首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dispersion/incorporation of Eudragit S100 powder as a filler in cellulose acetate butyrate (CAB-551-0.01) microsphere containing theophylline was investigated as a means of controlling drug release. Microspheres of CAB-551-0.01 of different polymer solution concentrations/viscosities were prepared (preparations Z(0), Z(A), Z(B) and Z(C)) and evaluated and compared to microspheres of a constant concentration of CAB-551-0.01 containing different amounts of Eudragit S100 powder as a filler (preparations X(A), X(B) and X(C)). The organic solvent acetonitrile used was capable of dissolving the matrix former CAB-551-0.01 only but not Eudragit S100 powder in the emulsion-solvent evaporation method. The CAB-551-0.01 concentration in Z(A), Z(B) and Z(C) was equal to the total polymer concentration (CAB-551-0.01 and Eudragit S100 powder) in X(A), X(B) and X(C), respectively. Scanning electron microscopy (SEM) was used to identify microspheres shape and morphology. In vitro dissolution studies were carried out on the microspheres at 37 degrees C (+/-0.5 degrees C) at two successive different pH media (1.2 +/- 0.2 for 2 h and 6.5 +/- 0.2 for 10 h). Z preparations exhibited low rates of drug release in the acidic and the slightly neutral media. On the other hand, X preparations showed an initial rapid release in the acidic medium followed by a decrease in the release rate at the early stage of dissolution in the slightly neutral pH which could be due to some relaxation and gelation of Eudragit S100 powder to form a gel network before it dissolves completely allowing the remained drug to be released.  相似文献   

2.
The aim of this study was to prepare and evaluate Eudragit (RS and RL) microspheres containing acetazolamide. Microspheres were prepared by solvent evaporation method using acetone/liquid paraffin system. The influence of formulation factors (stirring speed, polymer:drug ratio, type of polymer, ratio of the combination of polymers) on particle size, encapsulation efficiency and in vitro release characteristics of the microspheres were investigated. The yields of preparation and the encapsulation efficiencies were high for all formulations the microspheres were obtained. Mean particle size changed by changing the polymer:drug ratio or the stirring speed of the system. Although acetazolamide release rates from Eudragit RS microspheres were very slow and incomplete for all formulations, they were fast from Eudragit RL microspheres. When Eudragit RS was added to Eudragit RL microsphere formulations, release rates slowed down and achieved the release profile suitable for peroral administration.  相似文献   

3.
Microspheres containing verapamil hydrochloride (VRP) were prepared with various polymethacrylates, with different permeability characteristics (Eudragit RS 100, Eudragit RL 100, Eudragit L 100 and Eudragit L 100-55) and also with mixtures of these polymers in a 1:1 ratio using the solvent evaporation method. The aim was to investigate the effects of the permeability of the polymers on drug release rates and the characteristics of the microspheres. To achieve these aims, yield, incorporation efficiency, particle size and the distribution of microspheres were determined, and the influence of the inner phase viscosities prepared with different polymer and polymer mixtures on particle size and the distribution of microspheres were evaluated. Surface morphologies of microspheres were observed by scanning electron microscope. Drug release rates from microspheres were determined by the half-change method using a flow-through cell. The results indicate that microspheres with different surface morphologies and statistically different yields and incorporation efficiencies could be prepared and their particle size and distribution xariances resulted from the viscosity of the inner phase. Dissolution profiles showed that the drug release rate could be modified depending on the permeability characteristics of polymethacrylates.  相似文献   

4.
Microspheres containing verapamil hydrochloride (VRP) were prepared with various polymethacrylates, with different permeability characteristics (Eudragit RS 100, Eudragit RL 100, Eudragit L 100 and Eudragit L 100-55) and also with mixtures of these polymers in a 1:1 ratio using the solvent evaporation method. The aim was to investigate the effects of the permeability of the polymers on drug release rates and the characteristics of the microspheres. To achieve these aims, yield, incorporation efficiency, particle size and the distribution of microspheres were determined, and the influence of the inner phase viscosities prepared with different polymer and polymer mixtures on particle size and the distribution of microspheres were evaluated. Surface morphologies of microspheres were observed by scanning electron microscope. Drug release rates from microspheres were determined by the half-change method using a flow-through cell. The results indicate that microspheres with different surface morphologies and statistically different yields and incorporation efficiencies could be prepared and their particle size and distribution variances resulted from the viscosity of the inner phase. Dissolution profiles showed that the drug release rate could be modified depending on the permeability characteristics of polymethacrylates.  相似文献   

5.
Microspheres containing the anti-hypertension drug, felodipine, were prepared by the emulsion solvent evaporation method (o/o) using acrylate methacrylate copolymers, Eudragit RL PO and Eudragit RS PO, as wall materials. In order to increase the encapsulation efficiency, a mixed solvent system comprising 1:1 proportions of acetonitrile and dichloromethane was used as a dispersed phase. The morphology of the microspheres was evaluated using a scanning electron microscope, which showed a spherical shape with smooth surface. The mean sphere diameter was between 9.5-13.2 microm and the microencapsulation efficiencies ranged from 51.4-80.4%. The release profiles and encapsulation efficiencies depended strongly on the structure of the polymers used as wall materials. The release rate of the Eudragit RS PO microspheres was much lower than that of Eudragit RL PO microspheres. Whereas Eudragit RL PO microspheres followed the Higuchi rule, Eudragit RS PO microspheres exhibited a triphasic release profile. It is concluded that drug release rate can be controlled by choice of polymer type.  相似文献   

6.
The objectives of this investigation are to evaluate the effect of the viscosity of polymer solution phase on microsphere properties, especially the drug release characteristics since no studies on this formulation variable have been reported. Also, since it is known that polymer molecular weight affects both the viscosity of the polymer solution and the release properties of microspheres, the interaction of these factors was studied. Microspheres with 33% theoretical drug loading of anhydrous theophylline core material were prepared by the emulsion solvent evaporation method. Two cellulose acetate butyrate polymers, (CAB381-2, CAB381-20), chemically similar but having different molecular weights, were used to prepare different polymer solutions having different apparent viscosities in acetone. A Brookfield viscometer was used to evaluate the viscosities of polymer solutions. Dissolution rates of microspheres prepared from the polymer solutions were inversely related to the initial polymer solution viscosities for both CAB381-2 and CAB381-20. The times for the release of 30 and 50% of the drug from the microspheres have a linear relationship with initial polymer solution viscosity. Initial release was significantly decreased with increasing polymer solution viscosity. Unlike CAB381-2 microspheres which follow Higuchi spherical matrix release kinetics, microspheres prepared from the higher molecular weight polymer (CAB381-20) showed extended release dissolution profiles with near zero order kinetics. It is evident that both the polymer solution viscosity and the molecular weight have an effect on the drug release from microspheres. These results suggest that release rates of matrix microspheres could be predictably optimized by adjusting the viscosity of polymer solutions.  相似文献   

7.
The objective of present investigation was to evaluate the entrapment efficiency of the anti-HIV drug, zidovudine, using two Eudragit polymers of different permeability characteristics and to study the effect of this entrapment on the drug release properties. In order to increase the entrapment efficiency optimum concentration of polymer solutions were prepared in acetone using magnesium stearate as droplet stabilizer. The morphology of the microspheres was evaluated using a scanning electron microscope, which showed a spherical shape with smooth surface. The mean sphere diameter was between 1000-3000 microm and the entrapment efficiencies ranged from 56.4-87.1%. Polymers were used separately and in combination to prepare different microspheres. The prepared microspheres were studied for drug release behavior in phosphate buffer at pH 7.4, because the Eudragit polymers are independent of the pH of the dissolution medium. The release profiles and entrapment efficiencies depended strongly on the structure of the polymers used as wall materials. The release rate of zidovudine from Eudragit RS 100 microspheres was much lower than that from Eudragit RL 100 microspheres. Evaluation of release data reveals that release of zidovudine from Eudragit RL 100 microspheres followed the Higuchi rule, whereas Eudragit RS 100 microspheres exhibited an initial burst release, a lag period for entry of surrounding dissolution medium into polymer matrix and finally, diffusion of drug through the wall material.  相似文献   

8.
Modified release microspheres of the non-steroidal anti-inflammatory drug, ibuprofen, were formulated and prepared using the emulsion solvent diffusion technique. The contribution of various dispersed phase and continuous phase formulation factors on in vitro drug release and micromeritic characteristics of microspheres was examined. The results demonstrated that the use of Eudragit RS 100 and Eudragit RL 100 as embedding polymers modified the drug release properties as a function of polymer type and concentration. Eudragit RS 100 retarded ibuprofen release from the microspheres to a greater extent than Eudragit RL 100. The drug/polymer concentration of the dispersed phase influenced the particle size and drug release properties of the formed microspheres. It was found that the presence of emulsifier was essential for microsphere formation. Increasing the concentration of emulsifier, sucrose fatty acid ester F-70, decreased the particle size which contributed to increased drug release properties. Scanning electron microscopy revealed profound distortion in both the shape and surface morphology of the microspheres with the use of magnesium stearate as added emulsifier. The application of an additional Eudragit RS 100 coat onto formed microspheres using fluid bed technology was successful and modulated the drug release properties of the coated microspheres.  相似文献   

9.
Modified release microspheres of the non-steroidal anti-inflammatory drug, ibuprofen, were formulated and prepared using the emulsion solvent diffusion technique. The contribution of various dispersed phase and continuous phase formulation factors on in vitro drug release and micromeritic characteristics of microspheres was examined. The results demonstrated that the use of Eudragit RS 100 and Eudragit RL 100 as embedding polymers modified the drug release properties as a function of polymer type and concentration. Eudragit RS 100 retarded ibuprofen release from the microspheres to a greater extent than Eudragit RL 100. The drug/polymer concentration of the dispersed phase influenced the particle size and drug release properties of the formed microspheres. It was found that the presence of emulsifier was essential for microsphere formation. Increasing the concentration of emulsifier, sucrose fatty acid ester F-70, decreased the particle size which contributed to increased drug release properties. Scanning electron microscopy revealed profound distortion in both the shape and surface morphology of the microspheres with the use of magnesium stearate as added emulsifier. The application of an additional Eudragit RS 100 coat onto formed microspheres using fluid bed technology was successful and modulated the drug release properties of the coated microspheres.  相似文献   

10.
The object of our work is to develop mucoadhesive microspheres to be applied into the urinary bladder. In the present study the microspheres were prepared and the release of a model drug after their adhesion to mucosa was evaluated. The microspheres were prepared by solvent evaporation method using Eudragit RL or hydroxypropylcellulose as matrix polymers and one out of five different polymers as mucoadhesives or non-mucoadhesive references. A method for the evaluation of the drug release from microspheres adhered on guinea pig urinary bladder and small intestine mucosa was developed and the influence of the following parameters on this process was followed: mucoadhesion strength of polymeric films, swelling of polymers and the drug release from microspheres. The results showed that the detachment forces were decreasing in the following order: CMCNa > Carbopol 934P > HPC > EE.HCl = PVP/VA. Carbopol swelled to the largest volume among all polymers and the drug release from microspheres was more retarded when Eudragit RL was used as matrix polymer. When comparing the results of pipemidic acid release from microspheres adhered on intestinal mucosa with detachment forces, similar ratios among the mucoadhesive polymers can be seen. On the other hand, differences between two mucosae were observed. These differences are due to the amount of mucus on mucosa and might also be influenced by the charge of mucus. The goal of our work at this point of investigation was achieved by microspheres containing carboxymethylcellulose as mucoadhesive and Eudragit RL as matrix polymer because they provide the longest release time from microspheres adhered on vesical mucosa and sufficient high strength of mucoadhesion.  相似文献   

11.
The aim of this study was to prepare and evaluate microspheres containing ibuprofen. Microspheres were prepared by modified quasi-emulsion solvent diffusion method. The influence of formulation factors (drug-polymer ratio, volumes of solvent, polyvinyl alcohol concentration and type of polymer) on the morphology, particle size distribution, drug loading capacity, micromeritical properties and the in vitro release characteristics of the microspheres were investigated. Physical characterizations of ibuprofen microspheres were also carried out using scanning electron microscopy, X-ray diffractometry and IR spectrophotometry. It was found that the yield of preparation was dependent on the initial temperature gradient between the emulsion phases. When there was an initial difference of temperature between the aqueous phase and dispersed emulsion phases, yield of preparation was increased distinctly. The drug loading capacities were very high for all formulations of the microspheres which were obtained. Mean particle size changed by changing the drug-polymer ratio, volumes of solvent or polyvinyl alcohol concentration. The flow properties were much improved over those of the original crystals. In vitro dissolution results showed that the release rate of ibuprofen was modified in all formulations. Although ibuprofen release rates from Eudragit RS microspheres were very slow, they were fast from Eudragit RL microspheres. These results observed that if Eudragit RS and Eudragit RL are used in combination, optimum release profiles may be obtained.  相似文献   

12.
乳化-溶剂扩散法制备克拉霉素缓释微球   总被引:1,自引:0,他引:1  
目的探讨克拉霉素缓释微球的制备工艺。方法以Eudragit RS/RL为囊材,采用乳化一溶剂扩散法制备克拉霉素缓释微球,考察对微球质量、收率、载药量和包封率有影响的处方因素。结果EudragitRS/RL与药物按4:1混合时可得到成形性较好、表面光滑、均匀圆整、分散性好的克拉霉素微球。克拉霉素微球的粒径范围为88~180μm,微球的收率为76.0%,载药量为17.8%,包封收率为67.0%。在pH=5.0的磷酸缓冲液中微球中的克拉霉素缓慢释放。结论乳化-溶剂扩散法适合于克拉霉素缓释微球制备。  相似文献   

13.
Poly (lactic-co-glycolic acid) (PLGA) microspheres containing all-trans retinoic acid (atRA) were prepared by emulsion/solvent evaporation technique. PLGA (50:50) with inherent viscosities of 0.17 and 0.39 dL g(-1) was used. Polyvinyl alcohol (PVA) or PVA and sodium oleate (SO) combinations (4:1) were used to stabilize the emulsions. The effect of polymer viscosity, emulsifier type and concentration on the in vitro release of atRA from the microspheres was investigated. The stability of the microparticles was also tested at the temperatures of 4, 25 and 40 degrees C. The particle size ranged between 1-2 microm. Microspheres were smooth and spherical in shape, as determined by scanning electron microscope (SEM) photographs. The yield of microspheres ranged from 50-75% and the encapsulation efficiency was determined between 45-75%. In vitro release studies showed that atRA release from microspheres lasted for 11 days.  相似文献   

14.
To prevent a rapid drug release from alginate microspheres in simulated intestinal media, alginate microspheres were coated or blended with polymers. Three polymers were selected and evaluated such as HPMC, Eudragit RS 30D and chitosan, as both coating materials and additive polymers for controlling the drug release. This study focused on the release characteristics of polymer-coated and blended alginate microspheres, varying the type of polymer and its concentration. The alginate microspheres were prepared by dropping the mixture of drug and sodium alginate into CaCl(2) solution using a spray-gun. Polymer-coated microspheres were prepared by adding alginate microspheres into polymer solution with mild stirring. Polymer-blended microspheres were prepared by dropping the mixture of drug, sodium alginate and additive polymer with plasticizer into CaCl(2) solution. In vitro release test was carried out to investigate the release profiles in 500 ml of phosphate buffered saline (PBS, pH 7.4). As the amount of polymer in sodium alginate or coating solution increase, the drug release generally decreased. HPMC-blended microspheres swelled but withstood the disintegration, showing an ideal linear release profiles. Chitosan-coated microspheres showed smooth and round surface and extended the release of drug. In comparison with chitosan-coated microspheres, HPMC-blended alginate microspheres can be easily made and used for controlled drug delivery systems due to convenient process and controlled drug release.  相似文献   

15.
This study investigated the influence of viscosity and uronic acid composition of alginates on the properties of alginate films and microspheres produced by emulsification. Tensile properties of films were determined while the yield, size, drug contents and release characteristics of the microspheres were examined. Tensile properties of calcium alginate matrix were significantly affected by the orientation and arrangement of the polymer chains. High viscosity alginates gave rise to higher yields and bigger microspheres. Generally, microspheres with high drug content and slower rate of drug release had high Ca2+ contents and were produced from alginates of higher viscosity. Within an alginate microsphere batch, small sized microsphere fractions had higher drug contents but showed faster drug release rates. Microspheres having a defined size range revealed great dependence of encapsulation efficiency and drug release rates on viscosity and extent of Ca2+-alginate interaction. Viscosity appeared to exert a predominant influence on the microsphere properties.  相似文献   

16.
This study investigated the influence of viscosity and uronic acid composition of alginates on the properties of alginate films and microspheres produced by emulsification. Tensile properties of films were determined while the yield, size, drug contents and release characteristics of the microspheres were examined. Tensile properties of calcium alginate matrix were significantly affected by the orientation and arrangement of the polymer chains. High viscosity alginates gave rise to higher yields and bigger microspheres. Generally, microspheres with high drug content and slower rate of drug release had high Ca2+ contents and were produced from alginates of higher viscosity. Within an alginate microsphere batch, small sized microsphere fractions had higher drug contents but showed faster drug release rates. Microspheres having a defined size range revealed great dependence of encapsulation efficiency and drug release rates on viscosity and extent of Ca2+-alginate interaction. Viscosity appeared to exert a predominant influence on the microsphere properties.  相似文献   

17.
The aim of this work was to understand the influence of polymer interaction and distribution on drug release from microparticles fabricated from blends of polymers. Blends of pH dependent polymer (Eudragit S, soluble above pH 7) and pH independent polymer (Eudragit RL, Eudragit RS or ethylcellulose) were incorporated into prednisolone loaded microparticles using a novel emulsion solvent evaporation method. Microparticles fabricated from blends of Eudragit S and Eudragit RL or RS did not modify drug release compared to microparticles fabricated from Eudragit S alone. This can be attributed to the high degree of miscibility of Eudragit S with Eudragit RS or Eudragit RL within the microparticles as confirmed by glass transition temperature measurements and confocal laser scanning microscopy. In contrast, microparticles prepared from blends of Eudragit S (75%) and ethylcellulose (25%) extended the release of prednisolone at pH 7.4 (compared to Eudragit S microparticles). This change in release profile was related to the immiscibility of Eudragit S and ethylcellulose as assessed by thermal analysis, and confirmed by microscopy which showed pores within the microparticle structures following dissolution of the Eudragit S domains. The ability of water insoluble polymers to extend drug release from enteric polymer microparticles is dependent on the miscibility and interaction of the polymers. This knowledge is important in the design of pH responsive microparticles capable of extending drug release in the gastrointestinal tract.  相似文献   

18.
Ketoprofen powder was encapsulated with Eudragit RL/RS polymer solutions in isopropanol-acetone 1:1, using a simple and rapid method. Microcapsules were prepared using Eudragit solutions with different RL/RS ratios. The encapsulation process produces free-flowing microcapsules with good drug content and marked decrease in dissolution rate. The retardation in release profile of ketoprofen from microcapsules was a function of the polymer ratio employed in the encapsulation process. In vitro release of ketoprofen from microcapsules either filled in gelatin capsules or compressed into tablets, using calcium sulphate as diluent, confirmed the efficiency of the encapsulation process for preparing prolonged release medication. A capsule formulation with optimum sustained-release profile was suggested.  相似文献   

19.
The aim of the present work was to prepare and evaluate the sustained release of potassium chloride formulations. Eudragit RS and/or RL loaded with potassium chloride microspheres were prepared by a solvent evaporation method. The effect of sustained release of Eudragit microspheres was evaluated by an in vitro dissolution test and in vivo oral absorption study, and the results were compared to a commercial product (Slow-K). The results showed that Eudragit microspheres loaded with potassium chloride can be easily prepared and satisfactory results obtained considering the size distribution and shapes of microspheres by incorporating aluminum stearate. The encapsulation efficiency and loading capacity were about 84-90% and 27%, respectively. Moreover, the Eudragit RS (30-45 mesh) and Eudragit RS/RL (20-30 mesh) microspheres showed a similar sustained release effect of commercial product via in vitro dissolution and in vivo oral absorption study.  相似文献   

20.
Abstract

Ketoprofen powder was encapsulated with Eudragit RL/RS polymer solutions in isopropanol-acetone 1:1, using a simple and rapid method. Microcapsules were prepared using Eudragit solutions with different RL/RS ratios. The encapsulation process produces free-flowing microcapsules with good drug content and marked decrease in dissolution rate. The retardation in release profile of ketoprofen from microcapsules was a function of the polymer ratio employed in the encapsulation process. In vitro release of ketoprofen from microcapsules either filled in gelatin capsules or compressed into tablets, using calcium sulphate as diluent, confirmed the efficiency of the encapsulation process for preparing prolonged release medication. A capsule formulation with optimum sustained-release profile was suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号