein as well as to EP1-EP4 and prostacyclin receptor expression. Mouse serum amyloid protein (SAP) was measured as an indicator of systemic inflammation, which relates to pro-inflammatory cytokines. Indomethacin inhibited tumor growth and prolonged the survival of mice bearing MCG-101 tumors, which display a high production of PGE2, while K1735-M2 tumors with insignificant amounts of PGE2 did not respond to indomethacin at all. However, the effects of various NSAIDs on tumor growth were highly variable in combination with the fact that most preferential selective and selective COX-2 inhibitors attenuated poorly systemic inflammation evaluated by plasma concentrations of mouse SAP. The ability of NSAIDs to attenuate tumor growth was not related to the tumor content of COX-2 protein as expected. Multivariate analysis suggests that significant COX-inhibition of tumor growth may be related to tumor expression of subtype EP2, EP3 (p<0.005) and perhaps EP4 (p<0.09) in complex interplay. The extent of tumor growth inhibition by COX-inhibitors is not simply related to drug specificity on COX-1 or COX-2 pathways. Such effects may instead be related to tumor expression of prostanoid receptors in tumor tissue.  相似文献   

12.
Cyclooxygenase-2 (COX-2) is associated with aggressive breast cancers. The COX-2 product prostaglandin E2 (PGE2) acts through four G-protein-coupled receptors designated EP1–4. Malignant and immortalized normal mammary epithelial cell lines express all four EP. The EP4 antagonist AH23848 reduced the ability of tumor cells to colonize the lungs or to spontaneously metastasize from the mammary gland. EP4 gene silencing by shRNA also reduced the ability of mammary tumor cells to metastasize. Metastasis inhibition was lost in mice lacking either functional Natural Killer (NK) cells or interferon-γ. EP4 antagonism inhibited MHC class I expression resulting in enhanced ability of NK cells to lyse mammary tumor target cells. These studies support the hypothesis that EP4 receptor antagonists reduce metastatic potential by facilitating NK-mediated tumor cell killing and that therapeutic targeting of EP4 may be an alternative approach to the use of COX inhibitors to limit metastatic disease.  相似文献   

13.
Fas ligand (FasL/CD95L) is a member of the tumour necrosis factor superfamily that triggers apoptosis following crosslinking of the Fas receptor. Despite studies strongly implicating tumour-expressed FasL as a major inhibitor of the anti-tumour immune response, little is known about the mechanisms that regulate FasL expression in tumours. In this study, we show that the cyclooxygenase (COX) signalling pathway, and in particular prostaglandin E(2) (PGE(2)), plays a role in the upregulation of FasL expression in colon cancer. Suppression of either COX-2 or COX-1 by RNA interference in HCA-7 and HT29 colon tumour cells reduced FasL expression at both the mRNA and protein level. Conversely, stimulation with PGE(2) increased FasL expression and these cells showed increased cytotoxicity against Fas-sensitive Jurkat T cells. Prostaglandin E(2)-induced FasL expression was mediated by signalling via the EP1 receptor. Moreover, immunohistochemical analysis using serial sections of human colon adenocarcinomas revealed a strong positive correlation between COX-2 and FasL (r=0.722; P<0.0001) expression, and between EP1 receptor and FasL (r=0.740; P<0.0001) expression, in the tumour cells. Thus, these findings indicate that PGE(2) positively regulates FasL expression in colon tumour cells, adding another pro-neoplastic activity to PGE(2).  相似文献   

14.
The short chain fatty acid (SCFA) butyrate, a product of fermentation of dietary fiber in the human colon, is found to exert multiple regulatory processes in colon carcinogenesis. The aim of this study was to find out whether butyrate affects the tumor-promoting genes osteopontin (OPN) and cyclooxygenase (COX)-2, their respective proteins and/or their functional activity in matched normal, adenoma and tumor colon tissues obtained from 20 individuals at colon cancer surgery. Quantitative real-time polymerase chain reaction experiments showed increased levels of OPN and COX-2 messenger RNA in tumor tissues when compared with the adjacent normal samples (P < 0.001). The addition of butyrate reduced OPN and COX-2 mRNA expression in all tissue types compared with the related medium controls (tumor: P < 0.05). In tumor samples, a downregulation of up to median 35% (COX-2) and 50% (OPN) was observed, respectively. Thereby, tumors with lower levels of OPN basal expression were more sensitive to inhibition and vice versa for COX-2 in normal tissue. At the protein and enzyme level, which were determined by using western blot and enzyme immunometric assays, the impact of the SCFA was not clearly visible anymore. The active proteins of OPN and COX-2 (determined by prostaglandin E(2)) were found to correlate with their respective mRNA expression only in 50-63% of analyzed donors. For the first time, our data reveal new insights into the chemoprotective potential of butyrate by showing the suppression of OPN and COX-2 mRNA in primary human colon tissue with the strongest effects observed in tumors.  相似文献   

15.
人膀胱癌组织中环氧化酶2的表达   总被引:5,自引:0,他引:5  
Zhan J  Tang XD 《癌症》2002,21(11):1212-1216
背景与目的:环氧化酶(cyclooxygenase,COX)是人体内合成前列腺素的限速酶。最近研究表明,环氧化酶2(COX-2)与肿瘤的生成有关。本研究通过检测COX-1和COX-2在人膀胱癌组织、正常膀胱粘膜以及膀胱炎症组织中的表达,探讨COX在膀胱癌发生发展中的作用。方法:应用逆转录聚合酶链反应(RT-PCR)和免疫组化法(Envision二步法),检测膀胱移行细胞癌和癌旁组织、正常膀胱粘膜以及膀胱炎症组织中COX-1和COX-2 mRNA和蛋白的表达,并分析癌组织中COX的表达强度与肿瘤对应的各项病理参数之间的关系。结果:RT-PCR检测15例新鲜膀胱癌组织COX-2 mRNA均阳性表达,5例肉眼所见的癌旁正常组织中仅1例阳性,两者差异有显著性;而COX-1 mRNA在所有新鲜癌组织标本中均有结构性表达。免疫组织化学研究结果与RT-PCR结果相似,COX-2蛋白主要集中在肿瘤细胞浆内,阳性表达率为50%,正常膀胱粘膜(n=4)和膀胱慢性炎症组织(n=5)中没有表达;反之,COX-1蛋白主要表达在正常或炎症组织的平滑肌细胞上,肿瘤组织中为阴性表达。在40例膀胱移行细胞癌石蜡切片标本中,COX-2蛋白的表达强度与肿瘤的分级和分期有关,恶性度较高的Ⅲ级癌的表达水平高于I级和Ⅱ级癌,浸润性癌(T2-4)也高于浅表性癌(Ta-1)。结论:COX-2 mRNA和蛋白在人膀胱癌组织中表达增高,并与肿瘤的恶性率相关,说明COX-2可能在膀胱癌的发生发展中起着重要作用。  相似文献   

16.
Ma X  Kundu N  Rifat S  Walser T  Fulton AM 《Cancer research》2006,66(6):2923-2927
Cyclooxygenase-2 (COX-2) expression in epithelial tumors is frequently associated with a poor prognosis. In a murine model of metastatic breast cancer, we showed that COX-2 inhibition is associated with decreased metastatic capacity. The COX-2 product, prostaglandin E(2) (PGE(2)), acts through a family of G protein-coupled receptors designated EP1-4 that mediate intracellular signaling by multiple pathways. We characterized EP receptor expression on three murine mammary tumor cell lines and show that all four EP isoforms were detected in each cell. Stimulation of cells with either PGE(2) or the selective EP4/EP2 agonist PGE(1)-OH resulted in increased intracellular cyclic AMP and this response was inhibited with either EP2 or EP4 antagonists. Nothing is known about the function of EP receptors in tumor metastasis. We tested the hypothesis that the prevention of EP receptor signaling would, like inhibition of PGE(2) synthesis, inhibit tumor metastasis. Our results show for the first time that antagonism of the EP4 receptor with either AH23848 or ONO-AE3-208 reduced metastasis as compared with vehicle-treated controls. The therapeutic effect was comparable to that observed with the dual COX-1/COX-2 inhibitor indomethacin. EP3 antagonism had no effect on tumor metastasis. Mammary tumor cells migrated in vitro in response to PGE(2) and this chemotactic response was blocked by EP receptor antagonists. Likewise, the proliferation of tumor cells was also directly inhibited by antagonists of either EP4 or EP1/EP2. These studies support the hypothesis that EP receptor antagonists may be an alternative approach to the use of COX inhibitors to prevent tumor metastasis.  相似文献   

17.
Significance of COX-2 expression in human renal cell carcinoma cell lines   总被引:13,自引:0,他引:13  
Accumulating evidences indicate that cyclooxygenase (COX)-2 plays an important role in tumorigenesis in many human cancers. Yet the relationship between COX-2 and human renal cell carcinoma (RCC) remains unclear. The aim of our study was to evaluate COX-2 expression in human RCC cell lines and its role in tumorigenesis of human RCC. Among the human RCC cell lines (SMKT-R4, OS-RC-2, ACHN) and normal renal cell line RPTEC, COX-2 overexpression was found in OS-RC-2 cells both at mRNA and protein levels. COX-2 sense- and antisense-orientated vectors were constructed and transferred into RCC cells. Significant suppression of cellular proliferation was demonstrated in OS-RC-2 antisense transfectants, whereas promotion was found in SMKT-R4 sense transfectants by colony-forming assay despite the observation that COX-2 specific inhibitor NS398 exhibited similar IC50 among RCC cell lines by MTT assay. In comparison with parent cells and sense transfectants, significant suppression of COX-2 expression and PGE2 production and increase in butyrate-induced apoptosis were observed in OS-RC-2 antisense transfectants by Western blot, ELISA assay and FACS analysis, respectively. Furthermore, tumor growth and angiogenesis of OS-RC-2 antisense transfectants in nude mice was significantly suppressed and the survival time of these mice was significantly prolonged. Our study demonstrates that COX-2 is overexpressed in OS-RC-2 RCC cell line and plays an important role in tumorigenesis of the cells in vivo, which implies that COX-2 may be a therapeutic target for COX-2-expressing RCC, and that suppression of COX-2 expression by antisense-based strategy may have potential utility in treatment of COX-2-expressing RCC.  相似文献   

18.
Dietary heterocyclic aromatic amines (HCA) and polyunsaturated fatty acids (PUFA) are both believed to play a role in colon carcinogenesis, and are both substrate for the enzyme cyclooxygenase (COX). In HCA-7 cells, highly expressing isoform COX-2, we investigated the effects of PUFA on prostaglandin synthesis and DNA adduct formation by the HCA 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ). Furthermore, we studied the role of COX, COX-2 in particular, and cytochrome P4501A2 (CYP1A2) by using the enzyme inhibitors indomethacin (IM), NS-398, and phenethyl isothiocyanate (PEITC), respectively. COX-mediated formation of prostaglandin E2 (PGE2) from linoleic acid (LA) showed that HCA-7 cells can convert LA into arachidonic acid (AA). Alternatively, eicosapentaenoic acid (EPA) was found to compete with AA for COX. Strongly decreased PGE2 levels by addition of IM demonstrated involvement of COX in PUFA metabolism. Both IM and NS-398 inhibited adduct formation by HCA to nearly the same extent, indicating involvement of COX-2 rather than COX-1, while CYP1A2 activity in HCA-7 cells was demonstrated by addition of PEITC. Overall, inhibiting effects were stronger for PhIP than for IQ. HCA-DNA adduct formation was stimulated by addition of PUFA, although high PUFA concentrations partly reduced this stimulating effect. Finally, similar effects for n-3 and n-6 fatty acids suggested that adduct formation may not be the crucial mechanism behind the differential effects of PUFA on colon carcinogenesis that have been described. These results show that COX, and COX-2 in particular, can play a substantial role in HCA activation, especially in extrahepatic tissues like the colon. Furthermore, the obvious interactions between PUFA and HCA in COX-2 expressing cancer cells may be important in modulating colorectal cancer risk.  相似文献   

19.
Tea, one of the most widely consumed beverages worldwide, has been shown to have anti-cancer activity in various cancers including colon cancer. It has been demonstrated that overexpression of the inducible isoform of cyclooxygenase (COX-2) occurs during colon tumorigenesis and inhibition of COX-2 by non-steroidal anti-inflammatory drugs (NSAIDs) is chemopreventive. To determine whether the anti-cancer effect associated with green tea impacted COX-2 expression levels, human colorectal cancer cell lines HT-29 and HCA-7, were treated with (-)-epigallocatechin-3-gallate (EGCG), the most abundant and effective polyphenol of green tea. EGCG significantly inhibited constitutive COX-2 mRNA and protein overexpression. The inhibitory effects of EGCG on signaling pathways controlling COX-2 expression were examined. We observed that EGCG down regulated the ERK1/2 and Akt pathways in colon cancer cells. The effect of EGCG on COX-2 expression resulted in decreased COX-2 promoter activity via inhibition of nuclear factor kappaB (NF-kappaB) activation. EGCG also promoted rapid mRNA decay mediated through the COX-2 3'untranslated region (3'UTR). In conclusion, these data suggest that inhibition of COX-2 is a mechanism for the anti-proliferative effect of green tea and emphasizes the role that dietary factors have as anti-cancer agents.  相似文献   

20.
We report here that endogenous prostaglandin E(2) (PGE(2)) resulting from cyclooxygenase (COX)-2 expression in a highly metastatic murine breast cancer cell line C3L5 upregulates IFN-gamma + LPS-induced nitric oxide (NO) synthase (iNOS) expression and NO production. This action of PGE(2) is mediated through the EP(4) receptor in a cAMP-dependent manner. Both nonselective and selective COX-2 inhibitors suppressed IFN-gamma + LPS-induced NO production, which was largely restored by exogenous PGE(2) or EP(4) receptor agonist PGE(1) alcohol. EP(4) antagonist AH-23848B inhibited NO production with a concomitant downregulation of iNOS mRNA in IFN-gamma + LPS-stimulated cells. cAMP dependence of NO production by cells under inducible conditions was demonstrated by the use of known modulators of intracellular cAMP. Since both COX-2 and iNOS are implicated in breast cancer progression, our findings of EP(4) receptor-mediated upregulation of iNOS in COX-2-expressing breast cancer cells suggest that blocking COX-2 and/or EP(4) may provide a simple therapeutic modality in this tumor model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号