首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contractions and overflow of tritium and ATP elicited by hypogastric nerve stimulation (HNS) and field stimulation (FS) were studied in the guinea-pig isolated vas deferens preincubated with [3H]-noradrenaline. ATP was measured by means of the luciferin-luciferase technique.HNS and FS elicited contraction, tritium overflow and ATP overflow. HNS at supramaximal current strength produced smaller responses than did FS at supramaximal current strength (210 pulses/7 Hz). Supramaximal HNS and submaximal FS were used in the remainder of the study. Prazosin (0.3 mol/l) reduced contractions and the overflow of ATP elicited by both HNS and FS; the evoked overflow of tritium was not changed (210 pulses/7 Hz). Combined administration of prazosin (0.3 mol/l) and suramin (300 mol/l) abolished contractions and reduced the overflow of ATP elicited by both HNS and FS slightly more than did prazosin alone; tritium overflow again was not changed (210 pulses/7 Hz). Contractions, tritium overflow and ATP overflow increased with the frequency of both HNS and FS (from 7 to 25 Hz; 210 pulses); the increase in ATP overflow with frequency was more marked than the increase in tritium overflow. The preferential increase of ATP overflow with the frequency of HNS and FS persisted in the combined presence of prazosin (0.3 mol/l) and suramin (300 mol/l).The study confirms for HNS, a more physiologic way of sympathetic nerve stimulation, several observations previously obtained with FS. First, HNS-evoked ATP release is detectable as an overflow of ATP into the superfusion fluid. Second, a large part of the HNS-evoked release of ATP is postjunctional in origin, due to activation of post-junctional 1-adrenoceptors and presumably P2-purinoceptors. Third, the average neural release of ATP per pulse facilitates with the frequency of stimulation to a greater extent than the average release of noradrenaline per pulse.  相似文献   

2.
The purinergic response of the guinea-pig vas deferens to long trains of pulses at high frequency consists of an initial twitch followed by a much lower plateau. Mechanical, neurochemical and electrophysiological techniques were used to examine the reason for the fade. Mechanical measurements. In tissues stimulated by trains of 180 pulses/10 Hz and treated with prazosin to suppress the noradrenergic contraction component, the response to ,-methylene ATP and to exogenous ATP was as high during the secondary plateau of the purinergic neurogenic contraction as it was outside electrical stimulation periods; the response to 50 pulses/100 Hz was also unchanged during the low plateau. The plateau was not increased by reactive blue 2, 8-(p-sulphophenyl)theophylline, propranolol or capsaicin. Neurochemical measurements. In tissues preincubated with [3H]-noradrenaline, electrical stimulation elicited an overflow of tritium and of ATP. In the absence of drugs as well as in the presence of prazosin and suramin to suppress contractions, the overflow of tritium per pulse decreased slightly in the course of trains of 90 pulses/10 Hz; the overflow of ATP per pulse decreased to a greater extent on average, but the decrease was not statistically significant. In the presence of prazosin and nifedipine, also to suppress contractions, the overflow of tritium per pulse again decreased slightly in the course of trains of 105 pulses/10 Hz, but the overflow of ATP per pulse if anything tended to increase. Electrophysiological measurements. Extracellular recording in the presence of prazosin showed that electrical stimulation by 180 pulses/10 Hz elicited excitatory junction currents (EJCs) which facilitated and summated to reach threshold for the initiation of action potentials in the smooth muscle cells. In most tissues, smooth muscle action potentials ceased after a few seconds although EJCs continued. Intracellular recording in the presence of prazosin and nifedipine showed that excitatory junction potentials (EJPs) elicited by 180 pulses/10 Hz facilitated and summated to a plateau after about 10 stimuli. The EJPs continued unchanged, and the plateau depolarization was maintained, throughout the train.It is concluded that the fade of the purinergic neurogenic contraction is not due to P2Y-purinoceptor desensitization. It also is not due to a secondary relaxation mediated by P2Y- or P1-purinoceptors, -adrenoceptors or a compound originating from primary afferent axons. Moreover, a fade of the release of ATP in the course of the pulse train is not responsible for the contraction fade. Rather, the reason is a failure of the process by which the smooth muscle cell depolarization triggers action potentials. Inactivation of l-type Ca2+ channels that are under the control of released ATP may be the underlying mechanism. Correspondence to: B. Driessen at the above address  相似文献   

3.
The effect of P1-purinoceptor activation on contractions, release of noradrenaline and release of ATP elicited by electrical field stimulation (210 pulses, 7 Hz) was studied in the superfused vas deferens of the guinea pig. Release of noradrenaline was assessed as overflow of total tritium after preincubation with [3H]-noradrenaline. ATP was measured by means of the luciferinluciferase technique.Electrical stimulation elicited reproducible contraction, tritium overflow and ATP overflow. In the absence of other drugs, adenosine (10–100 M) did not change evoked contractions but reduced the evoked overflow of tritium and ATP. In subsequent experiments 1-adrenoceptors were blocked by prazosin, P2-purinoceptors by suramin and 2-adrenoceptors by rauwolscine. No or almost no contraction remained under these conditions. The evoked overflow of tritium was 505% and the evoked overflow of ATP 34% of that observed in the absence of prazosin, suramin and rauwolscine. Adenosine (1–100 M) again reduced the evoked overflow of tritium and ATP, and so did the A1-selective agonist 2-chloro-N6-cyclopentyladenosine (CCPA; 0.032–0.32 M). Adenosine and CCPA decreased the evoked overflow of ATP to a greater extent than the evoked overflow of tritrium.It is concluded that neural release of both postganglionic sympathetic cotransmitters, noradrenaline and ATP, is decreased upon activation of prejunctional P1- (A1-) purinoceptors in guinea-pig vas deferens. The A1-receptor-mediated inhibition of the release of ATP is more marked than the inhibition of the release of noradrenaline, a pattern opposite to the inhibition produced by activation of prejunctional 2-autoreceptors. Correspondence to: B. Driessen at the above address  相似文献   

4.
  1. The site(s) at which diadenosine 5′,5′′′-P1,P4-tetraphosphate (AP4A) and diadenosine 5′, 5′′′-P1,P5-pentaphosphate (AP5A) act to evoke contraction of the guinea-pig isolated vas deferens was studied by use of a series of P2-receptor antagonists and the ecto-ATPase inhibitor 6-N,N-diethyl-D-β,γ-dibromomethyleneATP (ARL 67156).
  2. Pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS) (300 nM–30 μM), suramin (3–100 μM) and pyridoxal-5′-phosphate (P-5-P) (3–1000 μM) inhibited contractions evoked by equi-effective concentrations of AP5A (3 μM), AP4A (30 μM) and α,β-methyleneATP (α,β-meATP) (1 μM), in a concentration-dependent manner and abolished them at the highest concentrations used.
  3. PPADS was more potent than suramin, which in turn was more potent than P-5-P. PPADS inhibited AP5A, AP4A and α,β-meATP with similar IC50 values. No significant difference was found between IC50 values for suramin against α,β-meATP and AP5A or α,β-meATP and AP4A, but suramin was more than 2.5 times more potent against AP4A than AP5A. P-5-P showed the same pattern of antagonism.
  4. Desensitization of the P2X1-receptor by α,β-meATP abolished contractions evoked by AP5A (3 μM) and AP4A (30 μM), but had no effect on those elicited by noradrenaline (100 μM).
  5. ARL 67156 (100 μM) reversibly potentiated contractions evoked by AP4A (30 μM) by 61%, but caused a small, significant decrease in the mean response to AP5A (3 μM).
  6. It is concluded that AP4A and AP5A act at the P2X1-receptor, or a site similar to the P2X1-receptor, to evoke contraction of the guinea-pig isolated vas deferens. Furthermore, the potency of AP4A, but not AP5A, appears to be inhibited by an ecto-enzyme which is sensitive to ARL 67156.
  相似文献   

5.
  1. The effects of adenosine receptor agonists upon both electrically-evoked and phenylephrine-induced contractile responses were investigated in the bisected vas deferens and the cauda epididymis of the guinea-pig. Electrical field-stimulation (10 s trains of pulses at 9 Hz, 0.1 ms duration, supramaximal voltage) elicited biphasic and monophasic contractile responses from preparations of bisected vas deferens and cauda epididymis, respectively; these responses were abolished by tetrodotoxin (300 nM).
  2. In the prostatic half of the vas deferens the A1 selective adenosine receptor agonists, N6-cyclopentyladenosine (CPA) and (2S)-N6-[2-endo-norbornyl]adenosine ((S)-ENBA) and the non-selective A1/A2 adenosine receptor agonist, 5′-N-ethylcarboxamidoadenosine (NECA) inhibited electrically-evoked contractions (pIC50±s.e.mean values 6.15±0.24, 5.99±0.26 and 5.51±0.24, respectively). The responses to CPA were blocked by the A1 adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine, DPCPX (100 nM).
  3. In the epididymal half of the vas deferens NECA potentiated (at ⩽100 nM) and inhibited (at ⩾1 μM) electrically-evoked contractions. In the presence of the non-selective α-adrenoceptor antagonist phentolamine (3 μM), the α1-adrenoceptor antagonist, prazosin (100 nM), or at a reduced train length (3 s) NECA inhibited electrically-evoked contractions (pIC50 values 6.05±0.25, 5.97±0.29 and 5.71±0.27, respectively). CPA (at 10 μM) also inhibited electrically-evoked contractions in this half of the vas deferens. In the presence of prazosin (100 nM), CPA also inhibited electrically-evoked contractions (pIC50 6.14±0.67); this effect was antagonized by DPCPX (30 nM, apparent pKB 8.26±0.88). In the presence of the P2 purinoceptor antagonist, suramin (300 μM), CPA (up to 1 μM) potentiated electrically-evoked contractions.
  4. NECA, CPA and APNEA potentiated electrically-evoked contractions in preparations of cauda epididymis (pEC50 values 7.49±0.62, 7.65±0.74 and 5.84±0.86, respectively), the response to CPA was competitively antagonized by DPCPX (100 nM) with an apparent pKB value of 7.64±0.64.
  5. The α1-adrenoceptor agonist phenylephrine elicited concentration-dependent contractile responses from preparations of bisected vas deferens and cauda epididymis. NECA (1 μM) potentiated responses to phenylephrine (⩽1 μM) in the epididymal, but not in the prostatic half of the vas deferens. In preparations of epididymis NECA (1 μM) shifted phenylephrine concentration response curves to the left (4.6 fold). In the presence of a fixed concentration of phenylephrine (1 μM), NECA elicited concentration-dependent contractions of preparations of the epididymal half of the vas deferens and of the epididymis (pEC50 values 7.57±0.54 and 8.08±0.18, respectively). NECA did not potentiate responses to ATP in either the epididymal half of the vas deferens or the epididymis.
  6. These studies are consistent with the action of stable adenosine analogues at prejunctional A1 and postjunctional A1-like adenosine receptors. The prejunctional A1 adenosine receptors only inhibit the electrically-evoked contractions of purinergic origin (an effect predominant in the prostatic half of the vas deferens). At the epididymis, where electrically-evoked contractions are entirely adrenergic, the predominant adenosine receptor agonist effect is a potentiation of α1-adrenoceptor-, but not of ATP-induced contractility.
  相似文献   

6.
Effects of angiotensin II and prostaglandin E2 on contractions, release of noradrenaline and release of ATP elicited by electrical stimulation (210 pulses, 7 Hz) were studied in the isolated vas deferens of the guinea pig. Release of noradrenaline was assessed as overflow of tritium after preincubation with [3H]-noradrenaline. ATP was measured by means of the luciferin-luciferase technique. In some experiments postsynaptic a 1-adrenoceptors and P2X-purinoceptors were blocked by prazosin and suramin, respectively, to isolate the neural fraction of the overflow of ATP.Electrical stimulation elicited an overflow of tritium and ATP and, in the absence of prazosin and suramin, contraction. In the absence of prazosin and suramin, angiotensin II (1–100 nM) enhanced contractions as well as the evoked overflow of tritium and ATP. All parameters were increased by about the same percentage for a given concentration of angiotensin 11. The effect of prostaglandin E2 (1–100 nM) was complex. Contractions were mainly enhanced, the evoked overflow of tritium was reduced, whereas the evoked overflow of ATP was predominantly increased. No or almost no contraction remained in the presence of prazosin and suramin, and the evoked overflow of ATP was decreased to about 16%. Angiotensin II (1–100 nM) again enhanced the evoked overflow of tritium and ATP. Both were increased by about the same percentage for a given concentration of angiotensin II and also were increased by about the same percentage as obtained in the absence of prazosin and suramin. Prostaglandin E2 (1–100 nM) decreased the evoked overflow of tritium and ATP in the presence of prazosin and suramin, both by about the same percentage at a given prostaglandin E2 concentration.It is concluded that neural release of ATP, like the release of noradrenaline, is presynaptically facilitated by angiotensin II and depressed by prostaglandin E2. In the case of angiotensin II, increases in neural and postsynaptic ATP release contribute to the increase in ATP over flow observed in the absence of prazosin and suramin. In the case of prostaglandin E2, an increase in postsynaptic ATP release can override the reduction in neural ATP release and give rise to an increase in ATP overflow in the absence of prazosin and suramin. No evidence for a differential modulation of neural noradrenaline versus ATP release was found. Correspondence to: B. Driessen at the above address  相似文献   

7.
Summary In the rat vas deferens, DMPP is a substrate of uptake, (Krn = 11.5 mol/I). After block of vesicular uptake, monoamine oxidase and catechol-O-methyl transferase, after loading of the tissue with 3H-noradrenaline, and in calcium-free solution (i. e., when axoplasmic 3H-noradrenaline levels were high and when depolarization-induced exocytotic release was impossible), DMPP induced a pronounced outward transport of 3H-noradrenaline. On the other hand, when, in similar experiments, vesicular uptake and monoamine oxidase were intact (i.e., when axoplasmic 3H-noradrenaline levels were low), DMPP induced very little outward transport of 3H-noradrenaline. This discrepancy indicates that DMPP has little ability to mobilize vesicularly stored 3H-amine.When the medium contained calcium (catechol-O-methyl transferase inhibited, all other mechanisms intact), 100 (but not 10) mol/l DMPP induced a hexamethonium-sensitive release of 3H-noradrenaline of short duration. Hence, in the presence of extracellular calcium, 100 mol/l DMPP elicits exocytotic release via activation of hexamethonium-sensitive nicotinic acetylcholine receptors.DMPP inhibits the monoamine oxidase of rat heart homogenate with an IC50 of about 100 mol/l.Abbreviations COMT catechol-O-methyl transferase - DMPP dimethylphenylpiperazinium - DOMA dihydroxymandelic acid - DOPEG dihydroxyphenylglycol - MAO monoamine oxidase - NMN normetanephrine - OM-fraction column chromatographic fraction containing all O-methylated 3H-metabolites - OMDA fraction containing O-methylated and deaminated metabolites Supported by the Deutsche Forschungsgemeinschaft (SFB 176) Send offprint requests to U. Trendelenburg at the above address  相似文献   

8.

Background and purpose:

In rat vas deferens, nerve mediated-contractions to a single electrical stimulus consist of an early purinergic and a later adrenergic component with differing sensitivities to L-type calcium channel blockers. We have investigated the effects of the T-type calcium channel blockers mibefradil and (1S, 2S)-2-[2-[[3-(1H-benzimidazol-2-yl)propyl]methylamino]ethyl]-6-fluoro-1,2,3,4-tetrahydro-1-(1-methylethyl)-2-naphthalenyl cyclopropanecarboxylic dihydrochloride (NNC 55-0396) against contractions in rat vas deferens. In addition, the actions of thalidomide were examined.

Experimental approach:

Prostatic and epididymal portions of rat vas deferens were stimulated with a single electrical stimulus every 5 min, and mouse whole vas deferens was stimulated with 40 pulses at 10 Hz every 5 min.

Key results:

Both mibefradil and NNC 55-0396 (100 µM) produced inhibition of contractions of epididymal portions (42 ± 13%, n= 7, and 43 ± 4%, n= 15, of control respectively). However, both agents produced small inhibitions of responses in prostatic portions, presumably by L-type calcium channel block. Thalidomide (100 µM) inhibited contractions in epididymal (55 ± 4% of control, n= 17) but not in prostatic portions of rat vas deferens. Thalidomide (10–100 µM) also inhibited contractions in mouse vas deferens.

Conclusions and implications:

The T-type calcium channel blockers mibefradil and NNC 55-0396 block particularly the adrenoceptor-mediated, nifedipine-resistant response to nerve stimulation in rat vas deferens, and this may suggest that this component involves T-type calcium channels. In addition, thalidomide has actions that resemble those of the T-type calcium channel blockers, in that it blocks nifedipine-resistant contractions in epididymal portions.  相似文献   

9.
The aim of the present study was to characterize the prejunctional modulation of evoked release of endogenous noradrenaline in rabbit vas deferens by the use of muscarinic receptor agonists and subtype-prefering antagonists.Vasa deferentia of the rabbit were stimulated electrically by trains of 120 pulses delivered at 4 Hz or trains of 30 pulses at 1 Hz. The inhibition by muscarinic agonists of the stimulation-evoked overflow of endogenous noradrenaline in the absence and presence of antagonists was used to determine affinity constants for antagonists. These values were compared with those observed at putative M1 receptors inhibiting neurogenic twitch contractions in the rabbit vas deferens and with affinity data obtained at M1(m1)-M4(m5) receptors in functional studies and binding experiments.The evoked overflow of noradrenaline from sympathetic nerves was enhanced by the Al receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), the P2 purinoceptor antagonist pyridoxalphosphate-6-azophenyl-2,4-disulfonic acid (PPADS) and indomethacin, indicating a tonic inhibition by endogenous A1 and P2 purinoceptor agonists and prostanoids, respectively. The stimulation-evoked overflow at 4 Hz was not sensitive to inhibition by the muscarinic agonists methacholine or 4-(4-chlorophenylcarbamoyloxy)-2-butynyltrimethylammonium iodide (4-Cl-McN-A-343). In contrast, at a stimulation frequency of 1 Hz the evoked noradrenaline release was decreased by muscarinic agonists (EC50): arecaidine propargyl ester (0.062 M), 4-Cl-McN-A-343 (0.32 M), 4-(4-fluorophenylcarbamoyloxy)-2-butynylN-methyl-pyrrolidinium tosylate (4-F-PyMcN+; 0.48 M) and methacholine (0.86 M). The affinity constants of most of the muscarinic antagonists [atropine: pKB = 9.47; (R)-trihexyphenidyl: pKB = 9.18; pirenzepine: pA2 = 7.68; methoctramine: pKB = 6.90] are consistent with estimates of these antagonists at M1(m1) receptors determined in various functional and binding studies. The high antagonistic potency of pirenzepine and (R)-trihexyphenidyl and the agonistic activity of 4-F-PyMcN+ argue for the involvement of M1, and against that of M2 and M3 receptors in the inhibition of evoked noradrenaline overflow. However, the high apparent pKB of 8.30 for himbacine is not in accordance with an M1 receptor; by contrast, it would be compatible with the presence of M2 or M4 receptors. The potencies of the tested muscarinic agonists and antagonists largely agree with those obtained for the inhibition of neurogenic twitch responses (0.05 Hz) in the rabbit vas deferens. In conclusion, the rabbit vas deferens is endowed with prejunctional muscarinic receptors mediating heteroinhibition of noradrenaline release that are probably of the same subtype as the putative M1 receptors inhibiting neurogenic twitch contractions, and are not of the M2, M3 or m5 subtype. Correspondence to: U. Grimm at the above address  相似文献   

10.
Contractions and overflow of tritium and ATP elicited by single electrical pulses or short pulse trains were studied in the guinea-pig isolated vas deferens preincubated with [3H]-noradrenaline. ATP was measured using the luciferase technique.A single pulse caused only a small contraction and minimal tritium and ATP overflow. In contrast, trains of 6 pulses elicited marked contractions as well as tritium and ATP overflow. In experiments with 6 pulses/100 Hz, prazosin 0.3 M reduced the contraction by 73 %, did not change the evoked overflow of tritium, and reduced the evoked overflow of ATP by 85%. Suramin 300 M reduced the contraction by 69% but changed neither the evoked overflow of tritium nor that of ATP. The combination of prazosin 0.3 gM and suramin 300 M abolished the contraction, did not change the evoked overflow of tritium, and reduced the evoked overflow of ATP by 70%. When 6 pulses were applied at frequencies of 1, 2, 10 or 100 Hz, all responses increased with frequency up to a maximum at 10 Hz, but contractions and the evoked overflow of ATP increased with frequency to a greater extent than the evoked overflow of tritium. A similar frequency overflow relationship was observed when the medium contained prazosin 0.3 M and suramin 300 M (and evoked ATP overflow was greatly reduced). Yohimbine 1 M did not affect the overflow of tritium evoked by 6 pulses/100 Hz but increased that evoked by 6 pulses/10 Hz.The results demonstrate an overflow of both noradrenaline and ATP in response to short pulse trains. As observed previously for prolonged pulse trains, the major part of the evoked overflow of ATP was derived from non-neural cells. The ATP overflow remaining during 1-adrenoceptor blockade by prazosin and P2-purinoceptor blockade by suramin is likely to reflect neural release of ATP. The results support the view that release of ATP increases with frequency to a greater extent than release of noradrenaline. The latency for the onset of prejunctional 2-autoinhibition in guinea-pig vas deferens is between 50 and 500 ms. Correspondence to: I. von Kügelgen at the above address  相似文献   

11.
Summary Effects of electrical stimulation and nicotine on ATP and tritium outflow and smooth muscle tension were studied in the guinea-pig isolated vas deferens preincubated with [3H]-noradrenaline. ATP was measured using the luciferase technique.Electrical stimulation caused biphasic contractions and an acceleration of ATP and tritium outflow. The contraction amplitude and the overflow of ATP increased markedly, whereas the overflow of tritium increased only slightly with the frequency of stimulation (1–10 Hz; constant number of 60 pulses). The contraction amplitude did not increase with an increase in pulse number (20–540 pulses; constant frequency of 5 Hz), whereas the overflow of ATP increased slightly, and that of tritium markedly. Nicotine caused monophasic, transient contractions and, again, an acceleration of ATP and tritium outflow. Contractions, ATP and tritium overflow increased with the concentration of nicotine (56–320 mol/l) in an approximately parallel manner. The influence of some drugs on responses to electrical stimulation (60 pulses, 5 Hz) and nicotine (180 mol/l) was investigated. Tetrodotoxin blocked all effects of electrical stimulation but did not change those of nicotine. The reverse was true for hexamethonium. Neither electrical stimulation nor nicotine caused contraction or an increase in ATP outflow after pretreatment with 6-hydroxydopamine. The main effects of prazosin 0.3 mol/l were to reduce electrically evoked contractions (above all second phase) as well as nicotine-evoked contractions and the nicotine-evoked overflow of ATP (the latter by about 81 %). Prazosin also tended to diminish the electrically evoked overflow of ATP. ,ß-Methylene-ATP 10 mol/l elicited a transient contraction and ATP overflow on its own. The main change in the subsequent state of desensitization was a decrease of the first phase of electrically evoked contractions. The main effects of prazosin combined with desensitization by ,ß-methylene-ATP were marked decreases of electrically evoked contractions (by 94%), the electrically evoked overflow ATP (by 66%), nicotine-evoked contractions (by 97%) and the nicotinee-voked overflow of ATP (by 70%).It is concluded that both electrical stimulation and nicotine release noradrenaline and ATP in guinea-pig vas deferens. Only part of the evoked overflow of ATP (about 32%) is neural in origin. Another part probably originates from smooth muscle cells where it is released by neurogenic noradrenaline acting at 1-adrenoceptors. Corelease leads to cotransmission: electrically as well as nicotine-evoked contractions consist of adrenergic and purinergic components. Varying types of stimulation release cotransmitter mixtures of varying composition. Electrical stimulation at high frequency (for example 10 Hz) and with low pulse numbers (for example 20 pulses) seems to release the cotransmitters at a relatively high ATP/noradrenaline ratio. Activation of prejunctional nicotine receptors seems to release the cotransmitters at a relatively low ATP/noradrenaline ratio. Send offprint requests to Ivar von Kügelgen at the above address  相似文献   

12.
Effects of drugs acting at P2-purinoceptors on the release of newly taken up [3H]-noradrenaline were studied in slices of mouse and rat vas deferens. The slices were superfused and stimulated electrically, in most experiments by trains of 60 pulses/8 Hz.In mouse vas deferens, the P2-purinoceptor antagonists reactive blue 2 (1.8–100 M) and brilliant blue G (10–300 M) increased the stimulation-evoked overflow of tritium in a concentration-dependent manner as shown previously for suramin. Reactive blue 2, which preferentially blocks the P2Y-subtype, was the most potent compound and the compound with highest maximal effect, an increase by 104%. Pyridoxalphosphate-6-azophenyl-2,4-disulfonic acid (PPADS), in contrast, caused a small increase only at a single concentration (30 M). The effects of reactive blue 2, brilliant blue G and suramin were not additive. The P2 agonist adenosine 5-O-(3-thio)-triphosphate (ATPS) reduced the evoked overflow of tritium. As shown previously for suramin, reactive blue 2 30 M and brilliant blue G 100 M antagonized the effect of ATPS. From the shift of the ATPS concentration-response curve to the right, an apparent pKB value of 5.3 was estimated for reactive blue 2 and an apparent pKB of 4.5 for brilliant blue G. In rat vas deferens, reactive blue 2 (3–30 M), brilliant blue G (10 M) and suramin (30–300 M) also increased the evoked overflow of tritium. As in the mouse, reactive blue 2 was the most potent compound and the compound with highest maximal effect, an increase by 9001o. As previously demonstrated in the mouse, suramin (300 M) increased the evoked overflow of tritium only when rat vas deferens slices were stimulated by trains of 60 pulses at 1 or 8 Hz, but not when they were stimulated by trains of 6 pulses/100 Hz.The results confirm the operation of a P2-purinoceptor-mediated prejunctional negative feedback controlling the release of noradrenaline in mouse vas deferens and demonstrate the same mechanism in rat vas deferens. The prejunctional P2-purinoceptors are P2Y-like in both species. They are a novel kind of autoreceptors, operating in parallel to prejunctional 2-autoreceptors. Correspondence to: I. von Kügelgen at the above address  相似文献   

13.
Summary Some ligand-gated ion channels are important sites of action of ethanol. The aim of the study was to find out whether the P2X-purinoceptors mediating contraction of the rat isolated vas deferens also are selectively sensitive to ethanol. Contractions were elicited by ATP (1 mmol/1), ,ß-methylene ATP (0.3 mol/1), noradrenaline (3 mol/1), high K+ (20 mmol/1) or electrical (neural) stimulation by pairs of pulses 3 s apart. In electrical stimulation experiments, purinergic and adrenergic response components were isolated by prazosin and suramin, respectively. Concentration-effect curves were determined for ethanol and, for comparison, nifedipine. Tritium outflow from tissues preincubated with 3H-noradrenaline was also examined.Ethanol at relatively low concentrations reduced contractions elicited by high K+ (IC30 145 mmol/1), ATP (IC30 211 mmol/1) and ,ß-methylene ATP(IC30 215 mmol/1) as well the purinergic component of neurogenic twitches (IC30 110-126 mmol/1; a significant effect at 10–32 mmol/1) and the adrenergic component of twitch 2 of the twitch pairs (IC30 63 mmol/1). These contractions also were very sensitive to nifedipine. Higher concentrations of ethanol were needed to reduce contractions elicited by noradrenaline (IC30 365 mmol/1) and the adrenergic component of twitch 1 of the twitch pairs (IC30 382 mmol/1), contractions that also were less sensitive to nifedipine. Ethanol 1 mol/l abolished all contractions. In contrast, concentration-effect curves for the inhibition by nifedipine of contractions evoked by ATP, ,ß-methylene ATP and noradrenaline (rapid phase) levelled off at 60–70% inhibition. The contractions that remained when these agonists were administered in the presence of nifedipine 10 mol/l were depressed by ethanol (IC30 242–387 mmol/1). Ethanol 320 mmol/1 did not change the electrically evoked overflow of tritium from vasa deferentia preincubated with 3H-noradrenaline.It is concluded that the P2X-purinoceptors of rat vas deferens smooth muscle, although ligand-gated ion channels, are not selectively sensitive to ethanol. The reduction of contractions can be explained by, first, an inhibition of L-type voltage-dependent Ca2+ channels for which relatively low concentrations of ethanol are needed, and second, a non-specific depressant effect at an unknown site or at unknown sites which requires relatively high concentrations. Correspondence to R. Bultmann at the above address  相似文献   

14.
  1. The sea urchin egg homogenate is an ideal model to characterize Ca2+-release mechanisms because of its reliability and high signal-to-noise-ratio. Apart from the InsP3- and ryanodine-sensitive Ca2+-release mechanisms, it has been recently demonstrated that this model is responsive to a third independent mechanism, that has the pyridine nucleotide, nicotinic acid adenine dinucleotide phosphate (NAADP), as an endogenous agonist.
  2. The sea urchin egg homogenate was used to characterize the pharmacological and biochemical characteristics of the novel Ca2+-releasing agent, NAADP, compared to inositol trisphosphate (InsP3) and cyclic ADP ribose (cyclic ADPR), an endogenous activator of ryanodine receptors.
  3. NAADP-induced Ca2+-release was blocked by L-type Ca2+-channel blockers and by Bay K 8644, while InsP3- and cyclic ADPR-induced Ca2+-release were insensitive to these agents. L-type Ca2+-channel blockers did not displace [32P]-NAADP binding, suggesting that their binding site was different. Moreover, stopped-flow kinetic studies revealed that these agents blocked NAADP in a all-or-none fashion.
  4. Similarly, a number of K+-channel antagonists blocked NAADP-induced Ca2+-release selectively over InsP3- and cyclic ADPR-induced Ca2+-release. Radioligand studies showed that these agents were not competitive antagonists.
  5. As has been shown for InsP3 and ryanodine receptors, NAADP receptors were sensitive to calmodulin antagonists, suggesting that this protein could be a common regulatory feature of intracellular Ca2+-release mechanisms.
  6. The presence of K+ was not essential for NAADP-induced Ca2+-release, since substitution of K+ with other monovalent cations in the experimental media did not significantly alter Ca2+ release by NAADP. On the contrary, cyclic ADPR and InsP3-sensitive mechanisms were affected profoundly, although to a different extent depending on the monovalent cation which substituted for K+. Similarly, modifications of the pH in the experimental media from 7.2 to 6.7 or 8.0 only slightly affected NAADP-induced Ca2+-release. While the alkaline condition permitted InsP3 and cyclic ADPR-induced Ca2+-release, the acidic condition completely hampered both Ca2+-release mechanisms.
  7. The present results characterize pharmacologically and biochemically the novel Ca2+-release mechanism sensitive to NAADP. Such characterization will help future research aimed at understanding the role of NAADP in mammalian systems.
  相似文献   

15.
Summary Effects of nucleotides and nucleosides on smooth muscle tension and the release of previously stored [3H]-noradrenaline were studied in the mouse isolated vas deferens. The tissue was stimulated twice by 20 electrical field pulses delivered at 2 Hz (S1, S2)., \-Methylene-ATP, ATPS, ATP and UTP elicited contraction, with potency decreasing in that order; there was no contractile response to adenosine (up to 100 mol/1) and uridine (up to 1 mmol/1). The electrically evoked overflow of tritium was reduced by the drugs in the following order of potency: ATPS > ATP = adenosine > UTP; ,\-meth-ylene-ATP (up to 10 µmol/l) and uridine (up to 1 mmol/1) did not significantly change the evoked overflow. 8-(p-Sulphophenyl)theophylline did not alter the contractile responses to the nucleotides; it prevented the overflow-inhibiting effect of adenosine and reduced that of UTP; the overflow-inhibiting effects of ATP and ATPS were not significantly attenuated. After prolonged exposure to ,-methylene-ATP, all contractile nucleotide effects were abolished; in contrast, the depression by adenosine and the nucleotides of the evoked overflow of tritium persisted. None of the effects was changed by indometacin, yohimbine or reactive blue 2.It is concluded that ATP, ATPS, ,\-methylene-ATP and UTP produce contraction of the vas deferens by activation of P2x-receptors. Moreover, the nucleotides inhibit per se the release of [3H]-noradrenaline (and presumably the co-transmitter mixture of noradrenaline and ATP); the effect of ATP is not, or only to a small extent, due to breakdown to adenosine. The presynaptic site of action of the purine nucleotides is a P2-receptor which differs from the P2X-receptor and may be a reactive blue 2-resistant P2y-like receptor.  相似文献   

16.
Summary The rat vas deferens was incubated with 0.2 mol/l 3H-noradrenaline for 60 min, washed out with amine-free solution for 100 min and then prepared for autoradiography (same tissues as presented by Azevedo et al. (1990) Naunyn-Schmiedeberg's Arch Pharmacol 342: 245 – 248). The autoradiography images were then digitized, and grain density was determined as a function of the distance from the surface of the tissue. When neither monoamine oxidase nor vesicular uptake was impaired, i. e. under control conditions, grain density declined monophasically exponentially towards the centre of the tissue. This decline amounted to 0.017 m–1 or 0.124 varicosity–1, since the average distance between varicosities was calculated to be 7.4 m. After inhibition of monoamine oxidase and vesicular uptake the rate constant was significantly reduced, and the grain density in close proximity of the surface of the tissue was also reduced.It is proposed that the distribution of grain density observed in controls reflects the steady-state concentration gradient that is generated by uptake1 during the incubation with 3H-noradrenaline.During spontaneous efflux of 3H-noradrenaline one has to distinguish between re-uptake of the 3H-amine into the leaking varicosity and uptake en passant (during diffusion through the extracellular space). On the basis of the present results, the extent of uptake en passant was calculated (with a computer-assisted model) for the spontaneous efflux of heterogeneously distributed 3H-noradrenaline (after wash-out). Uptake en passant into varicosities located between the source of efflux and the medium amounted to about 55% of the net leakage of 3H-noradrenaline from all varicosities. Earlier experiments had indicated that the sum of the two uptake processes was responsible for the neuronal uptake of 90% of the gross leakage of 3H-noradrenaline from varicosities. Hence, the following appears to take place: about 78% of the gross leakage of noradrenaline from a varicosity are subject to re-uptake into the same varicosity. During diffusion to the medium, about 55% of the 3H-noradrenaline escaping re-uptake is then subject to neuronal uptake en passant. Send offprint requests to E. Schömig at the above address  相似文献   

17.
Summary The present study aimed at determining the modulation by adenosine of the release of noradrenaline in the epididymal portion of the rat vas deferens. The tissues were treated with pargyline and perifused in the presence of desipramine and yohimbine. Up to four periods of electrical stimulation were applied (5 Hz, 9 min).The A1-adenosine receptor selective agonist R-N6-phenylisopropyladenosine (R-PIA; 100–900 nmol·l–1) reduced, whereas the A2A-receptor selective agonist 2-p-(2-carboxyethyl)phenethylamino-5-N-ethylcarboxamidoadenosine (CGS21680; 3–30nmol·l–1) increased the electrically-evoked noradrenaline overflow in a concentration-dependent manner. The nonselective agonist 5-N-ethy1carboxamidoadenosine (NECA; 30–300 nmol·l–1) reduced noradrenaline overflow, but the effect did not depend on the concentration. Adenosine deaminase at the concentration of 0.5 ·ml–1 decreased but at that of 2.0 ·ml–1 increased noradrenaline overflow. The inhibitors of adenosine uptake, S-(4-nitrobenzyl)-6-thioinosine (NBTI; 50 nmol·l–1) and dipyridamole (3 mol·l–1), increased the electrically-evoked noradrenaline overflow. The A1-adenosine receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; 20 nmol·l–1) caused an increase whereas the A2-adenosine receptor antagonist 3,7-dimethyl-1-(2-propynyl)xanthine (DMPX; 0.1 mol·l–1) caused a decrease. NBTI (50 nmol·l–1), partially antagonized the effect of both DPCPX (20 nmol·l–1) and DMPX (0.1 mol·l–1).It is concluded that, in the epididymal portion of the rat vas deferens, endogenous adenosine tonically modulates the release of noradrenaline evoked by electrical stimulation, through activation of both inhibitory (A1) and facilitatory (A2A) adenosine receptors.Abbreviations CGS 21680 2-p-(2-carboxyethyl)phenethylamino-5-N-ethylcarboxamidoadenosine - DMPX 3,7-dimethyl-l-(2-propynyl)xanthine - DPCPX 1,3-dipropyl-8-cyclopentylxanthine - NBTI S-(4-nitrobenzyl)-6-thioinosine - NECA 5-N-ethylcarboxamidoadenosine - R-PIA R-N6-phenylisopropyladenosine Correspondence to J. Gongalves at the above address  相似文献   

18.
Release of endogenous ATP elicited by electrical (neural) stimulation and exogenous agonists was studied in the rat isolated vas deferens. The aims were to dissect neural and postjunctional contributions to the nerve activity-evoked overflow of ATP and to clarify the role of transmitter receptors and calcium in postjunctional ATP release.In tissues preincubated with [3H]-noradrenaline, electrical stimulation (100 pulses/10 Hz) elicited contraction and an overflow of tritium and ATP. Contractions as well as ATP overflow were reduced by prazosin 0.3 M and even more so by prazosin 0.3 M combined with suramin 300 M. They were also reduced by nifedipine 10 M and even more so by nifedipine 10 M combined with ryanodine 20 M (the additional effect of ryanodine on ATP overflow was not significant). In tissues not pretreated with [3H]-noradrenaline, exogenous noradrenaline 10 M and ,-methylene ATP 10 M elicited contraction and an overflow of ATP. Responses to noradrenaline were blocked by prazosin 0.3 M but not suramin 300 M and were greatly reduced by nifedipine 10 M and in Ca2+-free medium. Responses to ,-methylene ATP were blocked by suramin 300 M but not prazosin 0.3 M were reduced by nifedipine 10 M (effect on ATP overflow not significant) and were reduced even more in Ca2+-free medium. Neuropeptide Y 0.3 M caused only very small contraction and ATP overflow. The electrically as well as the agonist-evoked ATP overflow correlated well with the contraction responses except in experiments with suramin which retarded the removal, by vas deferens tissue, of ATP from the medium.Itsis concluded that the overflow of ATP from rat vas deferens elicited by electrical (neural) stimulation is at least 90% postjunctional, presumably smooth muscle, in origin. ATP is released from postjunctional cells as a consequence of both 1-adrenoceptor and P2-purinoceptor activation. Ca2+ is a second messenger in the postjunctional ATP release response; its major part enters through L-type channels. A purely neural overflow of ATP was not isolated under the conditions of the experiments. Correspondence to: R. Bültmann at the above address  相似文献   

19.
Summary The adrenergic nerve endings of the rat vas deferens were loaded with 3H-(–)-noradrenaline; COMT was inhibited by the presence of 10 mol/l U-0521, and all experiments were carried out with calcium-free solution. After 100 min of wash-out a neuronal efflux of tritium was obtained which remained constant with time (when expressed as fractional rate of loss; FRL); it contained more DOPEG than noradrenaline.The in vitro administration of reserpine-like drugs (reserpine and Ro 4-1284) increased the FRL of tritium, presumably because of an increase in the leakage of noradrenaline from storage vesicles; the efflux of DOPEG increased more than that of noradrenaline, and the ratio NA/DOPEG declined.Inhibition of the membrane ATPase (by omission of potassium from the medium or by the presence of 3 mmol/l ouabain) increased the FRL of tritium, presumably because of an increase in the net leakage of noradrenaline from the storage vesicles (as a consequence of the fall in the concentration of free axoplasmic noradrenaline; see below).Veratridine also increased the FRL of tritium, partly because of its known reserpine-like effect (Bönisch et al. 1983); in the presence of 1 mol/l veratridine, the efflux of DOPEG increased.Irrespective of the presence or absence of reserpine or Ro 4-1284, inhibition of the membrane ATPase or the presence of veratridine (agents or procedures which increase the axoplasmic sodium concentration) always resulted in a brisk increase of the efflux of noradrenaline that was accompanied by a simultaneous decrease in the efflux of DOPEG (see above for one exception). In all experiments the rise in internal sodium caused the ratio NA/DOPEG to increase.These results indicate that—as long as the sodium gradient is normal—the axonal membrane functions as a barrier that largely prevents any outward movement of axoplasmic noradrenaline. Consequently, the axoplasmic amine is largely deaminated, and the ratio NA/DOPEG is low. However, when the axoplasmic sodium concentration rises, axoplasmic noradrenaline is transported out of the nerve ending at such high rates that the axoplasmic noradrenaline concentration falls; the fall in the efflux of DOPEG is indicative of a fall in the intraneuronal formation of DOPEG. The results show that changes in the efflux of DOPEG (i.e., of a highly lipophilic metabolite that easily leaves adrenergic nerve endings) can serve as an index of changes in axoplasmic noradrenaline levels.Supported by the Deutsche Forschungsgemeinschaft (Tr.96)  相似文献   

20.
The effect of Evans blue on nucleotide breakdown, nucleotide-evoked contractions and electrically evoked contractions, overflow of ATP and overflow of tritium (after labelling with [3H]-noradrenaline) was studied in rat vas deferens. Pieces of vas deferens degraded 83 to 85% of added ATP, ADP and 2-methylthio ATP (all 100 M) over 30 min. Evans blue (100 M) reduced this degradation to 22 to 26%. Nucleotides elicited contraction with potency declining in the order , \-methylene ATP > 2-methylthio ATP > ATP > ADP. Evans blue (100 M) shifted the concentration-response curve of , \-methylene ATP to the right and increased the maximum. Concentration-response curves of ATP, ADP and 2-methylthio ATP, in contrast, were shifted to the left and responses were much potentiated. In the presence of Evans blue, the rank order of potency was ATP > 2-methylthio ATP > , \-methylene ATP > ADP. Electrical field stimulation (100 pulses at 10 Hz) elicited contraction and an overflow of tritium and ATP. Evans blue (100 M) did not alter the contraction and the evoked overflow of tritium but increased 24-fold the evoked overflow of ATP. The results indicate that Evans blue may serve as an — albeit impure — ecto-nucleotidase inhibitor in functional experiments. Such experiments demonstrate that the low potency of ATP (and also ADP and 2-methylthio ATP) in eliciting contraction, and the small size of the overflow of ATP upon sympathetic nerve stimulation, are due to rapid breakdown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号