首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural features of neuronal gap junction-forming processes in the rat olfactory bulb were analyzed electron microscopically. Gap junctions were present in glomeruli and extraglomerular regions. In extraglomerular regions, mitral/tufted cell somata, dendrites and axon hillock-initial segments made gap junctions and mixed synapses with interneuronal processes, some of which were confirmed to be GABA positive. In glomeruli gap junctions were encountered mainly between mitral/tufted cell dendrites and diverse types of processes; a small population of them were conclusively identified as periglomerular cell dendrites. Gap junction-forming processes frequently received synapses from olfactory nerve terminals, suggesting that they could be type 1 periglomerular cells. However, the majority were GABA negative or only faintly positive and none were tyrosine hydroxylase positive, indicating that they were different from previously reported type 1 periglomerular cells. Furthermore serial sectioning analyses revealed that the majority of those processes forming gap junctions with mitral/tufted dendrites were smooth cylindrical and had few presynaptic sites, indicating that they were different from previously described periglomerular cells. These findings revealed that mitral/tufted cells make gap junctions with diverse types of neurons; and some of these gap junction-forming processes originated from some types of periglomerular cells but others from hitherto uncharacterized neuron type(s).  相似文献   

2.
In the mouse main olfactory bulb (MOB) gap junction-forming processes in glomeruli were analyzed by means of the serial electron microscopical reconstruction. Gap junctions were encountered between diverse types of dendritic processes and thus confirming our previous study on gap junctions in the rat MOB. Importantly, among more than 30 gap junctions examined in serial sections, we encountered 3 gap junctions made between mitral/tufted cell dendrites in the glomerulus. Then we must consider both direct coupling between mitral/tufted cells via gap junctions and indirect coupling between mitral/tufted cells via intervening interneuronal processes as suggested previously.  相似文献   

3.
Summary Gap junctions have been described ultrastructurally between neurons and epitheliomuscular cells and between neurons and their processes in the hypostome peduncle and basal disc ofHydra. All gap junctions examined inHydra exhibit two apposed plasma membranes having a 2–4 nm gap continuous with the extracellular space. The gap junctions are variable in length from 0.1–1.6 m and appear linear or V-shaped in section. Neuronal gap junctions inHydra occur infrequently as compared to chemical synapses. Electron microscopy of serial sections has demonstrated the presence of adjacent electrical and chemical synapses (neuromuscular junctions) formed by the same neuron. In addition multiple gap junctions were present between two neurons. This is the first ultrastructural demonstration of electrical synapses in the nervous system ofHydra. Such synapses occur in neurons previously characterized as sensory-motor-interneurons on the basis of their chemical synapses; these neurons appear to represent a type of stem cell characterized by having both electrical and chemical synapses.  相似文献   

4.
Summary The structural features of PV-immunoreactive (PV-I) neurons, a particular subpopulation of GABAergic neurons, in the hippocampus were studied by immunocytochemistry. The PV-I cell bodies were concentrated within the stratum pyramidale (SP) and stratum oriens (SO) in the hippocampus. PV-I puncta were frequent in SP, while they were rarely seen in other layers. The dendritic arborization of PV-I neurons resembled that of some of the nonpyramidal cells observed after Golgi-impregnation. The most commonly observed PV-I neurons had their perikarya located in SP with dendrites extending into SO and the stratum radiatum (SR). Most of the dendrites in SR had typical beaded or varicose segments. The dendrites extending into SO had few beaded parts. There were many bipolar and multipolar neurons with smooth dendrites in SO, but only a small number of such multipolar neurons in SR. An electron microscopic analysis revealed that PV-I products were located to perikarya, dendrites, myelinated axons and synaptic boutons. The perikarya of PV-I neurons exhibited several ultrastructural features of nonpyramidal cells, e.g., abundant cisternae of endoplasmic reticulum, mitochondria and other perikaryal organelles, an infolded nuclear envelope and intranuclear inclusions. They received many asymmetric synapses with round presynaptic vesicles. There were numerous PV-I boutons, presumably axonal endings, covering the pyramidal cell bodies. The PV-I boutons also contacted the axon initial segments and proximal dendrites of the pyramidal cells. In addition PV-I terminals were found on somata and dendrites of both PV-I or PV-negative nonpyramidal cells. The results suggest that PV-containing neurons include basket and axo-axonic cells.  相似文献   

5.
Kosaka T  Kosaka K 《Neuroscience》2005,131(3):611-625
Glomeruli of the main olfactory bulb are considered to serve as functional units in processing the olfactory information. Thus the fine tuning of the output level from each glomerulus is important to the information processing in the olfactory system. The interactions among neuronal elements in glomeruli might be one of main mechanisms regulating this output level. In the mouse main olfactory bulb neuronal connections via chemical synapses and gap junction in glomeruli were analyzed by the serial electron microscopical reconstruction. Gap junctions were encountered between diverse types of dendritic processes, between mitral/tufted cell dendrites, between mitral/tufted cell dendrites and periglomerular cell dendrites and between mitral/tufted cell dendrites and dendrites of some interneurons different from periglomerular cells. Then these morphological observations indicate that we must consider both direct coupling between mitral/tufted cells via gap junctions and indirect coupling between mitral/tufted cells via intervening interneuronal processes. One of gap junction-forming processes presynaptic in asymmetrical synapses was traced back to the soma of its origin located in the glomerular layer, which was thus identified as an external tufted cell. However, interestingly, it showed apparently different ultrastructural features from other external tufted cells located at the border between the glomerular and external plexiform layers; the latter resemble so-called mitral/tufted cells located in the external plexiform and mitral cell layers. Then external tufted cells were assumed to be heterogeneous in their ultrastructural features. We occasionally encountered several dendrites connected by gap junctions, which furthermore made chemical synapses with each other and with other surrounding processes. Thus both chemical synapses and gap junctions interconnect complexly various processes in the glomerulus, where the local circuit among intermingled olfactory nerves, mitral/tufted cell dendrites and interneuron dendrites is far more complex than previously schematized.  相似文献   

6.
Summary Gap junctions are found in the pigment epithelium, between retina and pigment epithelium and in the retina of 5–14 day chick embryos, they are identified using block staining and extracellular tracer techniques. In the pigment epithelium gap junctions are found between cell bodies and interdigitating processes and many change their position during development. Gap junctions between retina and pigment epithelium are only made by undiferentiated retinal ventricular cells and may provide intercytoplasmic pathways important for photoreceptor differentiation. Retinal gap junctions are found in an outer zone next to the pigment epithelium and inner zone near the vitreous, they are only seen between ventricular cells but may provide pathways for ganglion cell specification. The role of gap junctions in the generation of retinal neurons is discussed.  相似文献   

7.
Summary Morphological characteristics of non-pyramidal neurons in the guinea pig hippocampus (regions CA1 and CA3) were analyzed by a correlated light and electron microscopic approach. Following Golgi impregnation, the cells were first studied under the light microscope and classified according to the location of their cell bodies and the distribution of their dendrites in the different hippocampal layers. Next, the Golgi impregnated non-pyramidal neurons were gold-toned and deimpregnated, allowing an electron microscopic analysis of the identified structures.With regard to cell body location and dendritic pattern, non-pyramidal cells are a rather heterogeneous group of neurons. Their perikarya were found in all hippocampal layers and their dendrites had a less regular orientation when compared to pyramidal neurons and granule cells. Two basic types, i.e., vertical and horizontal non-pyramidal neurons are described. Many cells were of an intermediate type with dendrites extending in all directions. Non-pyramidal cell dendrites were mostly devoid of spines but exhibited numerous varicosities. Non-pyramidal cell axons could sometimes be seen extending towards the pyramidall cell layer.A surprising uniformity was observed when the impregnated, identified non-pyramidal neurons were studied in the electron microscope. Their perikarya exhibited a well-developed endoplasmic reticulum and indented nuclei. Both the cell bodies and the varicose dendrites were densely covered with synaptic boutons which mainly formed asymmetric synaptic contacts. Only occasionally were symmetric synaptic contacts observed. Non-pyramidal cell dendrites extending into the stratum lucidum of CA3 were found to be contacted by the giant boutons of mossy fiber axons. In addition to synaptic contacts, the dendrites of gold-toned non-pyramidal neurons formed gap junctions with neigh-boring dendrites.The results are discussed in relation to recent immunocytochemical studies which have shown non-pyramidal neurons in the hippocampus to contain gamma-aminobutyric acid and/or various neuropeptides.In partial fulfilment of the requirements for the degree of Dr. med. at the Johann Wolfgang Goethe University, Frankfurt/Main  相似文献   

8.
Fukuda T  Kosaka T 《Neuroscience》2003,120(1):5-20
Parvalbumin (PV)-containing GABAergic neurons in the hippocampus form dual networks linked by both dendrodendritic gap junctions and mutual inhibitory synapses. Recent physiological studies have demonstrated similar functional connectivity among cortical GABAergic neurons, but the corresponding structures have not been fully analyzed at the electron microscopic level. In this study we examined detailed ultrastructural features of gap junctions between PV neurons in the mature neocortex. Light microscopic observations and confocal laser scanning microscopy revealed frequent dendrodendritic contacts between PV neurons. Electron microscopic analysis provided direct morphological evidence for the existence of gap junctions between 22 pairs of PV-immunoreactive dendrites in the visual, auditory, and somatosensory cortices. Their ultrastructural features that were characteristic of immunolabeled profiles were consistent with the general structure of gap junctions. In one case a gap junction coexisted with a dendrodendritic chemical synapse, making a mixed synapse. Importantly, we also encountered a gap junction between PV positive and negative, presumptive non-principal cell-derived, dendrites. Quantitative analysis was made in 16 pairs of PV positive dendrites forming gap junctions in the infragranular layers of the somatosensory cortex. Diameters of these dendrites ranged from 0.3 to 2.7 microm, suggesting diverse locations of gap junctions along the proximal-distal axis of dendritic trees, but the majority (81%) were less than 1 microm. The mean size of gap junctions along apposing membranes was 0.22+/-0.09 microm. By using this size, the theoretical value of a junctional conductance was estimated to be 2.1-5.3 nS. Dendrites of PV neurons in the infragranular layers of the somatosensory cortex were reconstructed light microscopically and the sites of contacts with other PV neurons were mapped. Although these contacts do not necessarily imply gap junctional coupling, their number (5.3+/-2.3 per cell, n=11) suggested the degree of connectivity of less than 10 coupling from single PV neurons with others. Sholl analysis revealed that only 38% of their dendrites occurred within 200 microm from the soma. The present study demonstrated detailed ultrastructural features of gap junctions between mature cortical PV neurons. These features will facilitate not only identification of gap junctions in variously labeled neurons but also analysis of their functional aspects by enabling theoretical estimate of their junctional conductances.  相似文献   

9.
Summary Previous studies have established that gap junctions between presumptive retinal neurons of the chick retina disappear during the course of embryogenesis. The present study examines the 2–3-week-old chick retina to determine if gap junctions are present in the outer plexiform layer of the more mature animal as would be in accordance with evidence from morphological and physiological studies on a variety of other vertebrates. Thin section and freeze-fracture techniques are used in a complementary manner to demonstrate that gap junctions are present between horizontal cell processes in the distal regions of the outer plexiform layer. These junctions appear to be between axon terminals and between spines that project from axon terminals to rods and double cones. Gap junctions are also observed between photoreceptors. They are seen on the synaptic terminals of all classes of cones and are located between the cone synaptic terminals and cone basal processes. Gap junctions are also seen between unidentified photoreceptor basal processes within the neuropil of both distal and proximal parts of the outer plexiform layer. Gap junctions are also present between cone synaptic terminals and deeply invaginated, vesicle-containing processes the origin of which remains to be determined.  相似文献   

10.
Summary The forms of dendrites in layer IV receiving degenerating thalamocortical axon terminals directly on their shafts were examined in serial thin sections. Reconstructions showed these dendrites varied in thickness between 2.5 and 0.5 m. They had essentially smooth contours and rarely showed evidence of protrusions or spines. They were further characterized by the presence of many synapses along their shafts. Only about one in 12 of these synapses was formed by degenerating thalamocortical axon terminals.These smooth dendrites emerged from neuronal perikarya that also received degenerating axon terminals which formed asymmetric synaptic junctions. Such cell bodies bore both symmetric and asymmetric synaptic junctions, and not all of the latter were caused to degenerate after a thalamic lesion. These postsynaptic neurons appeared to be of two kinds, ones with thin dendrites that often contained closely packed microtubules, and others with thicker dendrites that emerged from the poles of oval perikarya.  相似文献   

11.
Summary Glutamic acid decarboxylase (GAD), the enzyme that synthesizes the neurotransmitter -aminobutyric acid (GABA), has been localized in the rat visual cortex by immunocytochemical methods with both light and electron microscopy. In both colchicine-injected and non-injected preparations of the visual cortex, GAD-positive reaction product was observed in somata, proximal dendrites and axon terminals of non-pyramidal neurons. The GAD-positive terminals were observed to form symmetric synaptic junctions most commonly with dendritic shafts and somata of pyramidal and stellate neurons and less frequently with initial axon segments of pyramidal neurons and dendritic spines. In colchicine-injected preparations, GAD-positive somata were located in all cortical layers including the immediately subjacent white matter. In contrast, sections from non-injected rats displayed GAD-positive somata within a superficial and a deep cortical band. The GAD-positive somata observed in both types of preparations received both symmetric and asymmetric synaptic junctions, lacked apical dendrites, and had radially oriented dendrites of small diameter. These characteristics of GAD-positive neurons indicate that they are aspinous and sparsely-spinous stellate neurons. The localization of GAD within these neurons in combination with physiological and pharmacological data indicate that these local circuit neurons mediate GABA-ergic inhibition in the neocortex.  相似文献   

12.
The magnocellular mesencephalic nucleus (MMN) of Gymnotus carapo was studied by electron microscopy. This particular nucleus, characteristic of weakly electric fish, contains two principal classes of neuron. (1) Large neurons (25-35 mum): these are rounded unipolar cells, with the perikaryon partially covered by a sheath of compact myelin. The axon leaves the neuron as a short thick unmyelinated process not resembling the initial segment of multipolar neurons. The axon branches profusely and becomes myelinated very close to its origin. The perikaryal surface not covered by the myelin sheath receives abundant club endings. The synaptic interface between club endings and large neurons is characterized by alternating gap junctions and attachment plaques. In addition, at the periphery of the club endings, "active" zones are generally present, and this synapse is therefore a "mixed" synapse. (2) Small neurons (5-12 mum): these are uni- or bipolar cells, scattered throughout the nucleus, and occasionally, grouped in small clusters. Gap junctions were not observed between neuronal perikarya in such clusters. The synaptic investment of small neurons is formed by long cup endings which almost completely encircle the perikarya. The synaptic interface between cup endings and the perikarya of small neurons is characterized by large areas of gap junctions. A single cup ending establishing gap junctions with two small neurons within the plane of the section was frequently observed and this arrangement provides a morphological basis for electrotonic coupling between small neurons by way of presynaptic fibres. In the neuropil of the MMN, there are abundant synaptic islands constituted by a large axon terminal in synaptic contact with small unidentified profiles; both synaptic elements are surrounded by numerous thin glial lamellae. At the synaptic interface, in the islands, both gap junctions and "active" zones are present. The synaptic islands must also be considered as "mixed" synapses. The morphological results presented here correlate with electrophysiological data (Szabo et al., 1975). The very short delay (0.8-1.3 ms) of the MMS response to the fish's own electric organ discharge can only be explained by the existence of electrotonic transmission along the neuronal chain of the electrosensory pathway. The presence of gap junctions between club endings and large neurons provides a morphological basis for electrotonic transmission at the mesencephalic level of the electrosensory pathway.  相似文献   

13.
Distal gap junctions and active dendrites can tune network dynamics   总被引:2,自引:0,他引:2  
Gap junctions allow direct electrical communication between CNS neurons. From theoretical and modeling studies, it is well known that although gap junctions can act to synchronize network output, they can also give rise to many other dynamic patterns including antiphase and other phase-locked states. The particular network pattern that arises depends on cellular, intrinsic properties that affect firing frequencies as well as the strength and location of the gap junctions. Interneurons or GABAergic neurons in hippocampus are diverse in their cellular characteristics and have been shown to have active dendrites. Furthermore, parvalbumin-positive GABAergic neurons, also known as basket cells, can contact one another via gap junctions on their distal dendrites. Using two-cell network models, we explore how distal electrical connections affect network output. We build multi-compartment models of hippocampal basket cells using NEURON and endow them with varying amounts of active dendrites. Two-cell networks of these model cells as well as reduced versions are explored. The relationship between intrinsic frequency and the level of active dendrites allows us to define three regions based on what sort of network dynamics occur with distal gap junction coupling. Weak coupling theory is used to predict the delineation of these regions as well as examination of phase response curves and distal dendritic polarization levels. We find that a nonmonotonic dependence of network dynamic characteristics (phase lags) on gap junction conductance occurs. This suggests that distal electrical coupling and active dendrite levels can control how sensitive network dynamics are to gap junction modulation. With the extended geometry, gap junctions located at more distal locations must have larger conductances for pure synchrony to occur. Furthermore, based on simulations with heterogeneous networks, it may be that one requires active dendrites if phase-locking is to occur in networks formed with distal gap junctions.  相似文献   

14.
During an ultrastructural study of normal and primary deafferented anterior ventral cochlear nuclei of the rat, small maculae of gap junctions have been observed between neuronal elements. Gap junctions were found mainly between neuronal perikarya, and less frequently between perikarya and dendrites, or between initial segments of axons and dendrites. Deafferentation does not alter the neuronal gap junctions.These results provide morphological evidence in favour of electrotonic coupling between neurones of the anterior ventral cochlear nucleus. The finding of gap junctions in another region of the mammalian brain contrasts with current ideas that electrical synapses are only important in primitive forms of phylogeny.  相似文献   

15.
Polyclonal antisera to synthetic peptides matching sequences on the cytoplasmic regions of connexin-43, a gap junction protein first identified in rat heart, have been used to immunolabel gap junctions in the calvarial bone, maintained intact as in vivo, of 1- to 2-week-old rats. The specimens were examined in reflection and fluorescence modes by scanning laser confocal microscopy, and the numbers of gap junctions and their sizes estimated. The mean number of connexin-43 immunolabelled junctions per osteoblast (n=65) was 15.3 (SD ± 4.5). The mean length of 227 junctions, selected for the sharpness of the image of the fluorescent spot, was 0.67 m (SD ± 0.18; range 0.37–1.29 m) and their mean area 0.26 m2 (SD ± 0.145; range 0.075–0.93 m2); these probably fell within the upper half of the total size range. Gap junctions were detected between preosteoblasts, osteoblasts, osteocytes and chondrocytes, and between these juxtaposed cell types. In addition, connexin-43 immuno-labelled junctions were found between some osteoclasts and overlying mononuclear cells at active sites of resorption.  相似文献   

16.
The ultrastructural characteristics, distribution and synaptic relationships of identified, glutamate-enriched thalamocortical axon terminals and cell bodies in the retrosplenial granular cortex of adult rats is described and compared with GABA-containing terminals and cell bodies, using postembedding immunogold immunohistochemistry and transmission electron microscopy in animals with injections of cholera toxin- horseradish peroxidase (CT-HRP) into the anterior thalamic nuclei. Anterogradely labelled terminals, identified by semi-crystalline deposits of HRP reaction product, were approximately 1 m in diameter, contained round, clear synaptic vesicles, and established asymmetric (Gray type I) synaptic contacts with dendritic spines and small dendrites, some containing HRP reaction product, identifying them as dendrites of corticothalamic projection neurons. The highest densities of immunogold particles following glutamate immunostaining were found over such axon terminals and over similar axon terminals devoid of HRP reaction product. In serial sections immunoreacted for GABA, these axon terminals were unlabelled, whereas other axon terminals, establishing symmetric (Gray type II) synapses were heavily labelled. Cell bodies of putative pyramidal neurons, containing retrograde HRP label, were numerous in layers V–VI; some were also present in layers I–III. Most were overlain by high densities of gold particles in glutamate but not in GABA immunoreacted sections. These findings provide evidence that the terminals of projection neurons make synaptic contact with dendrites and dendritic spines in the ipsilateral retrosplenial granular cortex and that their targets include the dendrites of presumptive glutamatergic corticothalamic projection neurons.  相似文献   

17.
Intercellular junctions between neighbouring pinealocytes, glial cells, glial cells and pinealocytes as well as between nerve endings and parenchymal cells of the pineal gland of Wistar rats were investigated on freeze-fracture replicas and thin sections by transmission electron microscopy. Gap junctions, tight junctions and the annular gap junctions have been revealed. In addition, chemical synapses between nerve endings and pinealocytes have been observed.  相似文献   

18.
The cellular relationship between the substantia spongiosa of bone (cancellous or trabecular bone) and the haematopoietic bone marrow in the femoral metaphysis of C57BL/6NJCL mice was studied by transmission electron microscopy (TEM). Special attention was directed to intercellular junctions between osteocytes, osteoblasts, and bone marrow reticular cells. These were gap junctions and adhesive devices of simple architecture referred to as primitive junctions or zonula adherens-like junctions. Gap junctions were observed between osteocytes (within the trabeculae) and osteoblasts (at the trabecular surface) and between osteoblasts and marrow reticular cells. Gap junctions were also observed between the same cell type within each of these categories. These junctions involved the plasmalemmal membranes of adjacent cell bodies and of processes. Primitive cell junctions had a similar cellular distribution. Quantitative analysis of the cell types covering or positioned around the trabecular bones and of gap junctions between these and other cells was carried out by TEM. It was found that osteoblasts were the most numerous cell type, occupying 31% of the total of each cell type positively identified around the trabeculae (31%), while pre-osteoblasts, (flattened bone marrow reticular cells) took up 26%. These data emphasise the intimate relationship of the various mesenchymal cells based on processes and intercellular junctions, and point to an anatomical and probably functional integration of trabeculae and marrow. The functional significance and putative regulatory activity of this unit are discussed.  相似文献   

19.
Summary The mesencephalic nucleus of the trigeminal nerve (mes V) in the brain of the skate (Raja oscellata) was studied by electron microscopy. Mes V neurons are large (40–80 m diameter) and are located in the periventricular grey matter. Their perikaryal cytoplasm is rich in Golgi apparatus, small mitochondria, rough endoplasmic reticulum, polysomes and bundles of neurofilaments. A striking feature is the presence of masses of glycogen granules, at times surrounded by membrane wrappings and lysosomal bodies.Two types of conventional synaptic contacts were made onto mes V perikarya and dendrites. One had round, agranular vesicles and usually also contained dense-cored vesicles, the other had flattened, pleomorphic, agranular vesicles and usually lacked dense-cored vesicles. Additional membrane complexes consisting of a region of gap junction flanked by sites of desmosomal attachment were observed to link neighbouring mes V neurons. Somato-somatic, dendro-somatic, axo-somatic, and dendro-dendritic junctions were noted. Except for the somato-somatic union, one or more chemical synapses were located close to the sites of gap junctions.  相似文献   

20.
Summary Synapses formed by giant fibres on pectoral fin adductor motor neurons were identified by horseradish peroxidase (HRP) injection. The synapses were distributed in clusters on the somata and proximal dendrites of the motor neurons. All of the labelled synapses contained synaptic vesicles and often had clearly defined active zones characteristic of chemical synapses. Some synapses also showed gap junctions with the motor neuron soma, often directly adjacent to an active zone. The gap junctions were asymmetrical, with a thick layer of electron dense material on the postsynaptic side. Previous electrophysiological data indicate that giant fibre inputs to motor neurons are purely electrotonic and that these electrical synapses rectify.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号