首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
PPARS in inflammation, atherosclerosis and thrombosis   总被引:1,自引:0,他引:1  
  相似文献   

2.
3.
4.
Intensive preclinical investigations have delineated a role for peroxisome proliferator-activated receptors (PPARs) in energy metabolism and inflammation. PPARs are activated by natural lipophilic ligands such as fatty acids and their derivatives. Normalization of lipid and glucose metabolism is achieved via pharmacological modulation of PPAR activity. PPARs may also alter atherosclerosis progression through direct effects on the vascular wall. PPARs regulate genes involved in the recruitment of leukocytes to endothelial cells, in vascular inflammation, in macrophage lipid homeostasis, and in thrombosis. PPARs therefore modulate metabolic and inflammatory perturbations that predispose to cardiovascular diseases and type 2 diabetes. The hypolipidemic fibrates and the antidiabetic thiazolidinediones are drugs that act via PPARalpha and PPARgamma, respectively, and are used in clinical practice. PPARbeta/delta ligands are currently in clinical evaluation. The pleiotropic actions of PPARs and the fact that chemically diverse PPAR agonists may induce distinct pharmacological responses have led to the emergence of new concepts for drug design. A more precise understanding of the molecular pathways implicated in the response to chemically distinct PPAR agonists should provide new opportunities for targeted therapeutic applications in the management of the metabolic syndrome, type 2 diabetes, and cardiovascular diseases.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
Peroxisome proliferator-activated receptor alpha (PPARalpha) is a key regulator of lipid homeostasis in hepatocytes and target for fatty acids and hypolipidemic drugs. How these signaling molecules reach the nuclear receptor is not known; however, similarities in ligand specificity suggest the liver fatty acid binding protein (L-FABP) as a possible candidate. In localization studies using laser-scanning microscopy, we show that L-FABP and PPARalpha colocalize in the nucleus of mouse primary hepatocytes. Furthermore, we demonstrate by pull-down assay and immunocoprecipitation that L-FABP interacts directly with PPARalpha. In a cell biological approach with the aid of a mammalian two-hybrid system, we provide evidence that L-FABP interacts with PPARalpha and PPARgamma but not with PPARbeta and retinoid X receptor-alpha by protein-protein contacts. In addition, we demonstrate that the observed interaction of both proteins is independent of ligand binding. Final and quantitative proof for L-FABP mediation was obtained in transactivation assays upon incubation of transiently and stably transfected HepG2 cells with saturated, monounsaturated, and polyunsaturated fatty acids as well as with hypolipidemic drugs. With all ligands applied, we observed strict correlation of PPARalpha and PPARgamma transactivation with intracellular concentrations of L-FABP. This correlation constitutes a nucleus-directed signaling by fatty acids and hypolipidemic drugs where L-FABP acts as a cytosolic gateway for these PPARalpha and PPARgamma agonists. Thus, L-FABP and the respective PPARs could serve as targets for nutrients and drugs to affect expression of PPAR-sensitive genes.  相似文献   

14.
OBJECTIVE: Growth hormone (GH) enhances lipolysis in adipose tissue, thereby increasing the flux of fatty acids to other tissues. Moreover, GH increases hepatic triglyceride synthesis and secretion in rats and decreases the action of peroxisome proliferator-activated receptor (PPAR)alpha. PPARalpha is activated by fatty acids and regulates hepatic lipid metabolism in rodents. The aim of this study was to investigate the importance of PPARalpha for the effects of GH on hepatic gene expression and lipoprotein metabolism. DESIGN: Bovine GH was given as a continuous infusion (5mg/kg/day) for 7 days to PPARalpha-null and wild-type (wt) mice. Plasma and liver lipids and hepatic gene expression were measured. In separate experiments, hepatic triglyceride secretion was measured. RESULTS: GH treatment decreased hepatic triglyceride content and increased hepatic triglyceride secretion rate and serum cholesterol levels. Furthermore, GH increased hepatic acylCoA:diacylglycerol acyltransferase (DGAT)2 mRNA levels, but decreased the hepatic mRNA expression of acyl-CoA oxidase, medium-chain acyl-CoA dehydrogenase and PPARgamma1. All these GH effects were independent of PPARalpha. However, the effect of GH on Cyp4a10, PPARgamma2, and DGAT1 was different between the genotypes. GH treatment decreased Cyp4a10 mRNA expression in wt mice, but increased the expression in PPARalpha-null mice. In contrast, GH decreased the expression of DGAT1 and PPARgamma2 in PPARalpha-null mice, but not in wt mice. CONCLUSIONS: Most of the effects of GH on lipid and lipoprotein metabolism were independent of PPARalpha. However, GH had unique effects on Cyp4a10, DGAT1, and PPARgamma2 gene expression in PPARalpha-null mice showing cross-talk between GH and PPARalpha signalling in vivo.  相似文献   

15.
Everett L  Galli A  Crabb D 《Liver》2000,20(3):191-199
The liver has long been known to respond to exposure to certain chemicals with hyperplasia and proliferation of the peroxisomal compartment. This response is now known to be mediated by specific receptors. The peroxisome proliferator-activated receptors (PPARs) were cloned 10 years ago, and in that interval, have been found to serve as receptors for a number of endogenous lipid compounds, in addition to the peroxisome proliferators that originally led to their study. Three receptors, designated the alpha, delta, and gamma receptors, have been found in mammals. PPARalpha: is the most abundant form found in the liver, with smaller amounts of the delta and gamma forms also expressed there. Kupffer cells, like other macrophages, appear to express the alpha and gamma isoforms. Hepatic stellate cells are reported to express the gamma isoform. PPARalpha knock-out mice fail to undergo peroxisome proliferation when challenged with the proliferators. Moreover, they have severe derangements of lipid metabolism, particularly during fasting, indicating that normal function of the alpha receptors is needed for lipid homeostasis. This in turn suggests that inadequate PPAR-mediated responses may contribute to abnormal fatty acid metabolism in alcoholic and non-alcoholic steatohepatitis. Recent information suggests that PPARgamma receptors may be important in control of the activation state of the stellate cells, and their repression or inactivation may predispose to hepatic fibrosis. The first approved drug that specifically activates PPARgamma, troglitazone, has rarely been found to cause serious liver injury. Although this is likely to represent an idiosyncratic reaction, the medical community will need to be alert to the possibility that activation or blockade of these receptors may cause hepatic dysfunction.  相似文献   

16.
17.
18.
19.
Bile acid regulation of gene expression: roles of nuclear hormone receptors   总被引:21,自引:0,他引:21  
  相似文献   

20.
Long-chain fatty acids (FA) coordinately induce the expression of a panel of genes involved in cellular FA metabolism in cardiac muscle cells, thereby promoting their own metabolism. These effects are likely to be mediated by peroxisome proliferator-activated receptors (PPARs). Whereas the significance of PPARalpha in FA-mediated expression has been demonstrated, the role of the PPARbeta/delta and PPARgamma isoforms in cardiac lipid metabolism is unknown. To explore the involvement of each of the PPAR isoforms, neonatal rat cardiomyocytes were exposed to FA or to ligands specific for either PPARalpha (Wy-14,643), PPARbeta/delta (L-165041, GW501516), or PPARgamma (ciglitazone and rosiglitazone). Their effect on FA oxidation rate, expression of metabolic genes, and muscle-type carnitine palmitoyltransferase-1 (MCPT-1) promoter activity was determined. Consistent with the PPAR isoform expression pattern, the FA oxidation rate increased in cardiomyocytes exposed to PPARalpha and PPARbeta/delta ligands, but not to PPARgamma ligands. Likewise, the FA-mediated expression of FA-handling proteins was mimicked by PPARalpha and PPARbeta/delta, but not by PPARgamma ligands. As expected, in embryonic rat heart-derived H9c2 cells, which only express PPARbeta/delta, the FA-induced expression of genes was mimicked by the PPARbeta/delta ligand only, indicating that FA also act as ligands for the PPARbeta/delta isoform. In cardiomyocytes, MCPT-1 promoter activity was unresponsive to PPARgamma ligands. However, addition of PPARalpha and PPARbeta/delta ligands dose-dependently induced promoter activity. Collectively, the present findings demonstrate that, next to PPARalpha, PPARbeta/delta, but not PPARgamma, plays a prominent role in the regulation of cardiac lipid metabolism, thereby warranting further research into the role of PPARbeta/delta in cardiac disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号