首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Utility of dystrophin and utrophin staining in childhood muscular dystrophy   总被引:2,自引:0,他引:2  
To determine the utility of dystrophin and utrophin staining in the differential diagnosis of childhood muscular dystrophy. Fifty muscle biopsies of histologically confirmed cases of childhood muscular dystrophy, below 16 years of age, were stained immunohistochemically for dystrophin and utrophin. All the 30 muscle biopsies of patients with Duchenne muscular dystrophy (DMD) showed all or majority of muscle fibers deficient for dystrophin and positive for utrophin. In the 4 female DMD carriers there was mosaic pattern of staining for dystrophin and reciprocal positivity for utrophin. All the muscle biopsies of patients with other childhood onset muscular dystrophies were positive for dystrophin and negative for utrophin. This study shows that dystrophin staining differentiates DMD and DMD carriers from other childhood muscular dystrophies and utrophin staining is of no added value. Utrophin up-regulation may compensate for structural deficiency in dystrophic muscle.  相似文献   

2.
Heart disease is a leading cause of death in patients with Duchenne muscular dystrophy (DMD). Patients with DMD lack the protein dystrophin, which is widely expressed in striated muscle. In skeletal muscle, the loss of dystrophin results in dramatically decreased expression of the dystrophin associated glycoprotein complex (DGC). Interestingly, in the heart the DGC is normally expressed without dystrophin; this has been attributed to presence of the dystrophin homologue utrophin. We demonstrate here that neither utrophin nor dystrophin are required for the expression of the cardiac DGC. However, alpha-dystroglycan (α-DG), a major component of the DGC, is differentially glycosylated in dystrophin-(mdx) and dystrophin-/utrophin-(dko) deficient mouse hearts. In both models the altered α-DG retains laminin binding activity, but has an altered localization at the sarcolemma. In hearts lacking both dystrophin and utrophin, the alterations in α-DG glycosylation are even more dramatic with changes in gel migration equivalent to 24 ± 3 kDa. These data show that the absence of dystrophin and utrophin alters the processing of α-DG; however it is not clear if these alterations are a consequence of the loss of a direct interaction with dystrophin/utrophin or results from an indirect response to the presence of severe pathology. Recently there have been great advances in our understanding of the glycosylation of α-DG regarding its role as a laminin receptor. Here we present data that alterations in glycosylation occur in the hearts of animal models of DMD, but these changes do not affect laminin binding. The physiological consequences of these alterations remain unknown, but may have significant implications for the development of therapies for DMD.  相似文献   

3.
Duchenne's muscular dystrophy (DMD) is a fatal disease caused by mutations in the DMD gene that lead to quantitative and qualitative disturbances in dystrophin expression. Dystrophin is a member of the spectrin superfamily of proteins. Dystrophin itself is closely related to three proteins that constitute a family of dystrophin-related proteins (DRPs): the chromosome 6-encoded DRP or utrophin, the chromosome-X encoded, DRP2 and the chromosome-18 encoded, dystrobrevin. These proteins share sequence similarity and functional motifs with dystrophin. Current attempts at somatic gene therapy of DMD face numerous technical problems. An alternative strategy for DMD therapy, that circumvents many of these problems, has arisen from the demonstration that the DRP utrophin can functionally substitute for the missing dystrophin and its overexpression can rescue dystrophin-deficient muscle. Currently, a promising avenue of research consists of identifying molecules that would increase the expression of utrophin and the delivery of these molecules to dystrophin-deficient tissues as a means of DMD therapy. In this review, we will focus on DRPs from the perspective of strategies and issues related to upregulating utrophin expression for DMD therapy. Additionally, we will address the techniques used for anatomical, biochemical and physiological evaluation of the potential benefits of this and other forms of DMD therapy in dystrophin-deficient animal models.  相似文献   

4.
Duchenne’s muscular dystrophy (DMD) is a fatal disease caused by mutations in the DMD gene that lead to quantitative and qualitative disturbances in dystrophin expression. Dystrophin is a member of the spectrin superfamily of proteins. Dystrophin itself is closely related to three proteins that constitute a family of dystrophin‐related proteins (DRPs): the chromosome 6‐encoded DRP or utrophin, the chromosome‐X encoded, DRP2 and the chromosome‐18 encoded, dystrobrevin. These proteins share sequence similarity and functional motifs with dystrophin. Current attempts at somatic gene therapy of DMD face numerous technical problems. An alternative strategy for DMD therapy, that circumvents many of these problems, has arisen from the demonstration that the DRP utrophin can functionally substitute for the missing dystrophin and its overexpression can rescue dystrophin‐deficient muscle. Currently, a promising avenue of research consists of identifying molecules that would increase the expression of utrophin and the delivery of these molecules to dystrophin‐deficient tissues as a means of DMD therapy. In this review, we will focus on DRPs from the perspective of strategies and issues related to upregulating utrophin expression for DMD therapy. Additionally, we will address the techniques used for anatomical, biochemical and physiological evaluation of the potential benefits of this and other forms of DMD therapy in dystrophin‐deficient animal models.  相似文献   

5.
While present in the surface membrane of embryonic muscle fibers, in adult normal muscle fibers, utrophin is restricted to the motor endplate and cell of blood vessel walls. However, the observation that utrophin is maintained in the extrajunctional plasma membrane in Duchenne (DMD) and in mdx muscle fibers has led to the suggestion that excess utrophin might compensate for dystrophin deficiency in the Xp21 muscular dystrophies. In order to detect an inverse correlation of utrophin presence and clinical severity, we have assessed utrophin distribution and quantity in DMD and Becker (BMD) patients of different ages and stages of clinical severity. All patients showed a positive discontinuous immunolabeling of utrophin on the sarcolemma, staining equally small and large muscle fibers, indicating that immature characteristics are maintained in such fibers. On Western blot, utrophin bands with concentrations 2- to 10-fold greater than in normal controls were detected in all DMD/BMD patients. However, no negative correlation was found between the amount of utrophin and the severity of clinical course, implying that the detectable utrophin levels in these patients did not compensate for dystrophin deficiency. In a DMD patient with growth hormone (GH) deficiency and a BMD-like clinical course, utrophin levels were comparable to the other typical DMD cases, which reinforces the hypothesis that the observed increase in utrophin is apparently not responsible for a milder clinical course in some patients with Xp21 muscular dystrophies. © 1995 Wiley-Liss, Inc.  相似文献   

6.
Dystrophin, the protein responsible for X-linked Duchenne muscular dystrophy (DMD), is normally expressed in both muscle and brain, which explains that its loss also leads to cognitive deficits. The utrophin protein, an autosomal homolog, is a natural candidate for dystrophin replacement in patients. Pharmacological upregulation of endogenous utrophin improves muscle physiology in dystrophin-deficient mdx mice, and represents a potential therapeutic tool that has the advantage of allowing delivery to various organs following peripheral injections. Whether this could alleviate cognitive deficits, however, has not been explored. Here, we first investigated basal expression of all utrophins and dystrophins in the brain of mdx mice and found no evidence for spontaneous compensation by utrophins. Then, we show that systemic chronic, spaced injections of arginine butyrate (AB) alleviate muscle alterations and upregulate utrophin expression in the adult brain of mdx mice. AB selectively upregulated brain utrophin Up395, while reducing expression of Up113 and Up71. This, however, was not associated with a significant improvement of behavioral functions typically affected in mdx mice, which include exploration, emotional reactivity, spatial and fear memories. We suggest that AB did not overcome behavioral and cognitive dysfunctions because the regional and cellular expression of utrophins did not coincide with dystrophin expression in untreated mice, nor did it in AB-treated mice. While treatments based on the modulation of utrophin may alleviate DMD phenotypes in certain organs and tissues that coexpress dystrophins and utrophins in the same cells, improvement of cognitive functions would likely require acting on specific dystrophin-dependent mechanisms.  相似文献   

7.
A sea urchin gene encoding dystrophin-related proteins   总被引:1,自引:2,他引:1  
The gene which is defective in Duchenne muscular dystrophy (DMD) is the largest known gene. The product of the gene in muscle, dystrophin, is a 427 kDa protein. The same gene encodes at least six additional products: two non-muscle dystrophin isoforms transcribed from promoters located in the 5'-end region of the gene and four smaller proteins transcribed from internal promoters located further downstream. Several other genes, encoding evolutionarily related proteins, have been identified. These include a structurally very similar gene in vertebrates encoding utrophin (DRP1), which is closely related to dystrophin, and a number of small and simple genes in vertebrates or invertebrates encoding proteins similar to some of the small products of the DMD gene. We have isolated a sea urchin gene showing very strong sequence and structural homology with the DMD and utrophin genes. Sequence and intron/exon structure similarities suggest that this gene is related to a precursor of both the DMD gene and the gene encoding utrophin. The sea urchin gene has the unique complex structure of the DMD gene. There is at least one, and possibly more, product(s) transcribed from internal promoters, as well as a large product of >300 kDa containing at least three of the four major domains of dystrophin. The small product seems to be evolutionarily related to Dp116, one of the small products of the human DMD gene. Partial characterization of this gene helped us to construct an evolutionary tree connecting the vertebrate dystrophin gene family with related genes in invertebrates. The constructed evolutionary tree also implies that the vertebrate small and simple structured gene encoding a Dp71-like protein, called DRP2 , evolved from the dystrophin/utrophin ancestral large and complex gene by a duplication of only a small part of the gene.   相似文献   

8.
Duchenne muscular dystrophy (DMD) is a dystrophinopathy, and its associated gene is located on Xp21. Moreover, utrophin, a recently identified structural homologue of dystrophin is reported to be up-regulated in DMD. In order to investigate the association between utrophin and muscle regeneration in DMD, an immunohistochemical study using antibodies to utrophin, dystrophin, vimentin and desmin was carried out in 17 cases of DMD, 3 cases of polymyositis and 1 case of dermatomyositis. Dystrophin was negative in almost all cases of DMD, but positive in all cases of inflammatory myopathy (IM). Utrophin was positive in 94.0% of DMD and in 75.0% of IM. 36.4% of the myofibers were positive in DMD, as compared to 10.5% in IM (p=0.001). In both groups, utrophin positivity was present most commonly in small regenerating fibers (p=0.001, 0.013). Vimentin and desmin were intensely positive in regenerating fibers in all cases of DMD and IM. 34.4% and 35.4% of myofibers were positive for vimentin and desmin in DMD, as compared to 21.8% and 20.9% in IM (p=0.001, 0.001). In both groups, vimentin and desmin positivity were present most commonly in small regenerating fibers (p=0.001, 0.001). The staining intensities of utrophin, vimentin and desmin were also higher in small regenerating fibers. These results show that utrophin up-regulation is regeneration-associated, and that it is proportional to the quantity of regenerating myofibers, but is not specific for DMD.  相似文献   

9.
Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused, in most cases, by the complete absence of the 427 kDa cytoskeletal protein, dystrophin. There is no effective treatment, and affected individuals die from respiratory failure and cardiomyopathy by age 30. Here, we investigated whether cardiomyopathy could be prevented in animal models of DMD by increasing diaphragm utrophin or dystrophin expression and thereby restoring diaphragm function. In a transgenic mdx mouse, where utrophin was over expressed in the skeletal muscle and the diaphragm, but not in the heart, we found cardiac function, specifically right and left ventricular ejection fraction as measured using in vivo magnetic resonance imaging, was restored to wild-type levels. In mdx mice treated with a peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) that resulted in high levels of dystrophin restoration in the skeletal muscle and the diaphragm only, cardiac function was also restored to wild-type levels. In dystrophin/utrophin-deficient double-knockout (dKO) mice, a more severely affected animal model of DMD, treatment with a PPMO again produced high levels of dystrophin only in the skeletal muscle and the diaphragm, and once more restored cardiac function to wild-type levels. In the dKO mouse, there was no difference in heart function between treatment of the diaphragm plus the heart and treatment of the diaphragm alone. Restoration of diaphragm and other respiratory muscle function, irrespective of the method used, was sufficient to prevent cardiomyopathy in dystrophic mice. This novel mechanism of treating respiratory muscles to prevent cardiomyopathy in dystrophic mice warrants further investigation for its implications on the need to directly treat the heart in DMD.  相似文献   

10.
11.
The utrophin and dystrophin genes share similarities in genomic structure   总被引:7,自引:3,他引:7  
Utrophin and dystrophin are highly homologous proteins whichare reciprocally expressed in DMD (Duchenne muscular dystrophy)muscle. The remarkable similarity of these proteins suggeststhat they may play a similar cellular role in some circumstances;If this were the case then utrophin may be capable of replacingdystrophin in DMD patients. In this paper we show that the genomicstructure of the utrophin gene is similar to the dystrophingene, further exemplifying the relatedness of the two genesand their gene products. We have constructed a 1.25Mb contigof eight yeast artificial chromosome (YAC) clones covering theutrophin gene located on chromosome 6q24. Utrophin is encodedby multiple small exons spanning approximately 900kb. The distributionof exons within the genomic DNA has similarities to that ofthe dystrophin gene. In contrast to dystrophin, the utrophingene has a long 5' untranslated region composed of two exonsand a cluster of unmethylated, rare-cutting restriction enzymesites at the 5' end of the gene. Similarities between the genomicstructure suggest that utrophin and dystrophin arose throughan ancient duplication event involving a large region of genomicDNA.  相似文献   

12.
The abnormal retinal neurotransmission observed in Duchenne muscular dystrophy (DMD) patients and in some genotypes of mice lacking dystrophin has been attributed to altered expression of short products of the dystrophin gene. We have investigated the potential role of Dp71, the most abundant C-terminal dystrophin gene product, in retinal electrophysiology. Comparison of the scotopic electroretinograms (ERG) between Dp71-null mice and wild-type (wt) littermates revealed a normal ERG in Dp71-null mice with no significant changes of the b-wave amplitude and kinetics. Analysis of DMD gene products, utrophin and dystrophin-associated proteins (DAPs), showed that Dp71 and utrophin were localized around the blood vessels, in the ganglion cell layer (GCL), and the inner limiting membrane (ILM). Dp71 deficiency was accompanied by an increased level of utrophin and decreased level of beta-dystroglycan localized in the ILM, without any apparent effect on the other DAPs. Dp71 deficiency was also associated with an impaired clustering of two Müller glial cell proteins-the inwardly rectifying potassium channel Kir4.1 and the water pore aquaporin 4 (AQP4). Immunostaining of both proteins decreased around blood vessels and in the ILM of Dp71-null mice, suggesting that Dp71 plays a role in the clustering and/or stabilization of the two proteins. AQP4 and Kir4.1 may also be involved in the regulation of the ischemic process. We found that a transient ischemia resulted in a greater damage in the GCL of mice lacking Dp71 than in wt mice. This finding points at a crucial role played by Dp71 in retinal function.  相似文献   

13.
Utrophin: A Structural and Functional Comparison to Dystrophin   总被引:9,自引:0,他引:9  
Utrophin is an autosomally-encoded homologue of dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene. Although, Utrophin is very similar in sequence to dystrophin and possesses many of the protein-binding properties ascribed to dystrophin, both proteins are expressed in an apparently reciprocal manner and may be coordinately regulated. In normal skeletal muscle, Utrophin is found at the neuromuscular junction (NMJ) whereas dystrophin predominates at the sarcolemma. However, during development, and in some myopathies including DMD, utrophin is also found at the sarcolemma. This re-distribution is often associated with a significant increase in the levels of utrophin. At the NMJ utrophin co-localizes with the acetylcholine receptors (AChR) and may play a role in the stabilization of the synaptic cytoskeleton. Because utrophin and dystrophin are so similar, utrophin may be able to replace dystrophin in dystrophin deficient muscle. This review compares the structure and function of utrophin to dystrophin and discusses the rationale behind the use of utrophin as a potential therapeutic agent.  相似文献   

14.
Duchenne muscular dystrophy results from the absence of dystrophin, a cytoskeletal protein. Previously, we have shown in a transgenic mouse model of the disease (mdx) that high levels of expression of the dystrophin-related protein, utrophin can prevent pathology. We developed a new transgenic mouse model where muscle specific utrophin expression was conditioned by addition of tetracycline in water. Transgene expression was turned on at different time points: in utero, at birth, 10 and 30 days after birth. We obtained moderate levels of expression, variable from fibre to fibre (mosaicism) but sufficient to induce a correct localization of the dystro-sarcoglycan complex. Histology revealed a reduction of necrotic foci and of the percentage of centronucleated fibres, which remained still largely above the normal level. Isometric force was not improved but the resistance to eccentric contractions was significantly stronger. When utrophin expression was activated 30 days after birth, improvements were marginal, suggesting that the age at which utrophin therapy is initiated could be an important factor. Our results also provide an unexpected insight into the pathogenesis of the dystrophinopathies. We observed a complete normalization of the characteristics of the mechano-sensitive/voltage-independent Ca(2+) channels (occurrence, open probabilities and Ca(2+) currents), while the classical markers of dystrophy were still abnormal. These observations question the role of increased Ca(2+) channel activity in initiating the dystrophic process. The new model shows that utrophin therapy, initiated after birth, can be effective, but the extent of correction of the various symptoms of dystrophinopathy critically depends on the amount of utrophin expressed.  相似文献   

15.
Duchenne muscular dystrophy (DMD) is characterized by myofiber death from apoptosis or necrosis, leading in many patients to fatal respiratory muscle weakness. Among other pathological features, DMD muscles show severely deranged metabolic gene regulation and mitochondrial dysfunction. Defective mitochondria not only cause energetic deficiency, but also play roles in promoting myofiber atrophy and injury via opening of the mitochondrial permeability transition pore. Autophagy is a bulk degradative mechanism that serves to augment energy production and eliminate defective mitochondria (mitophagy). We hypothesized that pharmacological activation of AMP-activated protein kinase (AMPK), a master metabolic sensor in cells and on-switch for the autophagy-mitophagy pathway, would be beneficial in the mdx mouse model of DMD. Treatment of mdx mice for 4 weeks with an established AMPK agonist, AICAR (5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside), potently triggered autophagy in the mdx diaphragm without inducing muscle fiber atrophy. In AICAR-treated mdx mice, the exaggerated sensitivity of mdx diaphragm mitochondria to calcium-induced permeability transition pore opening was restored to normal levels. There were associated improvements in mdx diaphragm histopathology and in maximal force-generating capacity, which were not linked to increased mitochondrial biogenesis or up-regulated utrophin expression. These findings suggest that agonists of AMPK and other inducers of the autophagy-mitophagy pathway can help to promote the elimination of defective mitochondria and may thus serve as useful therapeutic agents in DMD.  相似文献   

16.
A therapeutic approach for Duchenne muscular dystrophy (DMD) is to up-regulate utrophin in skeletal muscle in an effort to compensate for the lack of dystrophin. We previously hypothesized that promotion of the slow, oxidative myogenic program, which triggers utrophin up-regulation, can attenuate the dystrophic pathology in mdx animals. Since treatment of healthy mice with the AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) enhances oxidative capacity and elicits a fast-to-slow fiber-type transition, we evaluated the effects of chronic AMPK stimulation on skeletal muscle phenotype and utrophin expression in mdx mice. Daily AICAR administration (500 mg/kg/day, 30 days) of 5-7-week-old mdx animals induced an elevation in mitochondrial cytochrome c oxidase enzyme activity, an increase in myosin heavy-chain type IIa-positive fibers and slower twitch contraction kinetics in the fast, glycolytic extensor digitorum longus muscle. Utrophin expression was significantly enhanced in response to AICAR, which occurred coincident with an elevated β-dystroglycan expression along the sarcolemma. These adaptations were associated with an increase in sarcolemmal structural integrity under basal conditions, as well as during damaging eccentric contractions ex vivo. Notably, peroxisome proliferator-activated receptor γ co-activator-1α (PGC-1α) and silent information regulator two ortholog 1 protein contents were significantly higher in muscle from mdx mice compared with wild-type littermates and AICAR further increased PGC-1α expression. Our data show that AICAR-evoked muscle plasticity results in beneficial phenotypic adaptations in mdx mice and suggest that the contextually novel application of this compound for muscular dystrophy warrants further study.  相似文献   

17.
Okadaic acid augments utrophin in myogenic cells   总被引:1,自引:0,他引:1  
  相似文献   

18.
Duchenne muscular dystrophy (DMD) is a deadly and common childhood disease caused by mutations that disrupt dystrophin protein expression. Several miniaturized dystrophin/utrophin constructs are utilized for gene therapy, and while these constructs have shown promise in mouse models, the functional integrity of these proteins is not well described. Here, we compare the biophysical properties of full-length dystrophin and utrophin with therapeutically relevant miniaturized constructs using an insect cell expression system. Full-length utrophin, like dystrophin, displayed a highly cooperative melting transition well above 37°C. Utrophin constructs involving N-terminal, C-terminal or internal deletions were remarkably stable, showing cooperative melting transitions identical to full-length utrophin. In contrast, large dystrophin deletions from either the N- or C-terminus exhibited variable stability, as evidenced by melting transitions that differed by 20°C. Most importantly, deletions in the large central rod domain of dystrophin resulted in a loss of cooperative unfolding with increased propensity for aggregation. Our results suggest that the functionality of dystrophin therapeutics based on mini- or micro-constructs may be compromised by the presence of non-native protein junctions that result in protein misfolding, instability and aggregation.  相似文献   

19.
E2F1 deletion leads to increased mitochondrial number and function, increased body temperature in response to cold and increased resistance to fatigue with exercise. Since E2f1-/- mice show increased muscle performance, we examined the effect of E2f1 genetic inactivation in the mdx background, a mouse model of Duchenne muscular dystrophy (DMD). E2f1-/-;mdx mice demonstrated a strong reduction of physiopathological signs of DMD, including preservation of muscle structure, decreased inflammatory profile, increased utrophin expression, resulting in better endurance and muscle contractile parameters, comparable to normal mdx mice. E2f1 deficiency in the mdx genetic background increased the oxidative metabolic gene program, mitochondrial activity and improved muscle functions. Interestingly, we observed increased E2F1 protein levels in DMD patients, suggesting that E2F1 might represent a promising target for the treatment of DMD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号