首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  1. In the Fisher 344 rat, tachykinins have been shown to cause the release of 5-hydroxytryptamine (5-HT) from airway mast cells, which then causes direct smooth muscle activation as well as the release of acetylcholine from cholinergic nerves. The aim of the present study was to examine the modulatory effects of 5-HT receptors on the neurokinin A (NKA)-induced release of endogenous 5-HT and airway smooth muscle contraction in the isolated Fisher 344 rat trachea.
  2. The selective 5-HT2 receptor antagonist ketanserin (0.1 μM) produced an almost complete inhibition of the contractions caused by NKA (n=4, P<0.0001, two-way ANOVA), and a significant rightward shift of the concentration-response curve to 5-HT (n=8, P<0.001, two-way ANOVA).
  3. The partial agonist for 5-HT1A receptors, 8-OH-DPAT (1 μM), and the full agonist for 5-HT1 receptors, 5-CT (0.3 μM), potentiated the submaximal contractions induced by the 5-HT2 receptor agonist α-methyl-5-HT (0.1 μM) (n=4; P<0.005 and P<0.05, respectively). 8-OH-DPAT (1 μM), as well as the 5-HT1A receptor antagonists pMPPI, SDZ 216525 and NAN-190 (0.1 μM each), caused significant inhibition of the tracheal contractions induced both by NKA (10  nM–3  μM) and 5-HT (10 nM–10 μM) (n=4–10). This suggests that activation of 5-HT1A receptors potentiates the 5-HT2 receptor-mediated contractions.
  4. SDZ 216525 (0.1 μM) significantly reduced the maximal contraction produced by 1 μM NKA (n=10, P<0.001), without affecting the release of endogenous 5-HT. These data rule out the involvement of a 5-HT1A receptor-mediated positive feedback mechanism of the 5-HT release from mast cells.
  5. Even in the presence of atropine (1 μM), 8-OH-DPAT (1 μM) further reduced the maximal NKA-induced contraction (n=4, P<0.0001), while the contractions of the rat isolated trachea induced by electrical field stimulation and the concentration-response curve to carbachol were unaffected by pMPPI (0.1 μM), SDZ 216525 (0.1 μM), NAN-190 (0.1 μM) and 8-OH-DPAT (1 μM) (n=4–6). These data demonstrate that the 5-HT1A receptor-mediated potentiation of contractile responses is not due to non-specific inhibition of airway smooth muscle contraction or to modulation of postganglionic nerve activation.
  6. The selective 5-HT1B/1D receptor antagonist GR 127935, the selective 5-HT3 receptor antagonist tropisetron and the selective 5-HT4 receptor antagonists SB 204070 and GR 113808 (0.1 μM each) had no effect on the concentration-response curve for NKA (n=6–10), ruling out the involvement of 5-HT1B/1D, 5-HT3 and 5-HT4 receptors.
  7. The α-adrenoreceptor antagonist phentolamine (1 μM) had no effect on the 5-HT-induced contractions (n=4), ruling out the involvement of α-adrenoreceptors.
  8. In conclusion, the tachykinin-induced contraction of the F334 rat isolated trachea is mediated by the stimulation of 5-HT2 receptors. Activation of 5-HT1A receptors located on airway smooth muscle potentiates the direct contractile effects of 5-HT2 receptor activation. The 5-HT1B/1D, 5-HT3 and 5-HT4 receptors are not involved in the NKA-induced contraction of rat airways.
  相似文献   

2.
  1. The effects of adenosine triphosphate (ATP), adenosine diphosphate (ADP), α,β-methylene-ATP (α,β-MeATP) and 2-methylthio-ATP (2-MeSATP) on longitudinally orientated smooth muscle strips from marmoset urinary bladder were investigated by use of standard organ bath techniques.
  2. After being mounted in superfusion organ baths, 66.7% (n=249) of marmoset detrusor smooth muscle strips developed spontaneous tone, 48.2% of all strips examined developed tone equivalent to greater than 0.1 g mg−1 of tissue and were subsequently utilized in the present investigation.
  3. On exposure to ATP, muscle strips exhibited a biphasic response, a rapid and transient contraction followed by a more prolonged relaxation. Both responses were found to be concentration-dependent. ADP and 2-MeSATP elicited a similar response (contraction followed by relaxation), whereas application of α,β-MeATP only produced a contraction. The potency order for each effect was α,β-MeATP>>2-MeSATP⩾ATP>ADP (contractile response) and ATP=2-MeSATP⩾ADP>>α,β-MeATP (relaxational response).
  4. Desensitization with α,β-MeATP (10 μM) abolished the contractile phase of the response to ATP, but had no effect on the level of relaxation evoked by this agonist. On the other hand, the G-protein inactivator, GDPβS (100 μM) abolished only the relaxation response to ATP. Suramin (general P2 antagonist, 100 μM) shifted both the contractile and relaxation ATP concentration-response curves to the right, whereas cibacron blue (P2Y antagonist, 10 μM) only antagonized the relaxation response to ATP. In contrast, the adenosine receptor antagonist, 8-phenyltheophylline (10 μM), had no effect on the relaxation response curve to ATP.
  5. Incubation with tetrodotoxin (TTX, 3 μM) or depolarization of the muscle strip with 40 mM K+ Krebs failed to abolish the relaxation to ATP. In addition, neither Nω-nitro-L-arginine (L-NOARG, 10 μM) nor methylene blue (10 μM) had any effect on the relaxation response curve. However, tos-phe-chloromethylketone (TPCK, 3 μM), an inhibitor of cyclicAMP-dependent protein kinase A (PKA), significantly (P<0.01) shifted the curve for the ATP-induced relaxation to the right.
  6. It is proposed that marmoset detrusor smooth muscle contains two receptors for ATP, a classical P2X-type receptor mediating smooth muscle contraction, and a P2Y (G-protein linked) receptor mediating smooth muscle relaxation. The results also indicate that the ATP-evoked relaxation may occur through the activation of cyclicAMP-dependent PKA.
  相似文献   

3.
  1. The influence of L-NG-nitro-arginine (L-NOARG, 30 μM) on contractile responses to exogenous noradrenaline was studied in the rat anococcygeus muscle.
  2. Noradrenaline (0.1–100 μM) contracted the muscle in a concentration-dependent manner. L-NOARG (30 μM) had no effect on noradrenaline responses.
  3. Phenoxybenzamine (Pbz 0.1 μM) depressed by 46% (P<0.001) the maximum response and shifted to the right (P<0.001) the E/[A] curve to noradrenaline (pEC50 control: 6.92±0.09; pEC50 Pbz: 5.30±0.10; n=20).
  4. The nested hyperbolic null method of analysing noradrenaline responses after phenoxybenzamine showed that only 0.61% of the receptors need to be occupied to elicit 50% of the maximum response, indicating a very high functional receptor reserve.
  5. Contractile responses to noradrenaline after partial α1-adrenoceptor alkylation with phenoxybenzamine (0.1 μM) were clearly enhanced by L-NOARG.
  6. The potentiating effect of L-NOARG on noradrenaline responses after phenoxybenzamine was reversed by (100 μM) L-arginine but not by (100 μM) D-arginine.
  7. These results indicate that spontaneous release of NO by nitrergic nerves can influence the α1-adrenoceptor-mediated response to exogenous noradrenaline.
  相似文献   

4.
  1. The endothelium-dependent relaxants acetylcholine (ACh; 0.03–10 μM) and A23187 (0.03–10 μM), and nitric oxide (NO), applied either as authentic NO (0.01–10 μM) or as the NO donors 3-morpholino-sydnonimine (SIN-1; 0.1–10 μM) and S-nitroso-N-acetylpenicillamine (SNAP; 0.1–10 μM), each evoked concentration-dependent relaxation in phenylephrine stimulated (1–3 μM; mean contraction and depolarization, 45.8±5.3 mV and 31.5±3.3 mN; n=10) segments of rabbit isolated carotid artery. In each case, relaxation closely correlated with repolarization of the smooth muscle membrane potential and stimulated a maximal reversal of around 95% and 98% of the phenylephrine-induced depolarization and contraction, respectively.
  2. In tissues stimulated with 30 mM KCl rather than phenylephrine, smooth muscle hyperpolarization and relaxation to ACh, A23187, authentic NO and the NO donors were dissociated. Whereas the hyperpolarization was reduced by 75–80% to around a total of 10 mV, relaxation was only inhibited by 35% (n=4–7 in each case; P<0.01). The responses which persisted to ACh and A23187 in the presence of 30 mM KCl were abolished by either the NO synthase inhibitor L-NG-nitroarginine methyl ester (L-NAME; 100 μM) or the inhibitor of soluble guanylyl cyclase 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 μM; 10 min; n=4 in each case; P<0.01).
  3. Exposure to ODQ significantly attenuated both repolarization and relaxation to ACh, A23187 and authentic NO, reducing the maximum changes in both membrane potential and tension to each relaxant to around 60% of control values (n=4 in each case; P<0.01). In contrast, ODQ almost completely inhibited repolarization and relaxation to SIN-1 and SNAP, reducing the maximum responses to around 8% in each case (n=3–5; P<0.01).
  4. The potassium channel blockers glibenclamide (10 μM), iberiotoxin (100 nM) and apamin (50 nM), alone or in combination, had no significant effect on relaxation to ACh, A23187, authentic NO, or the NO donors SIN-1 and SNAP (n=4 in each case; P>0.05). Charybdotoxin (ChTX; 50 nM) almost abolished repolarization to ACh (n=4; P<0.01) and inhibited the maximum relaxation to ACh, A23187 and authentic NO each by 30% (n=4–8; P<0.01). Application of ODQ (10 μM; 10 min) abolished the ChTX-insensitive responses to ACh, A23187 and authentic NO (n=4 in each case; P<0.01
  5. When the concentration of phenylephrine was reduced (to 0.3–0.5 μM) to ensure the level of smooth muscle contraction was the same as in the absence of potassium channel blocker, ChTX had no effect on the subsequent relaxation to SIN-1 (n=4; P>0.05). However, in the presence of tone induced by 1–3 μM phenylephrine (51.2±3.3 mN; n=4), ChTX significantly reduced relaxation to SIN-1 by nearly 50% (maximum relaxation 53.2±6.3%, n=4; P<0.01).
  6. These data indicate that NO-evoked relaxation of the rabbit isolated carotid artery can be mediated by three distinct mechanisms: (a) a cyclic GMP-dependent, voltage-independent pathway, (b) cyclic GMP-mediated smooth muscle repolarization and (c) cyclic GMP-independent, ChTX-sensitive smooth muscle repolarization. Relaxation and repolarization to both authentic and endothelium-derived NO in this large conduit artery appear to be mediated by parallel cyclic GMP-dependent and -independent pathways. In contrast, relaxation to the NO-donors SIN-1 and SNAP appears to be mediated entirely via cyclic GMP-dependent mechanisms.
  相似文献   

5.
  1. 5-Hydroxytryptamine (5-HT; 1 nM–100 μM) concentration-dependently inhibited the amplitude and frequency of spontaneous contractions in longitudinal and circular muscles of the porcine myometrium. The circular muscle (EC50; 68–84 nM) was more sensitive than the longitudinal muscle (EC50; 1.3–1.44 μM) to 5-HT. To characterize the 5-HT receptor subtype responsible for inhibition of myometrial contractility, the effects of 5-HT receptor agonists on spontaneous contractions and of 5-HT receptor antagonists on inhibition by 5-HT were examined in circular muscle preparations.
  2. Pretreatment with tetrodotoxin (1 μM), propranolol (1 μM), atropine (1 μM), guanethidine (10 μM) or L-NAME (100 μM) failed to change the inhibition by 5-HT, indicating that the inhibition was due to a direct action of 5-HT on the smooth muscle cells.
  3. 5-CT, 5-MeOT and 8-OH-DPAT mimicked the inhibitory response of 5-HT, and the rank order of the potency was 5-CT>5-HT>5-MeOT>8-OH-DPAT. On the other hand, oxymethazoline, α-methyl-5-HT, 2-methyl-5-HT, cisapride, BIMU-1, BIMU-8, ergotamine and dihydroergotamine had almost no effect on spontaneous contractions, even at 10–100 μM.
  4. Inhibition by 5-HT was not decreased by either pindolol (1 μM), ketanserin (1 μM), tropisetron (10 μM), MDL72222 (1 μM) or GR113808 (10 μM), but was antagonized by the following compounds in a competitive manner (with pA2 values in parentheses): methiothepin (8.05), methysergide (7.92), metergoline (7.4), mianserin (7.08), clozapine (7.06) and spiperone (6.86).
  5. Ro 20-1724 (20 μM) and rolipram (10 μM) significantly enhanced the inhibitory response of 5-HT, but neither zaprinast (10 μM) nor dipyridamole (10 μM) altered the response of 5-HT.
  6. 5-HT (1 nM–1 μM) caused a concentration-dependent accumulation of intracellular cyclic AMP in the circular muscle.
  7. From the present results, the 5-HT receptor, which is functionally correlated with the 5-HT7 receptor, mediates the inhibitory effect of 5-HT on porcine myometrial contractility. This inhibitory response is probably due to an increase in intracellular cyclic AMP through the activation of adenylate cyclase that is positively coupled to 5-HT7 receptors.
  相似文献   

6.
  1. The aim of the present study was to determine the cellular mechanims and potential mediators involved in hypoxic dilatation of porcine small coronary arteries.
  2. Small coronary arteries were isolated from a branch of the left anterior descending artery of porcine hearts, cannulated with glass micropipettes and studied in a perfusion myograph system. At a transmural pressure of 40 mmHg, the arteries had an internal diameter of 167.8±6.6 μm (n=37).
  3. In arteries contracted with acetylcholine (ACh), hypoxia (0% O2, 30 min) caused dilatation (86.9±6.7% relaxation, n=6) in vessels with endothelium but constriction in endothelium-denuded vessels.
  4. Hypoxic vasodilatation occurring in arteries with endothelium was abolished by the KATP channel inhibitor, glibenclamide (0.44 μM), but was not affected by inhibition of nitric oxide synthase (L-NAME, 44 μM) or cyclo-oxygenase (indomethacin, 4.4 μM).
  5. Bradykinin evoked endothelium-dependent relaxation that was inhibited by L-NAME (44 μM) but not glibenclamide 0.44 μM). Cromakalim (0.1–0.3 μM), a KATP channel opener, caused relaxation that was inhibited by glibenclamide, but was not affected by L-NAME (44 μM) and/or indomethacin (4.4 μM).
  6. Endothelium-removal inhibited vasodilatation evoked by cromakalim, but increased vasodilator responses to the NO donor, SIN-1 (10−8 to 10−5M).
  7. These results indicate that hypoxia acted directly on vascular smooth muscle of small coronary arteries to cause contraction. However, this effect was overwhelmed by endothelium-dependent relaxation in response to hypoxia. This relaxation was most likely mediated by release of an endothelium-derived factor, distinct from nitric oxide or prostacyclin, that activated smooth muscle KATP-channels.
  相似文献   

7.
  1. Cumulative concentration-response curves (CRC) to prostaglandin E1 (PGE1), PGE2, PGD2 and PGF (0.01–30 μM) and to the thromboxane A2 (TXA2) receptor agonist U-46619 (0.01–30 μM) were constructed in human isolated detrusor muscle strips both in basal conditions and during electrical field stimulation.
  2. All the agonists tested contracted the detrusor muscle. The rank order of agonist potency was: PGF>U-46619>PGE2 whereas weak contractile responses were obtained with PGD2 and PGE1. Any of the agonists tested was able to induce a clear plateau of response even at 30 μM.
  3. The selective TXA2 antagonist, GR 32191B (vapiprost), antagonized U-46619-induced contractions with an apparent pKB value of 8.27±0.12 (n=4 for each antagonist concentration). GR 32191B (0.3 μM) did not antagonize the contractile responses to PGF and it was a non-surmountable antagonist of PGE2 (apparent pKB of 7.09±0.04; n=5). The EP receptor antagonist AH 6809 at 10 μM shifted to the right the CRC to U-46619 (apparent pKB value of 5.88±0.04; n=4).
  4. Electrical field stimulation (20 Hz, 70 V, pulse width 0.1 ms, trains of 5 s every 60 s) elicited contractions fully sensitive to TTX (0.3 μM) and atropine (1 μM). U-46619 (0.01–3 μM) potentiated the twitch contraction in a dose-dependent manner and this effect was competitively antagonized by GR 32191B with an estimated pKB of 8.54±0.14 (n=4 for each antagonist concentration). PGF in the range 0.01–10 μM (n=7), but not PGE2 and PGE1 (n=3 for each), also potentiated the twitch contraction of detrusor muscle strips (23.5±0.3% of KCl 100 mM-induced contraction) but this potentiation was unaffected by 0.3 μM GR 32191B (n=5).
  5. Cumulative additions of U-46619 (0.01–30 μM) were without effect on contractions induced by direct smooth muscle excitation (20 Hz, 40 V, 6 ms pulse width, trains of 2 s every 60 s, in the presence of TTX 1 μM; n=3). Moreover, pretreatment of the tissue with 0.3 μM U-46619 did not potentiate the smooth muscle response to 7 μM bethanecol (n=2).
  6. We concluded that TXA2 can induce direct contraction of human isolated urinary bladder through the classical TXA2 receptor. Prostanoid receptors, fully activated by PGE2 and PGF are also present. All these receptors are probably located post-junctionally. The rank order of agonist potency and the fact that GR32191B, but not AH6809, antagonized responses to PGE2 seem to indicate the presence of a new EP receptor subtype. Moreover, we suggest the presence of prejuctional TXA2 and FP receptors, potentiating acetylcholine release from cholinergic nerve terminals.
  相似文献   

8.
  1. The signalling pathway which causes contractions to adenosine 5′-O-2-thiodiphosphate (ADPβS) and α,β-methylene adenosine 5′-diphosphate (α,β-Me ADP) was investigated in rat urinary bladder smooth muscle by measuring isotonic tension.
  2. The responses to 10 μM α,β-methylene adenosine 5′-triphosphate (α,β-Me ATP) in 0 and 3.6 mM Ca2+ were 5.9±1.3 (n=10) and 122.2±6.4 (n=8) % respectively of those obtained in 1.8 mM Ca2+, whereas those to 100 μM ADPβS were 34.6±3.3 (n=8) and 96.8±7.2 (n=8) %, in 0 and 3.6 mM Ca2+, respectively. In both experimental conditions, the responses to the two agonists expressed as % of the control responses were significantly different (P<0.01).
  3. Indomethacin at high concentrations (>1 μM) decreased the responses to α,β-Me ATP (10 μM), ADPβS (100 μM) and α,β-Me ADP (100 μM). However, no significant difference was obtained between the responses to all the agonists at 30 μM indomethacin.
  4. 2-Nitro-4-carboxphenyl n,n-diphenylcarbamate (NCDC) at concentrations between 1 μM and 100 μM concentration-dependently decreased the responses to ADPβS (100 μM) and α,β-Me ADP (100 μM) and almost completely inhibited them at 100 μM. Although the responses to α,β-Me ATP (10 μM) were also inhibited by the drug, at 50 and 100 μM NCDC the responses to α,β-Me ATP were significantly larger than those to ADPβS and α,β-Me ADP (P<0.01).
  5. NCDC 100 μM significantly inhibited the KCl-induced contraction to 65.9±4.9% (n=6) of the control (P<0.01).
  6. It is suggested that the contraction via ADPβS-sensitive receptors in the rat urinary bladder smooth muscle mainly depends on Ca2+ ions liberated from intracellular Ca2+ stores, though the contribution of Ca2+ ions from the extracellular space cannot be neglected. The release of Ca2+ ions from stores is mainly mediated by the production of inositol trisphosphate (IP3) via the activation of phospholipase C.
  相似文献   

9.
  1. Nicotine-induced relaxation and release of vasoactive intestinal polypeptide (VIP)- and peptide histidine isoleucine (PHI)-like immunoreactivity (LI) were measured in longitudinal muscle strips from the rat gastric fundus.
  2. Under non-cholinergic conditions (0.3 μM atropine), nicotine (3–300 μM) produced concentration-dependent relaxations of the 5-hydroxytryptamine (3 μM)-precontracted strips. Under non-adrenergic non-cholinergic (NANC) conditions (0.3 μM atropine+1 μM phentolamine+1 μM nadolol), relaxations induced by sub-maximal nicotine concentrations (10 and 30 μM) were significantly smaller, while that produced by the highest concentration used (300 μM) was similar to that seen under non-cholinergic conditions.
  3. Re-exposure to the same nicotine concentration 1 h later induced smaller relaxations, indicating desensitization. The reductions seen in the second responses were proportional to the concentration used.
  4. Under non-cholinergic conditions, the relaxant response to 30 μM nicotine was abolished by hexamethonium (100 μM) and significantly reduced by tetrodotoxin (TTX, 3 μM). The TTX-resistant component was not observed under NANC conditions.
  5. NANC relaxation induced by 30 μM nicotine was significantly reduced by a specific anti-VIP serum (approximately 35% less than that seen with normal rabbit serum).
  6. Nicotine (30–300 μM) caused significant, concentration-dependent increases in the outflow of VIP- and PHI-LI from the strips; these effects were also diminished with re-exposure. The increases in both types of immunoreactivity evoked by nicotine (300 μM) were abolished by hexamethonium (300 μM), TTX (3 μM) and a calcium-free medium.
  7. These findings indicate that VIP and possibly PHI are involved in NANC relaxation of the rat gastric fundus induced by nicotine.
  相似文献   

10.
  1. The nature and cellular mechanisms that are responsible for endothelium-dependent relaxations resistant to indomethacin and NG-nitro-L-arginine methyl ester (L-NAME) were investigated in phenylephrine (PE) precontracted isolated carotid arteries from the rabbit.
  2. In the presence of the cyclo-oxygenase inhibitor, indomethacin (10 μM), acetylcholine (ACh) induced a concentration- and endothelium-dependent relaxation of PE-induced tone which was more potent than the calcium ionophore A23187 with pD2 values of 7.03±0.12 (n=8) and 6.37±0.12 (n=6), respectively. The ACh-induced response was abolished by removal of the endothelium, but was not altered when indomethacin was omitted (pD2 value 7.00±0.10 and maximal relaxation 99±3%, n=6). Bradykinin and histamine (0.01–100 μM) had no effect either upon resting or PE-induced tone (n=5).
  3. In the presence of indomethacin plus the NO synthase inhibitor, L-NAME (30 μM), the response to A23187 was abolished. However, the response to ACh was not abolished, although it was significantly inhibited with the pD2 value and the maximal relaxation decreasing to 6.48±0.10 and 67±3%, respectively (for both P<0.01, n=8). The L-NAME/indomethacin insensitive vasorelaxation to ACh was completely abolished by preconstriction of the tissues with potassium chloride (40 mM, n=8).
  4. The Ca2+-activated K+ (KCa) channel blockers, tetrabutylammonium (TBA, 1 mM, n=5) and charybdotoxin (CTX, 0.1 μM, n=5), completely inhibited the nitric oxide (NO) and prostacyclin (PGI2)-independent relaxation response to ACh. However, iberiotoxin (ITX, 0.1 M, n=8) or apamin (1–3 μM, n=6) only partially inhibited the relaxation.
  5. Inhibitors of the cytochrome P450 mono-oxygenase, SKF-525A (1–10 μM, n=6), clotrimazole (1 μM, n=5) and 17-octadecynoic acid (17-ODYA, 3 μM, n=7) also reduced the NO/PGI2-independent relaxation response to ACh.
  6. In endothelium-denuded rings of rabbit carotid arteries, the relaxation response to exogenous NO was not altered by either KCa channel blockade with apamin (1 μM, n=5) or CTX (0.1 μM, n=5), or by the cytochrome P450 mono-oxygenase blockers SKF-525A (10 μM, n=4) and clotrimazole (10 μM, n=5). However, the NO-induced response was shifted to the right by LY83583 (10 μM, n=4), a guanylyl cyclase inhibitor, with the pD2 value decreasing from 6.95±0.14 to 6.04±0.09 (P<0.01).
  7. ACh (0.01–100 μM) induced a concentration-dependent relaxation of PE-induced tone in endothelium-denuded arterial segments sandwiched with endothelium-intact donor segments. This relaxation to ACh was largely unaffected by indomathacin (10 μM) plus L-NAME (30 μM), but abolished by the combination of indomethacin, L-NAME and TBA (1 mM, n=5).
  8. These data suggest that in the rabbit carotid artery: (a) ACh can induce the release of both NO and EDHF, whereas A23187 only evokes the release of NO from the endothelium, (b) the diffusible EDHF released by ACh may be a cytochrome P450-derived arachidonic acid metabolite, and (c) EDHF-induced relaxation involves the opening of at least two types of KCa channels, whereas NO mediates vasorelaxation via a guanosine 3′: 5′-cyclic monophosphate (cyclic GMP)-mediated pathway, in which a cytochrome P450 pathway and KCa channels do not seem to be involved.
  相似文献   

11.
  1. Electrical field stimulation (EFS) of guinea-pig isolated main bronchi induced a non-adrenergic non-cholinergic (NANC) contractile response. Nociceptin (0.01–1 μM) significantly inhibited the contractile response to EFS (P<0.01), but not to capsaicin (P>0.05).
  2. The μ-, δ- and κ-opioid receptor antagonists, naloxone (0.3 μM), naltrindole (3 μM) and nor-binaltorphimine (1 μM), respectively, did not significantly affect the inhibitory effect of nociceptin (0.03 μM; P>0.05).
  3. The novel nociceptin antagonist, [Phe1ψ(CH2-NH)Gly2]nociceptin(1–13)NH2 (0.03–1 μM); the σ ligands, carbetapentane (30 μM), 3-phenylpiperidine (30–100 μM) and (+)-cyclazocine (10–100 μM) significantly reversed the inhibitory effect of nociceptin (0.03 μM, P<0.05). In contrast, rimcazole, did not significantly reverse the inhibitory effect of nociceptin (0.03 μM) at any concentration tested (P>0.05).
  4. EFS of guinea-pig bronchial preparations significantly increased SP-LI release above basal SP-LI (P<0.05). In the presence of nociceptin (1 μM), EFS induced a significant increase in SP-LI release above basal SP-LI release (P<0.05). Nociceptin caused a 59±11% (n=5) inhibition of EFS-induced release of SP-LI.
  5. Nociceptin reduces the release of sensory neuropeptides induced by EFS, but not capsaicin, from guinea-pig airways. These experiments provide further evidence for a role for nociceptin in regulating the release of sensory neuropeptides in response to EFS.
  相似文献   

12.
  1. The mechanism of action of P2 nucleotide receptor agonists that produce endothelium-independent relaxation and the influence of ecto-ATPase activity on this relaxing effect have been investigated in rat portal vein smooth muscle.
  2. At 25°C, ATP, 2-methylthioATP (2-MeSATP) and 2-chloroATP (2-ClATP), dose-dependently inhibited spontaneous contractile activity of endothelium-denuded muscular strips from rat portal vein. The rank order of agonist potency defined from the half-inhibitory concentrations was 2-ClATP (2.7±0.5 μM, n=7)>ATP (12.9±1.1 μM, n=9)⩾2-MeSATP (21.9±4.8 μM, n=4). In the presence of αβ-methylene ATP (αβ-MeATP, 200 μM) which itself produced a transient contractile effect, the relaxing action of ATP and 2-MeSATP was completely abolished and that of 2-ClATP strongly inhibited.
  3. The non-selective P2-receptor antagonist pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS, 100 μM) did not affect the relaxation induced by ATP, 2-MeSATP, and 2-ClATP.
  4. The A2A-adenosine receptor antagonist ZM 241385 inhibited the ATP-induced relaxation in a concentration-dependent manner (1–100 nM). In the presence of 100 nM ZM 241385, the relaxing effects of 2-MeSATP and 2-ClATP were also inhibited.
  5. ADP, AMP and adenosine also produced concentration-dependent inhibition of spontaneous contractions. The relaxing effects of AMP and adenosine were insensitive to αβ-MeATP (200 μM) but were inhibited by ZM 241385 (100 nM).
  6. Simultaneous measurements of contraction and ecto-ATPase activity estimated by the degradation of [γ-32P]-ATP showed that muscular strips rapidly (10–60 s) hydrolyzed ATP. This ecto-ATPase activity was abolished in the presence of EDTA and was inhibited by 57±11% (n=3) by 200 μM αβ-MeATP.
  7. These results suggest that ATP and other P2-receptor agonists are relaxant in rat portal vein smooth muscle, because ectonucleotidase activity leads to the formation of adenosine which activates A2A-receptors.
  相似文献   

13.
  1. Using intracellular microelectrodes, we investigated the effects of 17-octadecynoic acid (17-ODYA) on the endothelium-dependent hyperpolarization induced by acetylcholine in the guinea-pig isolated internal carotid artery with endothelium.
  2. In the presence of Nω-nitro-L-arginine (L-NOARG, 100 μM) and indomethacin (5 μM) to inhibit nitric oxide synthase and cyclo-oxygenase, acetylcholine (1 μM) evoked an endothelium-dependent hyperpolarization which averaged −16.4 mV starting from a resting membrane potential of −56.8 mV. There was a negative correlation between the amplitude of the hyperpolarization and the absolute values of the resting membrane potential.
  3. The acetylcholine-induced endothelium-dependent hyperpolarization was not altered by charybdotoxin (0.1 μM) or iberiotoxin (30 nM). It was partially but significantly reduced by apamin (0.5 μM) to −12.8±1.2 mV (n=10) or the combination of apamin plus iberiotoxin (−14.3±3.4 mV, n=4). However, the combination of charybdotoxin and apamin abolished the hyperpolarization and under these conditions, acetylcholine evoked a depolarization (+7.1±3.7 mV, n=8).
  4. 17-ODYA (10 μM) produced a significant hyperpolarization of the resting membrane potential which averaged −59.6 mV and a partial but significant inhibition of the acetylcholine-induced endothelium-dependent hyperpolarization (−10.9 mV).
  5. Apamin did not modify the effects of 17-ODYA but in the presence of charybdotoxin or iberiotoxin, 17-ODYA no longer influenced the resting membrane potential or the acetylcholine-induced hyperpolarization.
  6. When compared to solvent (ethanol, 1% v/v), epoxyeicosatrienoic acids (EpETrEs) (5,6-, 8,9-, 11,12- and 14,15-EpETrE, 3 μM) did not affect the cell membrane potential and did not relax the guinea-pig isolated internal carotid artery.
  7. These results indicate that, in the guinea-pig internal carotid artery, the involvement of metabolites of arachidonic acid through the cytochrome P450 pathway in endothelium-dependent hyperpolarization is unlikely. Furthermore, the hyperpolarization mediated by the endothelium-derived hyperpolarizing factor (EDHF) is probably not due to the opening of BKCa channels.
  相似文献   

14.
  1. The effects of isoenzyme-selective inhibitors of phosphodiesterases PDE3 and PDE4 on cyclic AMP concentration, two indices of phosphoinositide hydrolysis, and contractile responses to spasmogens have been investigated in bovine tracheal smooth muscle (BTSM).
  2. Neither the PDE3-selective inhibitor ORG 9935, nor the PDE4-selective inhibitor rolipram increased cyclic AMP levels in BTSM. However, rolipram addition in the presence of PDE3 inhibition (ORG 9935; 1 μM) concentration-dependently (−log EC50 (M), 6.55±0.15; n=3) increased cyclic AMP levels to about 70% of the maximal response to the β-adrenoceptor agonist isoprenaline.
  3. Rolipram per se inhibited histamine-stimulated [3H]-inositol (poly)phosphate ([3H]-InsPX) accumulation by >80% (−log EC50 (M), 6.92±0.11; n=3). Although ORG 9935 (1 μM) had little effect on histamine-stimulated [3H]-InsPX accumulation alone it greatly facilitated the inhibitory action of rolipram (−log EC50 (M), 8.82±0.39; n=3). The effects of PDE3 and/or PDE4 inhibition on [3H]-InsPX accumulation stimulated by muscarinic acetylcholine (mACh) receptor activation were less marked. However, combined PDE3/4 inhibition significantly decreased this response at a submaximal concentration of mACh receptor agonist (carbachol; 1 μM).
  4. The greater-than-additive effect of combined PDE3/4 inhibition was also observed at the level of contractile responses to histamine and carbachol. In experiments designed to investigate the effects of PDE3 and/or 4 inhibitors on the carbachol-mediated phasic contraction, additions of rolipram (10 μM) or ORG 9935 (1 μM) were without effect, whereas added together the inhibitors caused a significant (P<0.01) 40% reduction in the peak phasic contractile response.
  5. The effect on contraction correlated with a substantial inhibitory effect of PDE3/4 inhibition on the initial increase in inositol 1,4,5-trisphosphate (InsP3) accumulation stimulated by spasmogen. Thus, in the presence of ORG 9935 (1 μM) rolipram concentration-dependently inhibited carbachol-stimulated InsP3 accumulation by ⩾50% (−log EC50 (M), 6.77±0.21; n=4).
  6. Carbachol (100 μM) addition caused a rapid decrease (by 67% at 10 s) in BTSM cyclic AMP level in the presence of PDE3/4 inhibition. However, omission of Ca2+ from the incubation medium prevented the carbachol-evoked decrease in cyclic AMP and this coincided with a greater inhibition (⩾80%) of the carbachol-stimulated InsP3 response.
  7. These data indicate that combined PDE3 and PDE4 inhibition has greater-than-additive effects on second messenger and functional responses to spasmogens in BTSM. Furthermore, the ability of PDE3/4 inhibition significantly to attenuate mACh receptor-mediated contractile responses, may be, at least in part, attributed to an effect exerted at the level of InsP3 generation.
  相似文献   

15.
  1. Glutamate and other amino acids are the main excitatory neurotransmitters in many brain regions, including the hippocampus, by activating ion channel-coupled glutamate receptors, as well as metabotropic receptors linked to G proteins and second messenger systems. Several conditions which promote the release of glutamate, like frequency stimulation and hypoxia, also lead to an increase in the extracellular levels of the important neuromodulator, adenosine. We studied whether the activation of different subgroups of metabotropic glutamate receptors (mGluR) could modify the known inhibitory effects of a selective adenosine A1 receptor agonist on synaptic transmission in the hippocampus. The experiments were performed on hippocampal slices taken from young (12–14 days old) rats. Stimulation was delivered to the Schaffer collateral/commissural fibres, and evoked field excitatory postsynaptic potentials (fe.p.s.p.) recorded extracellularly from the stratum radiatum in the CA1 area.
  2. The concentration-response curve for the inhibitory effects of the selective adenosine A1 receptor agonist, N6-cyclopentyladenosine (CPA; 2–50 nM), on the fe.p.s.p. slope (EC50=12.5 (9.2–17.3; 95% confidence intervals)) was displaced to the right by the group I mGluR selective agonist, (R,S)-3,5-dihydroxyphenylglycine (DPHG; 10 μM) (EC50=27.2 (21.4–34.5) nM, n=4). The attenuation of the inhibitory effect of CPA (10 nM) on the fe.p.s.p. slope by DHPG (10 μM) was blocked in the presence of the mGluR antagonist (which blocks group I and II mGluR), (R,S)-α-methyl-4-carboxyphenylglycine (MCPG; 500 μM). DHPG (10 μM) itself had an inhibitory effect of 20.1±1.9% (n=4) on the fe.p.s.p. slope.
  3. The concentration-response curves for the inhibitory effects of CPA (2–20 nM) on the fe.p.s.p. slope were not modified either in the presence of the group II mGluR selective agonist, (2S,3S,4S)-α-(carboxycyclopropyl)glycine (L-CCG-I; 1 μM), or in the presence of the non-selective mGluR agonist (which activates both group I and II mGluR), (1S,3R)-1-aminocyclopentyl-1,3-dicarboxylate (ACPD; 100 μM). L-CCG-I had no consistent effects and ACPD (100 μM) decreased by 19.4±1.8% (n=4) the fe.p.s.p. slope.
  4. The concentration-response curve for the inhibitory effects of CPA (2–100 nM) on the fe.p.s.p. slope (EC50=8.2 (6.9–9.6) nM) was displaced to the right by the group III mGluR selective agonist, L-2-amino-4-phosphonobutyrate (L-AP4; 25 μM) (EC50=17.7 (13.1–21.9) nM, n=4). The attenuation of the inhibitory effect of CPA (10 nM) on the fe.p.s.p. slope by L-AP4 (25 μM) was blocked in the presence of the mGluR antagonist (selective for the group III mGluR), (R,S)-α-methyl-4-phosphonophenylglycine (MPPG; 200 μM).
  5. Both the direct effect of DHPG on synaptic transmission and the attenuation of the inhibitory effect of CPA (10 nM) were prevented in the presence of the protein kinase C selective inhibitors, staurosporine (1 μM) or chelerythrine (5 μM), and thus attributed to activation of protein kinase C.
  6. The attenuation by L-AP4 (25 μM) of the inhibitory effect of CPA (10 nM) on the fe.p.s.p. slope was also prevented by the protein kinase C selective inhibitors, staurosporine (1 μM) or chelerythrine (5 μM), and thus attributed to activation of protein kinase C. But this effect seemed to be distinct from the direct effect of L-AP4 (25 μM) on synaptic transmission, which was not modified by the protein kinase C selective inhibitors.
  7. We conclude that agonists of metabotropic glutamate receptors (Groups I and III) are able to attenuate the inhibitory effects of adenosine A1 receptor activation in the hippocampus. This interaction may have pathophysiological relevance in hypoxia, in which there is marked release of both excitatory amino acids and the important endogenous neuroprotective substance, adenosine.
  相似文献   

16.
  1. Application of electrical field stimulation (EFS; trains of 10 Hz, 0.25 ms pulse width, supramaximal voltage for 60 s) to the guinea-pig isolated common bile duct pretreated with atropine (1 μM), produced a slowly-developing contraction (`on'' response) followed by a quick phasic `off '' contraction (`off peak'' response) and a tonic response (`off late'' response), averaging 16±2, 73±3 and 20±4% of the maximal contraction to KCl (80 mM), n=20 each, respectively. Tetrodotoxin (1 μM; 15 min before) abolished the overall response to EFS (n=8).
  2. Neither in vitro capsaicin pretreatment (10 μM for 15 min), nor guanethidine (3 μM, 60 min before) affected the excitatory response to EFS (n=5 each), showing that neither primary sensory neurons, nor sympathetic nerves were involved. Nω-nitro-L-arginine (L-NOARG, 100 μM, 60 min before) or naloxone (10 μM, 30 min before) significantly enhanced the `on'' response (294±56 and 205±25% increase, respectively; n=6–8, P<0.01) to EFS. The combined administration of L-NOARG and naloxone produced additive enhancing effects (655±90% increase of the `on'' component, n=6, P<0.05).
  3. The tachykinin NK2 receptor-selective antagonist MEN 11420 (1 μM) almost abolished both the `on'' and `off late'' responses (P<0.01; n=5 each) to EFS, and reduced the `off-peak'' contraction by 55±8% (n=5, P<0.01). The subsequent administration of the tachykinin NK1 receptor-selective antagonist GR 82334 (1 μM) and of the tachykinin NK3 receptor-selective antagonist SR 142801 (30 nM), in the presence of MEN 11420 (1 μM), did not produce any further inhibition of the response to EFS (P>0.05; n=5 each). At 3 μM, GR 82334 significantly reduced (by 68±9%, P<0.05, n=6) the `on'' response to EFS.
  4. The contractile `off peak'' response to EFS observed in the presence of both MEN 11420 and GR 82334 (3 μM each) was abolished (P<0.01; n=6) by the administration of the P2 purinoceptor antagonist pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS, 30 μM). PPADS (30 μM) selectively blocked (75±9 and 50±7% inhibition, n=4 each) the contractile responses produced by 100 and 300 μM ATP.
  5. Tachykinin-containing nerve fibres were detected by using immunohistochemical techniques in all parts of the bile duct, being distributed to the muscle layer and lamina propria of mucosa. In the terminal part of the duct (ampulla) some labelled ganglion cells were observed.
  6. In conclusion, this study shows that in the guinea-pig terminal biliary tract tachykinins, released from intrinsic neuronal elements, are the main NANC excitatory neurotransmitters, which act by stimulating tachykinin NK2 (and possibly NK1) receptors. ATP is also involved as excitatory neurotransmitter. Nitric oxide and opioids act as inhibitory mediators/modulators in this preparation.
  相似文献   

17.
  1. In the rat hepatic artery, the acetylcholine-induced relaxation mediated by endothelium-derived hyperpolarizing factor (EDHF) is abolished by a combination of apamin and charybdotoxin, inhibitors of small (SKCa) and large (BKCa) conductance calcium-sensitive potassium (K)-channels, respectively, but not by each toxin alone. The selective BKCa inhibitor iberiotoxin cannot replace charybdotoxin in this combination. Since delayed rectifier K-channels (KV) represent another target for charybdotoxin, we explored the possible involvement of KV in EDHF-mediated relaxation in this artery.
  2. The KV inhibitors, agitoxin-2 (0.3 μM), kaliotoxin (0.3 μM), β-dendrotoxin (0.3 μM), dofetilide (1 μM) and terikalant (10 μM), each in combination with apamin (0.3 μM) had no effect on the EDHF-mediated relaxation induced by acetylcholine in the presence of Nω-nitro-L-arginine (0.3 mM) and indomethacin (10 μM), inhibitors of nitric oxide (NO) synthase and cyclo-oxygenase, respectively (n=2–3). Although the KV inhibitor margatoxin (0.3 μM) was also without effect (n=5), the combination of margatoxin and apamin produced a small inhibition of the response (pEC50 and Emax values were 7.5±0.0 and 95±1% in the absence and 7.0±0.1 and 81±6% in the presence of margatoxin plus apamin, respectively; n=6; P<0.05).
  3. Ciclazindol (10 μM) partially inhibited the EDHF-mediated relaxation by shifting the acetylcholine-concentration-response curve 12 fold to the right (n=6; P<0.05) and abolished the response when combined with apamin (0.3 μM; n=6). This combination did not inhibit acetylcholine-induced relaxations mediated by endothelium-derived NO (n=5).
  4. A 4-aminopyridine-sensitive delayed rectifier current (IK(V)) was identified in freshly-isolated single smooth muscle cells from rat hepatic artery. None of the cells displayed a rapidly-activating and -inactivating A-type current. Neither charybdotoxin (0.3 μM; n=3) nor ciclazindol (10 μM; n=5), alone or in combination with apamin (0.3 μM; n=4–5), had an effect on IK(V). A tenfold higher concentration of ciclazindol (0.1 mM, n=4) markedly inhibited IK(V), but this effect was not increased in the additional presence of apamin (0.3 μM; n=2).
  5. By use of membranes prepared from rat brain cortex, [125I]-charybdotoxin binding was consistent with an interaction at a single site with a KD of approximately 25 pM. [125I]-charybdotoxin binding was unaffected by iberiotoxin (0.1 μM, n=6), but was increased by apamin in a concentration-dependent manner (Emax 43±10%, P<0.05 and pEC50 7.1±0.2; n=7–8). Agitoxin-2 (10 nM) displaced [125I]-charybdotoxin binding by 91±3% (n=6) and prevented the effect of apamin (1 μM; n=6).
  6. It is concluded that the EDHF-mediated relaxation in the rat hepatic artery is not mediated by the opening of either KV or BKCa. Instead, the target K-channels for EDHF seem to be structurally related to both KV and BKCa. The possibility that a subtype of SKCa may be the target for EDHF is discussed.
  相似文献   

18.
  1. Functional recordings of smooth muscle tension and biochemical experiments on membrane fractions were performed to characterize angiotensin II (AII) formation in human isolated bladder smooth muscle.
  2. A novel human chymase inhibitor CH 5450 (Z-Ile-Glu-Pro-Phe-CO2Me) and a recently developed human chymase substrate Pro11-,D-Ala12)-angiotensin I, claimed to be resistant to angiotensin converting enzyme (ACE) and carboxypeptidase, were used.
  3. Angiotensin I (AI) (0.3 μM) induced a contractile response amounting to 58±5% (n=12) of the initial K+ (124 mM)-induced contractions. This response was reduced to 36±3% (n=8) by the ACE-inhibitor enalaprilat (10 μM), while pretreatment with soybean trypsin inhibitor (STI 200 μg ml−1) or CH 5450 (10 μM) had no effect. However, the combination of enalaprilat and STI reduced the AI-induced contractions to 19±5% (n=6), and the combination of enalaprilat and CH 5450 caused an almost complete inhibition of the AI-induced contractions to 1±1% (n=6).
  4. The substrate (Pro11-,D-Ala12)-AI (3 μM) produced contractions which amounted to 57±4% (n=13) of the initial K+ (124 mM) contractions. These contractions were not affected by enalaprilat (10 μM). On the other hand, STI (200 μg ml−1) and CH 5450 (10 μM) added separately, depressed the (Pro11-,D-Ala12)-AI-induced contractions to 34±5% (n=6) and 24±4% (n=6), respectively. The combination of enalaprilat and STI or enalaprilat and CH 5450 did not produce any further inhibition.
  5. Experiments with detrusor membrane fractions incubated with AI (50 μM) were performed. In the presence of enalaprilat (100 μM), carboxypeptidase inhibitor CPI (10 μg ml−1) and aprotinin (15 μM), CH 5450 (10 nM–1 μM) caused a concentration-dependent inhibition of AII formation.
  6. The results confirm that AII is a potent contractile agent in the human isolated detrusor muscle. They also indicate that the serine protease responsible for AII formation in the human bladder in vitro is human chymase or an enzyme similar to human chymase.
  相似文献   

19.
  1. The functional role of the nitric oxide (NO)/guanosine 3′:5′-cyclic monophosphate (cyclic GMP) pathway in experimental myocardial ischaemia and reperfusion was studied in rat isolated hearts.
  2. Rat isolated hearts were perfused at constant pressure with Krebs-Henseleit buffer for 25 min (baseline), then made ischaemic by reducing coronary flow to 0.2 ml min−1 for 25 or 40 min, and reperfused at constant pressure for 25 min. Drugs inhibiting or stimulating the NO/cyclic GMP pathway were infused during the ischaemic phase only. Ischaemic contracture, myocardial cyclic GMP and cyclic AMP levels during ischaemia, and recovery of reperfusion mechanical function were monitored.
  3. At baseline, heart rate was 287±12 beats min−1, coronary flow was 12.8±0.6 ml min−1, left ventricular developed pressure (LVDevP) was 105±4 mmHg and left ventricular end-diastolic pressure 4.6±0.2 mmHg in vehicle-treated hearts (control; n=12). Baseline values were similar in all treatment groups (P>0.05).
  4. In normoxic perfused hearts, 1 μM NG-nitro-L-arginine (L-NOARG) significantly reduced coronary flow from 13.5±0.2 to 12.1±0.1 ml min−1 (10%) and LVDevP from 97±1 to 92±1 mmHg (5%; P<0.05, n=5).
  5. Ischaemic contracture was 46±2 mmHg, i.e. 44% of LVDevP in control hearts (n=12), unaffected by low concentrations of nitroprusside (1 and 10 μM) but reduced to ∼30 mmHg (∼25%) at higher concentrations (100 or 1000 μM; P<0.05 vs control, n=6). Conversely, the NO synthase inhibitor L-NOARG reduced contracture at 1 μM to 26±3 mmHg (23%), but increased it to 63±4 mmHg (59%) at 1000 μM (n=6). Dobutamine (10 μM) exacerbated ischaemic contracture (81±3 mmHg; n=7) and the cyclic GMP analogue Sp-8-(4-p-chlorophenylthio)-3′,5′-monophosphorothioate (Sp-8-pCPT-cGMPS; 10 μM) blocked this effect (63±1 mmHg; P<0.05 vs dobutamine alone, n=5).
  6. At the end of reperfusion, LVDevP was 58±5 mmHg, i.e. 55% of pre-ischaemic value in control hearts, significantly increased to ∼80% by high concentrations of nitroprusside (100 or 1000 μM) or L-NOARG at 1 μM, while a high concentration of L-NOARG (1000 μM) reduced LVDevP to ∼35% (P<0.05 vs control; n=6).
  7. Ischaemia increased tissue cyclic GMP levels 1.8 fold in control hearts (P<0.05; n=12); nitroprusside at 1 μM had no sustained effect, but increased cyclic GMP ∼6 fold at 1000 μM; L-NOARG (1 or 1000 μM) was without effect (n=6). Nitroprusside (1 or 1000 μM) marginally increased cyclic AMP levels whereas NO synthase inhibitors had no effect (n=6).
  8. In conclusion, the cardioprotective effect of NO donors, but not of low concentrations of NO synthase inhibitors may be due to their ability to elevate cyclic GMP levels. Because myocardial cyclic GMP levels were not affected by low concentrations of NO synthase inhibitors, their beneficial effect on ischaemic and reperfusion function is probably not accompanied by reduced formation of NO and peroxynitrite in this model.
  相似文献   

20.
  1. We compared the relaxant effect of pituitary adenylate cyclase activating peptide (PACAP) 1–27 with that of a newly developed PACAP 1–27 analogue, [Arg15,20,21Leu17]-PACAP-Gly-Lys-Arg-NH2, in the guinea-pig trachea and primate bronchi in vitro (n=4–5).
  2. In the guinea-pig trachea precontracted by a submaximally effective carbachol concentration (0.1 μM), cumulative administration of PACAP 1–27 and the β2-adrenoceptor agonist salbutamol (3 nM–3 μM) caused significant and concentration-dependent smooth muscle relaxation, with salbutamol being approximately one log-step more potent in this model. However, in primate bronchi precontracted by carbachol (0.1 μM), cumulative administration of PACAP 1–27 and salbutamol caused concentration-dependent smooth muscle relaxation with very similar potencies and maximum relaxant effects.
  3. In the guinea-pig trachea, non-cumulative administration of the PACAP 1–27 analogue and the original PACAP 1–27 (0.3–3 μM) caused concentration-dependent relaxation with a very similar maximum relaxant effect and potency. However, the onset and offset of action was markedly slower for the PACAP 1–27 analogue than for the original PACAP 1–27 (>90% versus <10% of peak relaxation remaining 6 h after administration). Separate experiments confirmed that the PACAP 1–27 analogue also caused significant relaxation with slower onset and offset of action than did the original PACAP 1–27 in primate bronchi.
  4. Peptidase inhibition by captopril (10 μM) and phosphoramidon (1 μM) significantly increased the maximum relaxant effect and duration of action of PACAP 1–27 but not of the PACAP 1–27 analogue, during the 3 h of observation in the guinea-pig trachea.
  5. We conclude that [Arg15,20,21Leu17]-PACAP-Gly-Lys-Arg-NH2 produces significant, concentration-dependent and sustained airway smooth muscle relaxation in vitro. The sustained relaxant effect is due, at least in part, to the PACAP 1–27 analogue being less susceptible to cleavage by peptidases than the original peptide PACAP 1–27.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号